Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1634 word(s) 1634 2020-11-23 05:17:15

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Tsunoda, M. Liquid-Chromatographic Methods for Carboxylic Acids. Encyclopedia. Available online: https://encyclopedia.pub/entry/7065 (accessed on 26 December 2024).
Tsunoda M. Liquid-Chromatographic Methods for Carboxylic Acids. Encyclopedia. Available at: https://encyclopedia.pub/entry/7065. Accessed December 26, 2024.
Tsunoda, Makoto. "Liquid-Chromatographic Methods for Carboxylic Acids" Encyclopedia, https://encyclopedia.pub/entry/7065 (accessed December 26, 2024).
Tsunoda, M. (2021, February 05). Liquid-Chromatographic Methods for Carboxylic Acids. In Encyclopedia. https://encyclopedia.pub/entry/7065
Tsunoda, Makoto. "Liquid-Chromatographic Methods for Carboxylic Acids." Encyclopedia. Web. 05 February, 2021.
Liquid-Chromatographic Methods for Carboxylic Acids
Edit

Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose.

fluorescence mass spectrometry fatty acids perfluorinated carboxylic acids α-keto acids

1. Introduction 

Quantification of low-molecular-weight compounds, as exemplified by metabolomics studies, has become increasingly important in the life sciences. Metabolite analysis provides metabolic and biochemical status of particular biological systems and valuable insights into disease development and diagnosis [1][2][3][4][5][6]. There are numerous classes of low-molecular-weight compounds, and they are categorized based on their functional groups, including amine, thiol, and carboxylic groups. Low-molecular-weight carboxylic acids are involved in various metabolic pathways. For example, the tricarboxylic acid (TCA) cycle, which is the principal energy-producing process in cells, involves nine carboxylic acid compounds. Fatty acids are integral components of lipids, and consist of carboxylic acids with long aliphatic chains.

Hence, highly sensitive and selective methods for the determination of biologically important carboxylic acids are required for biological investigations, and, thus far, numerous analytical methods have been developed. For selective determination, solid-phase extraction or solvent extraction pretreatment is commonly performed, followed by separation techniques such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis. The choice of detection method is important for trace amounts of carboxylic acids in biological samples. Ultraviolet absorbance detection is rarely implemented due to the absence of chromophores in carboxylic acids. Fluorescence detection following derivatization and mass spectrometry has the advantage of high sensitivity.

2. Analytical methods for fatty acids in biological samples

APF: 6-oxy-(acetyl piperazine)fluorescein, NOEPES: 2-(2-naphoxy)ethyl 2-(piperidino)ethanesulfonate, HEC: 9-(2-hydroxyethyl)-carbazole, DBD-ED: 4-N,N-dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole, NT: 2-(2,3-naphthalimino)ethyl trifluoromethanesulfonate, AMPP: N-(4-aminomethylphenyl)pyridinium, AminoxyTMT: aminoxy tandem mass tags, DBD-PZ-NH2: 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole, DAABD-AE: 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole, MePZBD-AE: [4-(4-N-methyl)piperazinosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole, APZBD-NHMe: [4-(4-N-aminoethyl)piperazinosulfonyl]-7-methylamino-2,1,3-benzoxadiazole, DMPP: 2,4-dimethoxy-6-piperazin-1-yl pyrimidine, DMED: 2-dimethylaminoethylamine, AEMP: 2-(2-aminoethyl)-1-methylpyrrolidine, NAPP: N-(3-aminopropyl)pyrrolidine.

3. Analytical methods for TCA cycle and glycolysis-related compounds in biological samples

9-CMA: 9-chloromethyl anthracene, DBD-PZ: 7-(N,N-dimethylaminosulfonyl)-4-piperazino-2,1,3-benzoxadiazole.

