You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Risks of Electric Vehicle Integration into Smart Cities
The integration of electric vehicles (EVs) into smart cities presents a promising opportunity for reducing greenhouse gas emissions and enhancing urban sustainability. However, there are significant risks and challenges associated with the integration of EVs into smart cities, which must be carefully considered.
  • 680
  • 20 Jul 2023
Topic Review
Unisys ICON
The ICON was a computer built specifically for use in schools, to fill a standard created by the Ontario Ministry of Education. It was based on the Intel 80186 CPU and ran an early version of QNX, a Unix-like operating system. The system was packaged as an all-in-one machine similar to the Commodore PET, and included a trackball for mouse-like control. Over time a number of GUI-like systems appeared for the platform, based on the system's NAPLPS-based graphics system. The ICON was widely used, mostly in high schools in the mid to late 1980s, but disappeared after that time with the widespread introduction of PCs and Apple Macintoshes. They were also known as the CEMCorp ICON, Burroughs ICON, and finally Unisys ICON when Burroughs and Sperry Corporation merged to form Unisys in 1986. The machine was also nicknamed the bionic beaver.
  • 680
  • 18 Oct 2022
Topic Review
Stress Detection Using Empatica E4 and Machine Learning
In response to challenging circumstances, the human body can experience marked levels of anxiety and distress. To prevent stress-related complications, timely identification of stress symptoms is crucial, necessitating the need for continuous stress monitoring.
  • 680
  • 22 Nov 2023
Topic Review
Grid-Forming Inverters
The electrical grid is predominantly characterized by synchronous generators (SGs). These generators provide a consistent voltage and frequency, facilitating the synchronization of VSIs and their connection at the point of common coupling (PCC) for injecting power into the main grid. These inverters operate as current sources and are known as grid-following inverters. The imperfections of grid-following inverters arise when the grid is absent, as this concept fails to produce instantaneous voltage and frequency set points. Therefore, this operating mode has been significantly modified, from following the grid to leading it. This concept is known as grid-forming (GFM) inverters, which can independently set up and keep the voltage and frequency within their nominal ranges without the need for the main grid.
  • 679
  • 29 Dec 2023
Topic Review
Design Improvements of DC Circuit Breaker
While traditional AC mechanical circuit breakers can protect AC circuits, many other DC power distribution technologies, such as DC microgrids (MGs), yield superior disruption performance, e.g., faster and more reliable switching speeds. However, novel DC circuit breaker (DCCB) designs are challenging due to the need to quickly break high currents within milliseconds, caused by the high fault current rise in DC grids compared to AC grids. In DC grids, the circuit breaker must not provide any current crossing and must absorb surges, since the arc is not naturally extinguished by the system. Additionally, the DC breaker must mitigate the magnetic energy stored in the system inductance and withstand residual overvoltages after current interruption. These challenges require a fundamentally different topology for DCCBs, which are typically made using solid-state semiconductor technology, metal oxide varistors (MOVs), and ultra-fast switches.
  • 679
  • 06 Sep 2023
Topic Review
Modeling and Control of Piezoelectric Actuators
Piezoelectric actuators find extensive application in delivering precision motion in the micrometer to nanometer range. The advantages of a broader range of motion, rapid response, higher stiffness, and large actuation force from piezoelectric actuators make them suitable for precision positioning applications. However, the inherent nonlinearity in the piezoelectric actuators under dynamic working conditions severely affects the accuracy of the generated motion. The nonlinearity in the piezoelectric actuators arises from hysteresis, creep, and vibration, which affect the performance of the piezoelectric actuator. Thus, there is a need for appropriate modeling and control approaches for piezoelectric actuators, which can model the nonlinearity phenomenon and provide adequate compensation to achieve higher motion accuracy. 
  • 678
  • 15 Dec 2023
Topic Review
Electric Vehicle Grand Prix
The Electric Vehicle Grand Prix (stylized as evGrand Prix) is an electric go-kart race held at Purdue University and the Indianapolis Motor Speedway.
  • 677
  • 10 Oct 2022
Topic Review
Physiological Computing in Human–Robot Collaboration
Human–robot collaboration has emerged as a prominent research topic. To enhance collaboration and ensure safety between humans and robots, researchers employ a variety of methods. One such method is physiological computing, which aims to estimate a human’s psycho-physiological state by measuring various physiological signals such as galvanic skin response (GSR), electrocardiograph (ECG), heart rate variability (HRV), and electroencephalogram (EEG). This information is then used to provide feedback to the robot.
