You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells
Chronic kidney disease (CKD) has emerged as a major public health concern due to its prevalence in 7–12% of the population worldwide, progression to irreversible end-stage renal disease (ESRD), impaired quality of life, associations with high social and financial costs, and high rates of associated morbidity and mortality (an 82% increase in CKD epidemic over the past two decades). The current treatment options for kidney failure involve lifelong dialysis and whole kidney transplantation. Although kidney transplantation undoubtedly offers a better quality of life and life expectancy than dialytic treatment, it is limited by the scarcity of available organs and the huge gap between supply and demand. Furthermore, considering that the average life expectancy of dialysis patients is barely a decade, alternative strategies for preventing or delaying the progression to ESRD are urgently needed. In this context, regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge.
  • 951
  • 24 Dec 2021
Topic Review
Cell Therapy for Neurological Disorders
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. 
  • 950
  • 11 Jan 2022
Topic Review
Human Induced Pluripotent Stem Cells-Based Models of AD
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual’s unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery.
  • 948
  • 16 May 2022
Topic Review
In Vitro Cancer Models
In vitro cancer models are envisioned as high-throughput screening platforms for potential new therapeutic discovery and/or validation. They also serve as tools to achieve personalized treatment strategies or real-time monitoring of disease propagation, providing effective treatments to patients. To battle the fatality of metastatic cancers, the development and commercialization of predictive and robust preclinical in vitro cancer models are of urgent need.
  • 947
  • 21 Apr 2022
Topic Review
YAP and TAZ Mediators
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ).
  • 937
  • 28 May 2021
Topic Review
Small-Diameter Tissue-Engineered Vascular Grafts
In general, arterial bypass grafting in the heart or below the knee requires small-diameter grafts. Thus, shortage of material for such surgeries remains a big challenge because autologous grafts are often not available in certain patient groups such as claudicants, patients with diabetics or vein disease, and in patients requiring reoperations. This has further underscored the need for developing alternative small-diameter vascular grafts. One candidate, small-diameter tissue-engineered vascular grafts (SD-TEVGs), is fabricated using novel techniques and interdisciplinary knowledge including material, engineering, and cell biology. Advantages of using SD-TEVGs as compared to autografts, include noninvasive surgery during preparation of grafts, unlimited availability, and customized dimension.
  • 927
  • 13 Apr 2021
Topic Review
Anti-Cancer Properties of Flaxseed Proteome
Flaxseed has been recognized as a valuable source of nutrients and bioactive compounds, including proteins that possess various health benefits. In recent years, studies have shown that flaxseed proteins, including albumins, globulins, glutelin, and prolamins, possess anti-cancer properties. These properties are attributed to their ability to inhibit cancer cell proliferation, induce apoptosis, and interfere with cancer cell signaling pathways, ultimately leading to the inhibition of metastasis.
  • 925
  • 28 Nov 2023
Topic Review
CAR-T Cells/-NK Cells
The chimeric antigen receptors (CAR) protein is composed of two domains: (a) The extracellular tumour-antigen receptor that specifically recognises tumour-associated antigens (TAA) on the cell-surface membrane of cancer cells (e.g., CD19 on B-cells); and (b) the intracellular signal transduction domain, which stimulates the engineered cell’s proliferation and function.
  • 923
  • 14 Apr 2022
Topic Review
Mesenchymal Stem Cells Studies in the Goat Model
Stem cells can be classified as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), which differ in origin, plasticity, differentiation potential, and risk of tumorigenesis. MSCs have been the most studied cells, with excellent and safe results in multiple areas. In the area of tissue engineering and regenerative medicine, the caprine model is particularly used in studies using stem cells in the musculoskeletal system but, although in a more limited way, also in the field of dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology.
  • 923
  • 26 Sep 2022
Topic Review
Bioprocess Economic Modeling for Stem Cell Therapy Products
Bioprocess economic models (BEMs) are fundamental tools for guiding decision-making in bioprocess design, being capable of supporting process optimization and helping to reduce production costs. These tools are particularly important when it comes to guiding manufacturing decisions and increasing the likelihood of market acceptance of cell-based therapies, which are often cost-prohibitive because of high resource and quality control costs. Not only this, but the inherent biological variability of their underlying bioprocesses makes them particularly susceptible to unforeseen costs arising from failed or delayed production batches.