4. Analytical methods for amino acid metabolites in biological samples

 

PHP-THβC: (1R, 3S)-1-(D-gluco-1, 2, 3, 4, 5-pentahydroxypentyl)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, DOPAC: 3,4-dihydroxyphenylacetic acid, HVA: homovanillic acid, 3-HG: 3-hydroxyglutaric acid, DAABD-AE: 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole, DmPABr: dimethylaminophenacyl bromide

5. Analytical methods for perfluorinated carboxylic acids (PFCAs) in biological samples

PFASs: polyfluoroalkyl substances, MASH: 10-methyl-acridone-2-sulfonohydrazide.

6. Analytical methods for α-keto acids and 2-hydroxyglutaric acid (2-HG) in biological samples

OPD: o-phenylenediamine, DMB: 1,2-diamino-4,5-methylenedioxybenzene, O-PFBO: O-(2,3,4,5,6-pentafluorobenzyl)oxime, DATAN: (+)-o,o’-diacetyl-l-tartaric anhydride, TSPC: N-(p-toluenesulfonyl)-L-phenylalanyl chloride.

7. Analytical methods for 2-aminothiazoline-4-carboxylic acid (ATCA), 2-methylthiazolidine-4-carboxylic acid (MTCA), and 2-thiothiazolidine-4-carboxylic acid (TTCA) in biological samples

MISBSE: molecularly imprinted stir bar sorption extraction.

8. Analytical methods for other carboxylic acids in biological samples

Target Compounds

Biological Sample

Sample Treatment

Derivatization Reagent

Separation Mode

Detection Method

LOD

Recovery

Ref.

7 Bile acids

Human saliva

SPE and solvent extraction

2-Picolylamine

RPLC

MS/MS

1.5–5.6 fmol

[75]

3 Bile acids, 8 fatty acids

Human plasma and saliva

Solid phase extraction

APBQ

RPLC

MS/MS

0.19–0.51 fmol

[76]

7 Bile acids, 9 fatty acids

Human serum

Solvent extraction

DBCETS

RPLC

FL: 300/395 nm

0.28–0.70 ng/mL

92–102%

[77]

4 Bile acids

C. bovis

Centrifugation

2-bromo-4′-nitroacetophenone

RPLC

UV: 263 nm

0.25–0.31 ng

94–99%

[78]

7 Bile acids

Human feces

Solid phase extraction

Phenacyl bromide

RPLC

UV: 254 nm

1.22–1.46 pmol

72–102%

[79]

 

Human feces

Solid phase extraction

None

PRLC

MS/MS

[79]

Dihydroxyoxocholestenoic acids

Human CSF and plasma

Solid phase extraction

Isotope-label ed Girard’s P Reagent

RPLC

MS

0.02–0.05 ng/mL

[80]

7 THGC glucuronides

Human urine

Centrifugation

Isotope-labeled DAPPZ

RPLC

MS/MS

0.008–0.16 µg/mL (LOQ)

[81]

Orotic acid

Urine

Dilution

None

RPLC

MS/MS

0.15 µM

[82]

Metabolome

Human urine

Centrifugation

Isotope-label ed DmPABr

RPLC

MS

[83]

Metabolome

Human urine

Centrifugation

Isotope-labeled dansyl hydrazine

RPLC

MS

[84]

APBQ: 1-(3-aminopropyl)-3-bromoquinolinium bromide, DBCETS: 2-(7H-dibenzo[a,g]carbazol-7-yl)ethyl 4-methylbenzenesulfonate, DAPPZ: 1-[(4-dimethylaminophenyl)-carbonyl]piperazine, DmPABr: dimethylaminophenacyl bromide.