  • 676
  • 15 Jun 2023
Topic Review
Hydrogen Storage for Large-Scale, Long-Term Energy Storage
In the process of building a new power system with new energy sources as the mainstay, wind power and photovoltaic energy enter the multiplication stage with randomness and uncertainty, and the foundation and support role of large-scale long-time energy storage is highlighted. Considering the advantages of hydrogen energy storage in large-scale, cross-seasonal and cross-regional aspects, the necessity, feasibility and economy of hydrogen energy participation in long-time energy storage under the new power system are discussed.
  • 676
  • 06 Jul 2023
Topic Review
IoT-Based Hybrid AC/DC RES Environment
Smart microgrids, as the foundations of the future smart grid, combine distinct Internet of Things (IoT) designs and technologies for applications that are designed to create, regulate, monitor, and protect the microgrid (MG), particularly as the IoT develops and evolves on a daily basis. Communication networks are critical components of HRES because they allow data to flow between data sources (sensors and meters), control centers, and controllers. The data flow from various elements establishes the system architecture in addition to facilitating the control operation and remote monitoring. Sensing, communication, processing, and actuation will all benefit from IoT technology, which will facilitate a variety of MG applications.
  • 675
  • 08 Oct 2022
Topic Review
Development of the Generation of Solar Cells
Solar energy is of prime importance in all renewable energy sources as the Sun shines at the Earth for 8 to 10 h on average. Thus, heat can be harnessed to generate electricity, but solar cells are not substantially efficient because the materials used in them are quite costly and waste a considerable amount of energy, mostly as heat, which subsequently reduces the efficiency of the cell and increases the overall price as well. These challenges can be dealt with by designing more efficient, economical systems of storage and manufacturing PV cells with high efficacy. Scientists and engineers are more inclined toward advanced technologies and material manipulation to enhance the efficiency of solar energy and reduce its cost.
  • 674
  • 06 Jul 2023
Topic Review
Voltage-Source-Converter-Based High Voltage Direct Current Transmission System
Long-distance offshore wind power transmission systems utilize multi-terminal high voltage direct current (MT-HVDC) connections based on voltage source converters (VSCs). In addition to having the potential to work around restrictions, the VSC-based MT-HVDC transmission system has significant technical and economic merits over the HVAC transmission system. Offshore wind farms (OWFs) will inevitably grow because of their outstanding resistance to climate change and ability to provide sustainable energy without producing hazardous waste. Due to stronger and more persistent sea winds, the OWF often has a higher generation capacity with less negative climate effects. The majority of modern installations are distant from the shore and produce more power than the early OWF sites, which are situated close to the shore. 
  • 674
  • 20 Nov 2023
Topic Review
Lockout-Tagout
Lockout-tagout (LOTO) or lock and tag is a safety procedure which is used in industry and research settings to ensure that dangerous machines are properly shut off and not able to be started up again prior to the completion of maintenance or repair work. It requires that hazardous energy sources be "isolated and rendered inoperative" before work is started on the equipment in question. The isolated power sources are then locked and a tag is placed on the lock identifying the worker who placed it. The worker then holds the key for the lock ensuring that only he or she can remove the lock and start the machine. This prevents accidental startup of a machine while it is in a hazardous state or while a worker is in direct contact with it. Lockout-tagout is used across industries as a safe method of working on hazardous equipment and is mandated by law in some countries.
  • 673
  • 30 Nov 2022
Topic Review
CPTED in the Cyberspace Domain
The visual fidelity of a virtual environment lacks the exceedingly complex layers from the physical world, but the continuous improvements of image rendering technology and computation powers have led to greater demands for virtual simulations. Our study employs Crime Prevention through Environmental Design (CPTED) as a risk control measure and utilizes two principles: Access Control and Natural Surveillance. We conducted an experiment with (n-sample: 100) graduate students. For the experiment, we utilized the Factor Analysis of Information Risk (FAIR) to quantitatively analyze the risk. Furthermore, we adopted the lme4 package for R to estimate the mixed effect of the 6,242,880 observations retrieved from Kaggle. Based on the two experiments, we were able to critically evaluate the contributions of CPTED through a multi-component analysis. Our study investigates how spatial syntax and territorial demarcation may translate in the cyberspace realm. We found that the corollaries of the mophology in the virtual environment effects the distribution of crime. The results of our study discusses how to determine the criminogenic designs and capacity in the cyberspace realm.
