Topic Review
Carbohydrates for Drug Delivery and Tissue Engineering
Carbohydrate-based biomaterials are a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects.
  • 377
  • 27 Jun 2023
Topic Review
Carbohydrates/Matrix Lignin in Mechanically Graded Bamboo Culms
The mechanical performance of bamboo is highly dependent on its structural arrangement and the properties of biomacromolecules within the cell wall. Along the radius of bamboo culms, the concentration of xylan within the fiber sheath increased, while that of cellulose and lignin decreased gradually. At cellular level, although the consecutive broad layer (Bl) of fiber revealed a relatively uniform cellulose orientation and concentration, the outer Bl with higher lignification level has higher elastic modulus (19.59–20.31 GPa) than that of the inner Bl close to the lumen area (17.07–19.99 GPa). Comparatively, the cell corner displayed the highest lignification level, while its hardness and modulus were lower than that of fiber Bl, indicating the cellulose skeleton is the prerequisite of cell wall mechanics. The obtained cytological information is helpful to understand the origin of the anisotropic mechanical properties of bamboo.
  • 438
  • 12 Jan 2022
Topic Review
Carbon Anode
Carbon anode refers to a broad family of essentially pure carbon, whose members can be tailored to vary widely in their strength, density, conductivity, pore structure, and crystalline development. These attributes contribute to their widespread applicability. Specific characteristics are imparted to the finished product by controlling the selection of precursor materials (including cokes, polymers and fibers) and the method of processing. In general, carbon anode electrodes are characterized by low cost production, high surface area, a wide working potential window in many media, high electrocatalytic activities for different redox-active chemical and biochemical systems, and chemical inertness.Moreover, their surface chemistry enables the functionalization of these carbon platforms via strong covalent or noncovalent methods with surface modifiers, which improves their electrochemical performance. Recent achievements of carbon anode materials and their structural design for better performances of aluminium production, lithium-ion secondary batteries, lithium cobalt oxide batteries, nano-tube production, substitution of amorphous electrode materials, photoanodes production, solar cells, fuel cells, supercapacitors, sensors and pumps, neurochemical monitors, etc., are finding enormous applications in industrial, commercial and social sectors. 
  • 4.9K
  • 31 Aug 2021
Topic Review
Carbon Based Two-Dimensional Materials for Bioelectronic Neural Interfacing
Realizing the neurological information processing by analyzing the complex data transferring behavior of populations and individual neurons is one of the fast-growing fields of neuroscience and bioelectronic technologies. This field is anticipated to cover a wide range of advanced applications, including neural dynamic monitoring, understanding the neurological disorders, human brain–machine communications and even ambitious mind-controlled prosthetic implant systems. To fulfill the requirements of high spatial and temporal resolution recording of neural activities, electrical, optical and biosensing technologies are combined to develop multifunctional bioelectronic and neuro-signal probes. Advanced two-dimensional (2D) layered materials such as carbon based 2D materials with their atomic-layer thickness and multifunctional capabilities show bio-stimulation and multiple sensing properties. These characteristics are beneficial factors for development of ultrathin-film electrodes for flexible neural interfacing with minimum invasive chronic interfaces to the brain cells and cortex.
  • 310
  • 01 Feb 2023
Topic Review
Carbon Capture and Storage (Timeline)
The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed. The time line of carbon capture and storage announcements and developments follows:
  • 550
  • 11 Oct 2022
Topic Review
Carbon Capture Using Porous Silica Materials
As the primary greenhouse gas, CO2 emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO2 by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO2 in the atmosphere is imperative to keep the global average temperature rise below 2 °C.
  • 247
  • 19 Jul 2023
Topic Review
Carbon Capture, Utilization, and Storage (CCUS)
Greenhouse gas emission into the atmosphere is considered the main reason for the rise in Earth’s mean surface temperature. According to the Paris Agreement, to prevent the rise of the global average surface temperature beyond two degrees Celsius, global CO2 emissions must be cut substantially. While a transition to a net-zero emission scenario is envisioned by mid-century, carbon capture, utilization, and storage (CCUS) will play a crucial role in mitigating ongoing greenhouse gas emissions. Injection of CO2 into geological formations is a major pathway to enable large-scale storage. 
  • 423
  • 21 Apr 2023
Topic Review
Carbon Coating Method
The carbon coating has the following main mechanisms: (1) Modifying surface chemical stability, (2) Enhancing structural stability, and (3) Improving Li-ion diffusion. 
  • 2.0K
  • 07 Jul 2022
Topic Review
Carbon Dioxide Capture By Biopolymer-Derived Porous Materials
Rising atmospheric carbon dioxide (CO2) concentration in the atmosphere is responsible for global warming which in turn causes abrupt climate change and consequently poses a threat to the living organisms in the coming years. CO2 capture and separation are crucial to reduce the CO2 content in the atmosphere. Post-combustion capture is one of the most useful techniques for capturing CO2 due to its practicality and ease of use. For adsorption-driven post-combustion CO2 capture, sorbents with large surface area, high volume, and narrow pores are highly effective. Natural polymers, such as polysaccharides, are less expensive, more plentiful, and can be modified by a variety of methods to produce porous materials and thus can be effectively utilized for CO2 capture. A significant amount of research activities has already been established in this field, especially in the last ten years and are still in progress. In this review, we have introduced the latest developments to the readers about synthetic techniques, post-synthetic modifications and CO2 capture capacities of various biopolymer-based materials published in the last five years (2018–2022).
  • 409
  • 21 Aug 2023
Topic Review
Carbon Dots
Carbon dots (CDs) are part of the nanocarbon family including quasi-spherical nanoparticles with sizes around 10 nm. They consist of amorphous and crystalline parts, mainly composed of carbon with a fringe spacing of 0.34 nm, which corresponds to the (002) interlayer spacing of graphite. Since their first discovery in 2006, CDs have gained ever-increasing attention due to their fascinating properties like distinctive optical behaviour, tunable emission, different functional groups, good biocompatibility, chemical and photo-stability, low toxicity, and low-cost production. More importantly, CDs properties can be changed by controlling their size, shape, and heteroatom doping and by modifying the surfaces. They are considered promising Green alternatives to traditional fluorescent dyes and have been proposed for different optoelectronic applications such as sensing, bioimaging, fingerprint detection, gene delivery, solar cells, or printing inks
  • 1.2K
  • 08 Mar 2021
  • Page
  • of
  • 465
Video Production Service