References

  1. Theodoridis: G.A.; Gika, H.G.; Want, E.J.; Wilson, I.D. Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Anal. Chim. Acta 2012, 711, 7–16.
  2. Chen, J.; Wang, W.; Lv, S.; Yin, P.; Zhao, X.; Lu, X.; Zhang, F.; Xu, G. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta 2009, 650, 3–9.
  3. Xu, X.; Roman, J.M.; Issaq, H.J.; Keefer, L.K.; Veenstra, T.D.; Ziegler, R.G. Quantitative Measurement of Endogenous Estrogens and Estrogen Metabolites in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 7813–7821.
  4. Tsunoda, M.; Sumida, Y. Liquid Chromatography| Amino Acids. Encyclopedia of Analytical Science (3rd ed.) 2019, 6, 1–11.
  5. Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J. Chromatogr. B. 2014, 964, 103–115.
  6. Tsunoda, M. Recent advances in methods for the analysis of catecholamines and their metabolites. Anal. Bioanal. Chem. 2006, 386, 506–514.
  7. Du, X.-L.; Zhang, H.-S.; Guo, X.-F.; Deng, Y.-H.; Wang, H. 6-Oxy-(acetyl piperazine) fluorescein as a new fluorescent labeling reagent for free fatty acids in serum using high-performance liquid chromatography. J. Chromatogr. A. 2017, 1169, 77–85.
  8. Lu, C.-Y.; Wu, H.-L.; Chen, S.-H.; Kou, H.-S. A Fluorimetric Liquid Chromatography for Highly Sensitive Analysis of Very Long Chain Fatty Acids as Naphthoxyethyl Derivatives. Chromatographia 2000, 51, 315–321.
  9. You, J.; Zhang, W.; Jia, X.; Zhang, Y. An Improved Derivatization Method for Sensitive Determination of Fatty Acids by High-Performance Liquid Chromatography Using 9-(2-hydroxylethyl)-Carbazole as Derivatization Reagent with Fluorescence Detection. Chromatographia 2001, 54, 316–322.
  10. You, J.; Zhang, W.; Zhang, Y. Simple derivatization method for sensitive determination of fatty acids with fluorescence detection by high-performance liquid chromatography using 9-(2-hydroxyethyl)-carbazole as derivatization reagent. Anal. Chim. Acta 2001, 436, 163–172.
  11. Nishikiori, M.; Iizuka, H.; Ichiba, H.; Sadamoto, K.; Fukushima, T. Determination of Free Fatty Acids in Human Serum by HPLC with Fluorescence Detection. J. Chromatogr. Sci. 2015, 53, 537–541.
  12. Onozato, M.; Okanishi, Y.; Akutsu, M.; Okumura, I.; Nemoto, A.; Takano, K.; Sakamoto, T.; Ichiba, H.; Fukushima, T. Alteration in plasma docosahexanoic acid levels following oral administration of ethyl icosapentate to rats. Pract. Lab. Med. 2020, 18, e00143.
  13. Nithipatikom, K.; Pratt, P.F.; Campbell, W.B. Determination of EETs using microbore liquid chromatography with fluorescence detection. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, 857–862.
  14. Bollinger, J.G.; Rohan, G.; Sadilek, M.; Gelb, M.H. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res. 2013, 54, 3523–3530.
  15. Bollinger, J.G.; Thompson, W.; Lai, Y.; Oslund, R.C.; Hallstrand, T.S.; Sedilek, M.; Turecek, F.; Gelb, M.H. Improved Sensitivity Mass Spectrometric Detection of Eicosanoids by Charge Reversal Derivatization. Anal. Chem. 2010, 82, 6790–6796.
  16. Sun, F.; Choi, A.A.; Wu, R. Systematic Analysis of Fatty Acids in Human Cells with a Multiplexed Isobaric Tag (TMT)-Based Method. J. Proteome Res. 2018, 17, 1606–1614.
  17. Tsukamoto, Y.; Santa, T.; Yoshida, H.; Miyano, H.; Fukushima, T.; Hirayama, K.; Imai, K.; Funatsu, T. Synthesis of the isotope-labeled derivatization reagent for carboxylic acids, 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole (d6) [DBD-PZ-NH2 (D)], and its application to the quantification and the determination of relative amount of fatty acids in rat plasma samples by high-performance liquid chromatography/mass spectrometry. Biomed. Chromatogr. 2006, 20, 358–364.