  • 672
  • 27 Oct 2020
Topic Review
Problem Domains in Energy-Efficient and Load Balanced WSNs
Researchers are facing significant challenges to develop robust energy-efficient clustering and routing protocols for Wireless Sensor Networks (WSNs) in different areas such as military, agriculture, education, industry, environmental monitoring, etc. WSNs have made an everlasting imprint on everyone’s lives. Wireless Sensor Networks (WSN) can detect, store, and transmit data in real-time. These tasks must be completed efficiently to avoid wasting the limited sensor battery life. 
  • 672
  • 24 May 2022
Topic Review
Wide-Bandgap Semiconductors Evaluation for High-Performance Domestic Induction Heating
In the induction heating system, the power transferred to the output depends on the equivalent resistance of the load, and the resistance depends on the operating frequency. Due to the switching characteristics of wide-bandgap power semiconductor devices, an induction heating system can be operated at higher operating frequencies.
  • 672
  • 25 May 2023
Topic Review
Solid-Phase Optical Sensing Techniques for Sensitive Virus Detection
Optical biosensors measure the optical signals as the changes in the optical properties and characteristics on the transducer surface in the case of an interaction of the immobilized biorecognition element with the measured substance. Optical biosensors can use different types of biorecognition elements such as antibodies, aptamers, peptides, nucleic acids, peptide nucleic acids, proteins, enzymes, or whole cells on the transducer surface, which is designed to bind with the target substance specifically.
  • 672
  • 09 Jun 2023
Topic Review
Internet of Things-Based Control of Induction Machines
The Internet of Things (IoT) is introduced in systems with electrical machines, such as in electric drive systems, wind energy generating systems, and small and special machines, to remote monitor and control the operation for data acquisition and analysis. These systems can integrate with the equipment and retrofit the existing installations. At the end of the control loops there are always motors, or actuators, of big or small ratings, of rotating or linear movements, electrical or nonelectrical, which must produce the motion. With the IoT-based control of induction machine systems operators can remotely monitor parameters and obtain accurate real-time feedback during fast changing duty cycle operation. Thus, IoT creates multipurpose instruments in the remote control of induction machines. 
  • 672
  • 19 Feb 2024
Topic Review
Circular Design Principles Applied on Dye-Sensitized Solar Cells
In a world with growing demand for resources and a worsening climate crisis, it is imperative to research and put into practice more sustainable and regenerative products and processes. Especially in the energy sector, more sustainable systems that are recyclable, repairable and remanufacturable are needed. One promising technology is dye-sensitized solar cells (DSSCs). They can be manufactured with low energy input and can be made from non-toxic components. The concept of Circo Track, a method developed by the Technical University of Delft, was applied to DSSCs and investigated which design concepts and business models are applicable. This method enables companies to transform a product that is disposed of after its useful life into one that can be used for longer and circulates in material cycles. 
  • 671
  • 25 Nov 2022
Topic Review
Small-Signal Stability in Microgrid
The microgrid (MG) system is a controlled and supervised power system consisting of renewable energy (RE)-based distributed generation (DG) units, loads, and energy storage. The MG can be operated autonomously or while connected to the grid. Higher intermittencies and uncertainties can be observed in MGs compared to the conventional power system, which is the possible source of small-signal stability in MG systems. It can be seen as disturbances around the stable operating point, which potentially lead to the small-signal instability problem within MGs. Small-signal instability issues also emerge due to the lack of damping torque in the MG. The integration of power electronic devices and complex control algorithms within MGs introduces novel challenges in terms of small-signal stability and possible resonances. The occurrence of interaction in a low- or no-inertia system might worsen the stability margin, leading to undamped oscillatory instability. The interaction within the MG is characterized by various frequency ranges, from low-frequency subsynchronous oscillation to high-frequency ranges around the harmonic frequencies.
  • 670
  • 23 Apr 2023
  • Page
  • of
  • 50
Academic Video Service