  • 921
  • 19 Dec 2022
Topic Review
Fundamentals of Gut-on-a-Chip Models
Recent progress in microfluidic technology has made it possible to mimic characteristics and responses of the human gut as seen in vivo. In the past decade, researchers have enhanced organ-on-a-chip technology (GOC) models by incorporating sensors and biometers to control parameters that mimic the human gut. Most in vitro GOC models depend upon 2D cell culture models, whereby the intestinal epithelial cell lines (i.e., human colon adenocarcinoma (Caco-2) or human colorectal adenocarcinoma cell line with epithelial morphology (HT-29 cells)) are grown on extracellular matrix (ECM)-coated porous membranes inside Transwell systems or 2D monoculture plates. These models are often used to study the barrier functions and drug absorption; hence they are primarily applied in the pharmaceutical industry. 2D Transwell culture systems are simple and can be used for short-term observations; however, they fail to recapitulate the 3D structures and interactions of the native tissue such as microstructures (i.e., microvilli), mucus production, peristaltic motion, drug metabolism, etc. Another challenge with conventional models is due to the static nature the integration of commensal microbiomes, such as bacteria (i.e., E. coli) due to overgrowth and contamination of the system. To appropriately study the human gut’s physiology, pharmacology or pathology, the system used must recreate the 3D structures and microenvironment of the human gut. This can be achieved by using microfluidic platforms and incorporating live cells, thereby creating a 3D model with dynamic cell culture, and overcoming challenges such as microbial overgrowth. The most common GOC model structure has two channels (upper and lower layer), separated by a porous semipermeable membrane, which depicts the separation between the intestinal lumen and the vasculature. Furthermore, one of the two microchannels represents the lumen of the human gut. This channel aligns with the gut epithelial cells (i.e., IECs). The other channel represents the blood vessels and therefore aligns with vascular endothelial cells. The role of the semipermeable membrane is to facilitate the transport of soluble molecules and nutrients between the gut and the blood vessels.
  • 921
  • 13 Feb 2023
Topic Review
MSC-EVs in Osteoporosis
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP.
  • 920
  • 23 Dec 2022
Topic Review
The Application of Photobiomodulation Therapy in Endodontics
Photobiomodulation therapy (PBMT) applied with a low-level laser (LLLT) provides endodontists with a non-invasive and non-thermal method that can be utilized as an adjunct to traditional root canal treatment (RCT) or as a therapeutic tool in regenerative endodontic procedures (REPs) due to its anti-inflammatory effects, apical cicatrization, and acceleration benefits.
  • 916
  • 14 Apr 2023
Topic Review
Interdisciplinary Work on Human Liver Physiology
The knowledge accumulated about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health.
  • 914
  • 09 Dec 2022
Topic Review
Biomaterials and Extracellular Vesicle Delivery
EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. 
  • 913
  • 28 Sep 2022
Topic Review
Chimeric Antigen Receptor T-Cell Therapy
The treatment landscape for hematologic malignancies has changed since the recent approval of highly effective CAR-T. Chimeric antigen receptor T-cell therapy (CAR-T) is a type of immunotherapy in which a patient’s T cells are collected and genetically engineered to improve their ability to recognize and kill cancer cells. However, several issues are still unsolved and represent the challenges for the coming years. The lack of initial responses and early relapse are some hurdles to be tackled. Moreover, new strategies are needed to increase the safety profile or shorten the manufacturing process during CAR-T cells therapy production. Finally, the clinical experience with CAR-T cells for solid tumors has been less encouraging, and development in this setting is desirable.
  • 913
  • 23 Nov 2022
Topic Review
Mechanotransduction in Mesenchymal Stem Cells Differentiation
Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine.
  • 910
  • 11 May 2022
Topic Review
HDPSCs-Based Neuroregeneration Therapies
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their high ability differentiate to neural and vascular lineage cells, their growth in animal serum-free media, their secretion of neuroprotective factors and extracellular vesicles, their high resistance to hypoxia/ischemia, their immunomodulatory properties, and their wide range of possibilities to be used in autologous grafts.
  • 904
  • 15 Apr 2021
Topic Review
Nanofibrous Scaffolds for Diabetic Wound Healing
Nanofibrous scaffolds are artificial extracellular matrices that mimic the natural environment for tissue formation. This type of scaffold is more advantageous than other available variants because of its large surface-to-volume ratio, which leads to the efficient promotion of cell adhesion, proliferation, and differentiation. 
  • 901
  • 30 Mar 2023
Topic Review
Cochlea Activated in Occluded Ear
Soft tissue conduction is an additional mode of auditory stimulation which can be initiated either by applying an external vibrator to skin sites not overlying skull bone such as the neck (so it is not bone conduction) or by intrinsic body vibrations resulting, for example, from the heartbeat and vocalization. The soft tissue vibrations thereby induced are conducted by the soft tissues to all parts of the body, including the walls of the external auditory canal. In order for soft tissue conduction to elicit hearing, the soft tissue vibrations which are induced must penetrate into the cochlea in order to excite the inner ear hair cells and auditory nerve fibers. This final stage can be achieved either by an osseous bone conduction mechanism, or, more likely, by the occlusion effect: the vibrations of the walls of the occluded canal induce air pressures in the canal which drive the tympanic membrane and middle ear ossicles and activate the inner ear, acting by means of a more air conduction-like mechanism. In fact, when the clinician applies his stethoscope to the body surface of his patient in order to detect heart sounds or pulmonary air flow, he is detecting soft tissue vibrations. 
  • 895
  • 04 Aug 2021
  • Page
  • of
  • 14
Academic Video Service