  18. Tsukamoto, Y.; Santa, T.; Saimaru, H.; Imai, K.; Funatsu, T. Synthesis of benzofurazan derivatization reagents for carboxylic acids and its application to analysis of fatty acids in rat plasma by high-performance liquid chromatography–electrospray ionization mass spectrometry. Biomed. Chromatogr. 2005, 19, 802–808.
  19. Abualhasan, M.N.; Watson, D.G. Tagging Fatty Acids Via Choline Coupling for the Detection of Carboxylic Acid Metabolites in Biological Samples. Curr. Anal. Chem. 2019, 15, 642–647.
  20. Chen, G.-Y.; Zhang, Q. Simultaneous quantification of free fatty acids and acylcarnitines in plasma samples using dansylhydrazine labeling and liquid chromatography–triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 2841–2849.
  21. Leng, J.; Wang, H.; Zhang, L.; Zhang, J.; Wang, H.; Guo, Y. A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group. Anal. Chim. Acta 2013, 758, 114–121.
  22. Zhu, Q.-F.; Zhang, Z.; Liu, P.; Zheng, S.-J.; Peng, K.; Deng, Q.-Y.; Zheng, F.; Yuan, B.-F.; Feng, Y.-Q. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography–mass spectrometry. J. Chromatogr. A. 2016, 1460, 100–109.
  23. Nagy, K.; Jakab, A.; Fekete, J.; Vékey, K. An HPLC-MS Approach for Analysis of Very Long Chain Fatty Acids and Other Apolar Compounds on Octadecyl-Silica Phase Using Partly Miscible Solvents. Anal. Chem. 2004, 76, 1935–1941.
  24. Kotani, A.; Kusu, F.; Takamura, K. New electrochemical detection method in high-performance liquid chromatography for determining free fatty acids. Anal. Chim. Acta 2002, 465, 199–206.
  25. Kotani, A.; Fuse, T.; Kusu, F. Determination of Plasma Free Fatty Acids by High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 2000, 284, 65–69.
  26. Morita, H.; Konishi, M. Electrogenerated Chemiluminescence Derivatization Reagents for Carboxylic Acids and Amines in High-Performance Liquid Chromatography Using Tris(2,2′-bipyridine)ruthenium(II). Anal. Chem. 2002, 74, 1584–1589.
  27. Baati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. J. Pharm. Biomed. Anal. 2011, 56, 758–672.
  28. Chen, H.-C.; Wu, C.; Wu, K.-Y. Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction. Talanta 2015, 136, 9–14.
  29. Lakso, H.; Appelblad, P.; Schneese, J. Quantification of Methylmalonic Acid in Human Plasma with Hydrophilic Interaction Liquid Chromatography Separation and Mass Spectrometric Detection. Clin. Chem. 2008, 54, 2028–2035.
  30. Pellegrini, D.; Onor, M.; Degano, I.; Bramanti, E. Development and validation of a novel derivatization method for the determination of lactate in urine and saliva by liquid chromatography with UV and fluorescence detection. Talanta 2014, 130, 280–287.
  31. Schriewer, A.; Brink, M.; Gianmoena, K.; Cadenas, C.; Hayen, H. Oxalic acid quantification in mouse urine and primary mouse hepatocyte cell culture samples by ion exclusion chromatography-mass spectrometry. J. Chromatogr. B 2017, 1068–1069, 239–244.
  32. Kubota, K.; Fukushima, T.; Yuji, R.; Miyano, H.; Hirayama, K.; Santa, T.; Imai, K. Development of an HPLC-fluorescence determination method for carboxylic acids related to the tricarboxylic acid cycle as a metabolome tool. Biomed. Chromatogr. 2005, 19, 788–795.
  33. Niu, H.; Chen, Y.; Xie, J.; Chen, X.; Bai, J.; Wu, J.; Liu, D.; Ying, H. Ion-Exclusion Chromatography Determination of Organic Acid in Uridine 5′-Monophosphate Fermentation Broth. J. Chromatogr. Sci. 2012, 50, 709–713.
  34. Halko, R.; Hukelová, I. Single-Run Separation and Determination of Aliphatic and Aromatic Carboxylic Acids in Wine and Human Urine Samples by Ion-Exclusion Chromatography. Chromatographia 2014, 77, 1037–1046.
  35. Todoroki, K.; Hashimoto, H.; Machida, K.; Itoyama, M.; Hayama, T.; Yoshida, H.; Nohta, H.; Nakashima, M.; Yamaguchi, M. Fully automated reagent peak-free liquid chromatography fluorescence analysis of highly polar carboxylic acids using a column-switching system and fluorous scavenging derivatization. J. Sep. Sci. 2013, 36, 232–238.
  36. Michopoulos, F.; Whalley, N.; Theodoridis, G.; Wilson, I.D.; Dunkley, T.P.J.; Critchlow, S.E. Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: Applications to serum, urine and tissue extracts. J. Chromatogr. A. 2014, 1349, 60–68.
  37. Guo, L.; Worth, A.J.; Mesaros, C.; Snyder, N.W.; Glickson, J.D.; Blair, I.A. Diisopropylethylamine/hexafluoroisopropanol-mediated ion-pairing UHPLC-MS for phosphate and carboxylate metabolite analysis: Utility for studying cellular metabolism. Rapid Commun. Mass Spectrom. 2016, 30, 1835–1845.
  38. Buescher, J.M.; Moco, S.; Sauer, U.; Zamboni, N. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites. Anal. Chem. 2010, 82, 4403–4412.
  39. Nemkov, T.; Sun, K.; Reisz, J.A.; Yoshida, T.; Dunham, A.; Wen, E.Y.; Wen, A.Q.; Roach, R.C.; Hansen, K.C.; Xia, Y.; et al. Metabolism of citrate and Other carboxylic acids in erythrocytes as a Function of Oxygen saturation and refrigerated storage. Front. Med. 2017, 4, 175.
  40. Fukushima, T.; Sone, Y.; Mitsuhashi, S.; Tomita, M.; Toyo’oka, T. Alteration of Kynurenic Acid Concentration in Rat Plasma Following Optically Pure Kynurenine Administration: A Comparative Study Between Enantiomers. Chirality 2009, 21, 468–472.
  41. Cseh, E.K.; Veres, G.; Szentirmai, M.; Nánási, N.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Zádori, D. HPLC method for the assessment of tryptophan metabolism utilizing separate internal standard for each detector. Anal. Biochem. 2019, 574, 7–14.
  42. Brunius, C.; Vidanarachchi, J.K.; Tomankova, J.; Lundström, K.; Andersson, K.; Zamaratskaia, G. Skatole metabolites in urine as a biological marker of pigs with enhanced hepatic metabolism. Animal 2016, 10, 1734–1740.
  43. Kita, K.; Kawashima, Y.; Makino, R.; Namauo, T.; Ogawa, S.; Muraoka, H.; Fujimura, S. Detection of Two Types of Glycated Tryptophan Compounds in the Plasma of Chickens Fed Tryptophan Excess Diets. J. Poult. Sci. 2013, 50, 138–142.
  44. Makino, R.; Kita, K. Half-life of Glycated Tryptophan in the Plasma of Chickens. J. Poult. Sci. 2018, 55, 117–119.
  45. Valko-Rokytovská, M.; Hubková, B.; Birková, A.; Mašlanková, J.; Stupák, M.; Zábavníková, M.; Cižmárová, B.; Mareková, M. Specific Urinary Metabolites in Malignant Melanoma. Medicina 2019, 55, 145.
  46. Tsunoda, M.; Mitsuhashi, K.; Masuda, M.; Imai, K. Simultaneous determination of 3,4-dihydroxyphenylacetic acid and homovanillic acid using high performance liquid chromatography-fluorescence detection and application to rat kidney microdialysate. Anal. Biochem. 2002, 307, 153–158.
