Topic Review
3D Printing of ECHs
Electrically conductive hydrogels (ECHs), an emerging class of biomaterials, have garnered tremendous attention due to their potential for a wide variety of biomedical applications, from tissue-engineered scaffolds to smart bioelectronics. Along with the development of new hydrogel systems, 3D printing of such ECHs is one of the most advanced approaches towards rapid fabrication of future biomedical implants and devices with versatile designs and tuneable functionalities.
  • 746
  • 06 May 2021
Topic Review
3D Printing at Micro-Level
Laser-induced forward transfer (LIFT) and two-photon polymerization (TPP) have proven their abilities to produce 3D complex microstructures at an extraordinary level of sophistication. Indeed, LIFT and TPP have supported the vision of providing a whole functional laboratory at a scale that can fit in the palm of a hand. This is only possible due to the developments in manufacturing at micro- and nano-scales. In a short time, LIFT and TPP have gained popularity, from being a microfabrication innovation utilized by laser experts to become a valuable instrument in the hands of researchers and technologists performing in various research and development areas, such as electronics, medicine, and micro-fluidics. In comparison with conventional micro-manufacturing methods, LIFT and TPP can produce exceptional 3D components. To gain benefits from LIFT and TPP, in-detail comprehension of the process and the manufactured parts’ mechanical–chemical characteristics is required. 
  • 1.6K
  • 01 Jul 2021
Topic Review
3D Printed Silicone Meniscus Implants
Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.
  • 768
  • 17 Apr 2021
Topic Review
Miscanthus-Based Polymers
Carbon neutrality is a requisite for industrial development in modern times. The most efficient source of biomass is energy crops, and Miscanthus has been globally recognized as one of the most significant among them. Miscanthus is basically utilized for the production of heat and electric power, and it is actively displacing wood in papermaking and natural cellulose isolation technologies. However, the range of potential applications of Miscanthus is much broader.
  • 604
  • 16 Oct 2023
  • Page
  • of
  • 46
Video Production Service