Topic Review
Biaxial Tensile Test
Biaxial tensile test is a tensile testing in which the sample is stretched in two distinct directions. This technique is used to obtain the mechanical characteristics of anisotropic materials, such as composite materials, textiles, and soft biological tissues. There are three main types of biaxial tensile testing: Bursting test, based on a circular specimen clamped along the edge and inflated by air or water under pressure until the specimen bursts; Cylinder test, based on a hollow cylinder subjected to internal pressure and axial pressure or tension; Plane biaxial test, which offers the best result because of the independent force introduction in the two main directions.
  • 1.2K
  • 28 Oct 2022
Topic Review
Biogas Valorisation to Biomethane
Biogas consists of mainly methane, as a source of energy, and impurities such as carbon dioxide, hydrogen sulphide, water, and siloxanes. These impurities, such as hydrogen sulphide, reduce the biogas energy content and corrode equipment that store, transport, or utilise biogas.
  • 231
  • 09 Oct 2023
Topic Review
Biomedical Applications of Random Lasing
A disordered photonic medium is one in which scatterers are distributed randomly. Light entering such media experiences multiple scattering events, resulting in a “random walk”-like propagation. Micro- and nano-scale structured disordered photonic media offer platforms for enhanced light–matter interaction, and in the presence of an appropriate gain medium, coherence-tunable, quasi-monochromatic lasing emission known as random lasing can be obtained.
  • 153
  • 11 Sep 2023
Topic Review
Biosensing Applications of GLAD-Fabricated Nanostructures
Glancing angle deposition (GLAD) is a technique for the fabrication of sculpted micro- and nanostructures under the conditions of oblique vapor flux incident and limited adatom diffusion. GLAD-based nanostructures are emerging platforms with broad sensing applications due to their high sensitivity, enhanced optical and catalytic properties, periodicity, and controlled morphology. GLAD-fabricated nanochips and substrates for chemical and biosensing applications are replacing conventionally used nanomaterials due to their broad scope, ease of fabrication, controlled growth parameters, and hence, sensing abilities.
  • 411
  • 13 Dec 2022
Topic Review
Bragg Grating Structures Based on a Semiconductor Platform
Optical waveguides (WGs), in the traditional sense, are translucent geometries with a refractive index difference that directs optical beams via total internal reflection. A Bragg grating (BG) structure is a regular WG with periodic refractive index (RI) variations running across it.
  • 417
  • 11 Jul 2022
Topic Review
Breath Analysis for Disease Diagnosis
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications.
  • 849
  • 27 Jul 2023
Topic Review
Brief History of Gel Dosimetry
Advances in radiotherapy technology have significantly improved both dose conformation to tumors and the preservation of healthy tissues, achieving almost real-time feedback by means of high-precision treatments and theranostics. Therefore, developing high-performance systems capable of coping with the challenging requirements of modern ionizing radiation is a key issue to overcome the limitations of traditional dosimeters. In this regard, a deep understanding of the physicochemical basis of gel dosimetry, as one of the most promising tools for the evaluation of 3D high-spatial-resolution dose distributions, represents the starting point for developing new and innovative systems. 
  • 413
  • 02 Nov 2022
Topic Review
Bulk and Single Crystal Growth Progress of FBS
The new iron-based superconductor (FBS) has generated enormous interest in this direction, and many research activities are currently going on with various kinds of FBS. FBS was discovered in 2008 through F doped LaFeAsO, which crystallizes with a tetragonal layered ZrCuSiAs structure, and after that, many compounds have been discovered, most of which display superconductivity through suitable doping. FBS became the second high-Tc-superconducting family after cuprate superconductors and has been the subject of extensive research into their physical nature and application potential.
  • 611
  • 14 Jan 2022
Topic Review
Bya (Unit)
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 604
  • 01 Dec 2022
Topic Review
Capacitive Field-Effect Bio-Chemical Sensors
       Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
  • 922
  • 19 Apr 2022
  • Page
  • of
  • 18