Topic Review
Ion-selective Electrodes
An Ion-selective electrode (ISE) is a transducer (sensor) which converts the activity of a specific ion dissolved in a solution into an electrical potential which can be measured by a voltmeter or pH meter. The voltage is theoretically dependent on the logarithm of the ionic activity, according to the Nernst equation. The sensing part of the electrode is usually made as an ion-specific membrane, along with a reference electrode. Ion-selective electrodes are used in biochemical and biophysical research, where measurements of ionic concentration in an aqueous solution are required, usually on a real time basis.
  • 1.4K
  • 10 Oct 2022
Topic Review
Vigil (Spacecraft)
Vigil, formerly known as Lagrange, is a planned solar weather mission by the European Space Agency (ESA). It envisions two spacecraft to be positioned at Lagrangian points L1 and L5. Monitoring space weather includes events such as solar flares, coronal mass ejections, geomagnetic storms, solar proton events, etc. Monitoring would help predict arrival times at the Earth and any potential effect on infrastructure. The Vigil spacecraft are anticipated to launch in the mid 2020s. On 17 May 2021, ESA began soliciting design concept studies from various European industrial and scientific consortiums for the mission. A final design will be selected after approximately 18 months, in late 2022. Simultaneously, the ESA announced the No-Name Mission contest to replace the placeholder Lagrange name. The winning name, Vigil, was announced on 10 February 2022.
  • 549
  • 10 Oct 2022
Topic Review
List of Unnumbered Minor Planets: 2004 R–S
This is a partial list of unnumbered minor planets for principal designations assigned between 1 September 2004 and 31 September 2004 (R–S).
  • 208
  • 10 Oct 2022
Topic Review
Loopholes in Bell Test Experiments
In Bell test experiments, there may be problems of experimental design or set-up that affect the validity of the experimental findings. These problems are often referred to as "loopholes". See the article on Bell's theorem for the theoretical background to these experimental efforts (see also John Stewart Bell). The purpose of the experiment is to test whether nature is best described using a local hidden variable theory or by the quantum entanglement theory of quantum mechanics. The "detection efficiency", or "fair sampling" problem is the most prevalent loophole in optical experiments. Another loophole that has more often been addressed is that of communication, i.e. locality. There is also the "disjoint measurement" loophole which entails multiple samples used to obtain correlations as compared to "joint measurement" where a single sample is used to obtain all correlations used in an inequality. To date, no test has simultaneously closed all loopholes. Ronald Hanson of the Delft University of Technology claims the first Bell experiment that closes both the detection and the communication loopholes. (This was not an optical experiment in the sense discussed below; the entangled degrees of freedom were electron spins rather than photon polarization.) Nevertheless, correlations of classical optical fields also violate Bell's inequality. In some experiments there may be additional defects that make "local realist" explanations of Bell test violations possible; these are briefly described below. Many modern experiments are directed at detecting quantum entanglement rather than ruling out local hidden variable theories, and these tasks are different since the former accepts quantum mechanics at the outset (no entanglement without quantum mechanics). This is regularly done using Bell's theorem, but in this situation the theorem is used as an entanglement witness, a dividing line between entangled quantum states and separable quantum states, and is as such not as sensitive to the problems described here. In October 2015, scientists from the Kavli Institute of Nanoscience reported that the Quantum nonlocality phenomenon is supported at the 96% confidence level based on a "loophole-free Bell test" study. These results were confirmed by two studies with statistical significance over 5 standard deviations which were published in December 2015. However, Alain Aspect writes that No experiment can be said to be totally loophole-free.
  • 531
  • 10 Oct 2022
Topic Review
Osmium-196
Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago. There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
  • 356
  • 10 Oct 2022
Topic Review
Soyuz 11
Soyuz 11 (Russian: Союз 11, lit. 'Union 11') was the only crewed mission to board the world's first space station, Salyut 1 (Soyuz 10 had soft-docked, but had not been able to enter due to latching problems). The crew, Georgy Dobrovolsky, Vladislav Volkov, and Viktor Patsayev, arrived at the space station on 7 June 1971, and departed on 29 June 1971. The mission ended in disaster when the crew capsule depressurised during preparations for re-entry, killing the three-man crew. The three crew members of Soyuz 11 are the only humans to have died in space.
  • 817
  • 09 Oct 2022
Topic Review
Deformation
In physics, deformation is the continuum mechanics transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body. A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc. Strain is related to deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The relation between stress and strain is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain. They exist even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation. In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
  • 3.6K
  • 09 Oct 2022
Topic Review
Rigidity Theory
Rigidity theory, or topological constraint theory, is a tool for predicting properties of complex networks (such as glasses) based on their composition. It was introduced by James Charles Phillips in 1979 and 1981, and refined by Michael Thorpe in 1983. Inspired by the study of the stability of mechanical trusses as pioneered by James Clerk Maxwell, and by the seminal work on glass structure done by William Houlder Zachariasen, this theory reduces complex molecular networks to nodes (atoms, molecules, proteins, etc.) constrained by rods (chemical constraints), thus filtering out microscopic details that ultimately don't affect macroscopic properties. An equivalent theory was developed by P.K. Gupta A.R. Cooper in 1990, where rather than nodes representing atoms, they represented unit polytopes. An example of this would be the SiO tetrahedra in pure glassy silica. This style of analysis has applications in biology and chemistry, such as understanding adaptability in protein-protein interaction networks. Rigidity theory applied to the molecular networks arising from phenotypical expression of certain diseases may provide insights regarding their structure and function. In molecular networks, atoms can be constrained by radial 2-body bond-stretching constraints, which keep interatomic distances fixed, and angular 3-body bond-bending constraints, which keep angles fixed around their average values. As stated by Maxwell's criterion, a mechanical truss is isostatic when the number of constraints equals the number of degrees of freedom of the nodes. In this case, the truss is optimally constrained, being rigid but free of stress. This criterion has been applied by Phillips to molecular networks, which are called flexible, stressed-rigid or isostatic when the number of constraints per atoms is respectively lower, higher or equal to 3, the number of degrees of freedom per atom in a three-dimensional system. The same condition applies to random packing of spheres, which are isostatic at the jamming point. Typically, the conditions for glass formation will be optimal if the network is isostatic, which is for example the case for pure silica. Flexible systems show internal degrees of freedom, called floppy modes, whereas stressed-rigid ones are complexity locked by the high number of constraints and tend to crystallize instead of forming glass during a quick quenching.
  • 396
  • 09 Oct 2022
Topic Review
CFBDSIR 1458+10
CFBDSIR J145829+101343 (Coordinates: 14h 58m 29.0s, +10° 13′ 43″, designation abbreviated to CFBDSIR 1458+10, or CFBDSIR J1458+1013) is a binary system of two brown dwarfs of spectral classes T9 + Y0 orbiting each other, located in constellation Boötes about 104 light-years away from Earth. The smaller companion, CFBDSIR 1458+10B, has a surface temperature of approx 370 K (≈100 °C) and used to be known as the coolest known brown dwarf until the discovery of WISE 1828+2650 in August 2011.
  • 826
  • 09 Oct 2022
Topic Review
Photoelectrochemistry
Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology.
  • 415
  • 09 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations