Topic Review
The Macro-Physics of the Quark-Nova
A quark-nova is a hypothetical stellar evolution branch where a neutron star converts explosively into a quark star. Due to the high peak neutrino luminosities, neutrino pair annihilation can deposit as much as 1052 ergs in kinetic energy in the matter overlaying the neutrinosphere, yielding relativistic quark-nova ejecta. 
  • 525
  • 28 Jun 2022
Topic Review
The Hum
The Hum is a phenomenon, or collection of phenomena, involving widespread reports of a persistent and invasive low-frequency humming, rumbling, or droning noise not audible to all people. Hums have been widely reported by national media in the UK and the United States. The Hum is sometimes prefixed with the name of a locality where the problem has been particularly publicized: e.g., the "Bristol Hum" or the "Taos Hum". It is unclear whether it is a single phenomenon; different causes have been attributed. In some cases, it may be a manifestation of tinnitus.
  • 1.3K
  • 27 Oct 2022
Topic Review
The Feynman Lectures on Physics
The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard P. Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics is perhaps the most popular physics book ever written. More than 1.5 million English-language copies have been sold; probably even more copies have been sold in a dozen foreign-language editions. A 2013 review in Nature described the book as having "simplicity, beauty, unity ... presented with enthusiasm and insight".
  • 1.0K
  • 27 Oct 2022
Topic Review
The Evolution of Ryugu
The asteroid 1999 JU3, which would later be named Ryugu, was classified as a Cg-type asteroid in 2001, based on its strong UV absorption feature shortward of 0.55 um and its flat to slightly reddish slope longward of 0.55 um. Cg-type asteroids are part of the C-complex of asteroids, which were suggested to be “primitive” in nature and potentially the parent bodies for carbonaceous chondrites. The linking of carbonaceous chondrites and C-complex asteroids relates to several interpretations concerning features in the near infrared spectra of C-complex asteroids. The features were interpreted as arising from secondary alteration minerals, including goethite, hematite, jarosite and phyllosilicates, that are the products of aqueous alteration and which are found in carbonaceous chondrites.
  • 187
  • 18 Jul 2023
Topic Review
The Early Days of Personal Solar Ultraviolet Dosimetry
In the early 1970s, environmental conservationists were becoming concerned that a reduction in the thickness of the atmospheric ozone layer would lead to increased levels of ultraviolet (UV) radiation at ground level, resulting in higher population exposure to UV and subsequent harm, especially a rise in skin cancer. At the time, no measurements had been reported on the normal levels of solar UV radiation which populations received in their usual environment, so this lack of data, coupled with increasing concerns about the impact to human health, led to the development of simple devices that monitored personal UV exposure. 
  • 383
  • 22 Dec 2021
Topic Review
The Crab Nebula in Gamma-Rays
The Crab nebula is one of the best studied objects in the sky, second only to the Sun. It is the remnant of a supernova explosion occurred in A. D. 1054, and it represents the prototype of an entire class of supernova remnants: Pulsar Wind Nebulae. It consists of two different bright non-thermal sources — the pulsar and the nebula. Both objects have played a key role in the development of high-energy astrophysics. Thanks to their bright emission at all wavelengths, they have been observed by virtually all new astronomical instruments and have been at the origin of a wealth of important scientific discoveries.
  • 567
  • 13 Jan 2022
Topic Review
The Concept of “Quantum-Like”
The birth and spread of the prefix “quantum-” to disciplines other than physics, and the introduction of the term “quantum-like”, reflect the increasing dissatisfaction with the perceived limits and pitfalls of classic Western thought. Of course, the latter remains valuable; what is wrong is its dogmatic use and the claim of its exclusive capacity to comprehend the world. The development of quantum physics has been paralleled by the introduction of paraconsistent logics, such as fuzzy logic and dialetheism, a clear sign of the need for smoothing the inflexibility of Aristotelian logic. There is also a fil rouge (viz. an epistemological symmetry) linking the paradigm of quantum physics to ancient pre-Socratic and Eastern philosophies, suggesting the need for reappraising them in the process of reexamination of the classical thought. The increasing use of the term “quantum-like” calls for the defining and sharing of its meaning in order to properly adopt it and avoid possible misuse. 
  • 842
  • 14 Mar 2022
Topic Review
The BrIdge voLcanic LIdar—BILLI
Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically challenging, but we can retrieve useful information from magmatic/geological process studies for the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements, which is unsafe for operators and deleterious for equipment. In order to overcome these limitations, a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been developed as part of the ERC (European Research Council) Project “BRIDGE”, for sensitive, remote, and safe real-time CO2 observations.
  • 818
  • 09 Oct 2020
Topic Review
The BIANCA Biophysical Model
Cancer ion therapy is constantly growing, thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands for biophysical modelling. Up to now only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM) and the “mixed-beam” model are used in clinics. In this work the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (Central Nervous System) late effects, which in turn are the main dose-limiting factor for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. This work provides the bases for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.
  • 761
  • 02 Nov 2020
Topic Review
The Andromeda Galaxy
Star formation histories of galaxies are critically important for understanding the process of galaxy formation and the structure and contents of galaxies. Star formation can and has been studied in local galaxies for which the stellar populations are resolved and in more distant galaxies for which stars are unresolved, which are instead modeled as populations. Structural components of a galaxy can be resolved at much larger distances. The structural components include those long recognized, such as bulge, disk and halo. More recently recognized structures include separation of disks into thin and thick disk components and stellar streams, as well as recognition of significant numbers of dwarf companion galaxies. Stellar streams are the most recently recognized components of galaxies, mainly using observations of the Milky Way and the Andromeda Galaxy (M31).
  • 575
  • 14 Aug 2023
  • Page
  • of
  • 118
Video Production Service