Topic Review
MOFs for Mercury Detection
The advantages of metal organic frameworks (MOFs) are: existence of porosity to adsorb specific analyte, improved aqueous solubility, exceptional photophysical and chemical properties. MOFs are noted as exceptional candidates towards the detection and removal of specific analytes, particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury.This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
  • 1.2K
  • 01 Jul 2021
Topic Review
All-Cellulose Composites
Wood- or plant-based cellulose fibres have shown their potential as a reinforcement in composites for a relatively long time alongside the commonly used glass-fibre and carbon-fibre reinforcements. Whereas regular biocomposites suffer from fibre-matrix adhesion-related challenges, all-cellulose composites (ACCs) can overcome this problem by both matrix and reinforcement having the same or a similar chemical structure, which results in good interfacial compatibility. ACCs can provide an environmentally friendly alternative to conventional petrochemical-based materials since they are a type of single-polymer composites (SPCs) from biomass-derived cellulose, and as such, they are easily recyclable, and they originate from renewable sources.
  • 1.2K
  • 17 Nov 2021
Topic Review
PEDOT:PSS Layer and Perovskite Solar Cells
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most successful conducting polymer, which has been widely used in displays, transistors, various sensors and photovoltaics (PVs). It has high optical  transparency in the visible light range and low-temperature processing condition, making it one of the most widely used polymer hole transport materials inverted perovskite solar cells (PSCs), because of its high optical transparency in the visible light range and low-temperature processing condition. However, the stability of PSCs based on pristine PEDOT:PSS is far from satisfactory, which is ascribed to the acidic and hygroscopic nature of PEDOT:PSS, and property differences between PEDOT:PSS and perovskite materials, such as conductivity, work function and surface morphology. 
  • 1.2K
  • 10 Feb 2022
Topic Review
TiO2: Next Generation Photocatalysts
TiO2 is the most widely used photocatalyst in many energy and environmental applications. This entry describes the basic structure and properties of TiO2 as a nanomaterials. It also enlists the special properties of TiO2 which make it a best candidate for photocatalysis reaction. It also explains the drawbacks of TiO2 nanomaterials along with the strategies to overcome those. 
  • 1.2K
  • 30 Mar 2021
Topic Review
Alloying Elements and Mechanical Characteristics of Mg-Based Materials
Magnesium alloys are widely employed in various applications due to their high strength-to-weight ratio and superior mechanical properties as compared to unalloyed Magnesium. Alloying is considered an important way to enhance the strength of the metal matrix composite but it significantly influences the damping property of pure magnesium, while controlling the rate of corrosion for Mg-based material remains critical in the biological environment. Therefore, it is essential to reinforce the magnesium alloy with a suitable alloying element that improves the mechanical characteristics and resistance to corrosion of Mg-based material. Biocompatibility, biodegradability, lower stress shielding effect, bio-activeness, and non-toxicity are the important parameters for biomedical applications other than mechanical and corrosion properties. The development of various surface modifications is also considered a suitable approach to control the degradation rate of Mg-based materials, making lightweight Mg-based materials highly suitable for biomedical implants. 
  • 1.2K
  • 01 Sep 2022
Topic Review
Flexible Stretchable Electrode
Flexible electrode technology is the key to the wide application of flexible electronics. However, flexible electrodes will break when large deformation occurs, failing flexible electronics. It restricts the further development of flexible electronic technology. Flexible stretchable electrodes are a hot research topic to solve the problem that flexible electrodes cannot withstand large deformation. Flexible stretchable electrode materials have excellent electrical conductivity, while retaining excellent mechanical properties in case of large deformation.
  • 1.2K
  • 27 Apr 2022
Topic Review
Photocathode Materials
Photoelectrochemical water splitting is a promising approach to sustainable hydrogen production with no carbon emissions. Hydrogen being a future fuel to coming human generations is of utmost importance. The photocathodes in a photoelectrochemical (PEC) water-splitting cell are essential for the direct evolution of hydrogen. Among the known photocathodes, Cu-based p-type semiconducting materials are the most promising photo-absorber materials owing to their low-cost, low toxicity, natural abundance, suitable band-gaps, and favorable band edges for reduction. 
  • 1.2K
  • 08 Nov 2022
Topic Review
Geopolymer Technology: Possible "Cement-Matrix" Sosbtitution
Geopolymer technology (GCs) refer to a class of alumino-silicate cementitious materials resulting from an inorganic polycondensation reaction (named “geopolymerization”) between solid alumino-silicate precursors and highly concentrated aqueous alkali hydroxide or silicate solution such as sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium silicate (Na2SiO3), or potassium silicate (K2SiO3).
  • 1.1K
  • 15 Jun 2021
Topic Review
Thermosets with Flame Retardants
Epoxy and unsaturated polyester resins are the most used thermosetting polymers.They are commonly used in electronics, construction, marine, automotive and aircraft industries.Moreover, reinforcing both epoxy and unsaturated polyester resins with carbon or glass fibre in a fabric form has enabled them to be used in high-performance applications. However, their organic nature as any other polymeric materials made them highly lammable materials. Enhancing the flame retardancy performance of thermosetting polymers and their composites can be improved by the addition of flame-retardant materials, but this comes at the expense of their mechanical properties. In this regard, a comprehensive review on the recent research articles that studied the flame retardancy of epoxy resin, unsaturated polyester resin and their composites were covered. Flame retardancy performance of different flame retardant/polymer systems was evaluated in terms of Flame Retardancy index (FRI) that was calculated based on the data extracted from the cone calorimeter test. Furthermore, lame retardant selection charts that relate between the flame retardancy level with mechanical properties in the aspects of tensile and lexural strength were presented. This review paper is also dedicated to providing the reader with a brief overview on the combustion mechanism of polymeric materials, their flammability behaviour and the commonly used flammability testing techniques and the mechanism of action of flame retardants.
  • 1.1K
  • 29 Mar 2021
Topic Review
Mechanical Properties of Sugarcane-Bagasse-Ash-Integrated Concretes
Leading sugar-producing nations have been generating high volumes of sugarcane bagasse ash (SCBA) as a by-product. SCBA has the potential to be used as a partial replacement for ordinary Portland cement (OPC) in concrete, from thereby, mitigating several adverse environmental effects of cement while keeping the cost of concrete low. The majority of the microstructure of SCBA is composed of SiO2, Al2O3, and Fe2O3 compounds, which can provide pozzolanic properties to SCBA.
  • 1.1K
  • 30 Oct 2022
  • Page
  • of
  • 22