  47. Huang, W.-H.; Hu, K.; Shao, L.; Chen, Y.; Zhang, W.; Zhou, H.-H.; Tan, Z.-R. Development and validation of a method for the determination of nicotinic acid in human plasma using liquid chromatography-negative electrospray ionization tandem mass spectrometry and its application to a bioequivalence study. Anal. Methods 2014, 6, 8258–8267.
  48. Al-Dirbashi, O.Y.; Santa, T.; Al-Qahtani ,K.; Al-Amoudi, M.; Rashed, M.S. Analysis of organic acid markers relevant to inherited metabolic diseases by ultra-performance liquid chromatography/tandem mass spectrometry as benzofurazan derivatives. Rapid Commun. Mass Spectrom. 2007, 21, 1984–1990.
  49. Willacey, C.C.W.; Naaktgeboren, M.; Moreno, E.L.; Wegrzyn, A.B.; Es, D.; Karu, N.; Fleming, R.M.T.; Harms, A.C.; Hankemeier, T. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide. J. Chromatogr. A. 2019, 1608, 460413.
  50. Maestri, L.; Negri, S.; Ferrari, M.; Ghittori, S.; Fabris, F.; Danesino, P.; Imbriani, M. Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tisseues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2728–2734.
  51. Wang, L.; Sun, H.; Yang, L.; He, C.; Wu, W.; Sun, S. Liquid chromatography/mass spectrometry analysis of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in bivalve shells: Extraction method optimization. J. Chromatogr. A. 2010, 1217, 436–442.
  52. Kato, K.; Kalathil, A.A.; Patel, A.M.; Ye, X.; Calafat, A.M. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatogtaphy-tandem mass spectrometry. Chemosphere 2018, 209, 338–345.
  53. Gao, K.; Gao, Y.; Li, Y.; Fu, J.; Zhang, A. A rapid and fully automatic method for the accurate determination of a wide carbon-chain range of per- and polyfluoroalkyl substances (C4–C18) in human serum. J. Chromatogr. A. 2016, 1471, 1–10.
  54. Lashgari, M.; Lee, H.K. Micro-solid phase extraction of perfluorinated carboxylic acids from human plasma. J. Chromatogr. A. 2016, 1432, 7–16.
  55. Zhang, S.; Ji, Z.; Sun, Z.; Li, M.; Sheng, C.; Yue, M.; Yu, Y.; Chen, G.; You, J. Stable isotope labeling assisted liquid chromatography-tandem mass spectrometry for the analysis of perfluorinated carboxylic acids in serum samples. Talanta 2017, 166, 255–261.
  56. Liu, L.; She, J.; Zhang, X.; Zhang, J.; Tian, M.; Huang, Q.; Eqani, S.A.M.A.S.; Shen, H. Online background cleanup followed by high-performance liquid chromatography with tandem mass spectrometry for the analysis of perfluorinated compounds in human blood. J. Sep. Sci. 2015, 38, 247–253.
  57. Harrington, L.M. Analysis of perfluoroalkyl and polyfluoroalkyl substances in serum and plasma by solvent precipitation-isotope dilution-direct injection-LC/MS/MS. Anal. Methods, 2017, 9, 473–481.
  58. Pailla, K.; Blonde-Cynober, F.; Aussel, C.; Bandt, J.; Cynober, L. Branched-Chain Keto-Acids and Pyruvate in Blood: Measurement by HPLC with Fluorimetric Detection and Changes in Older Subjects. Clin. Chem. 2000, 46, 848–853.
  59. Mühling, J.; Fuchs, M.; Campos, M.E.; Gonter, J.; Engel, J.M.; Sablotzki, A.; Menges, T.; Weiss, S.; Dehne, M.G.; Krüll, M.; et al. Quantitative determination of free intracellular α-keto acids in neutrophils. J. Chromatogr. B. 2003, 789, 383–392.
  60. Hattori, A.; Ito, T.; Tsunoda, M. Analysis of Branched-Chain Keto Acids in Cell Extracts by HPLC-Fluorescence Detection. Chromatography 2017, 38, 129–133.
  61. Fujiwara, T.; Hattori, A.; Ito, T.; Funatsu, T.; Tsunoda, M. Analysis of intracellular α-keto acids by HPLC with fluorescence detection. Anal. Methods 2020, 12, 2555–2559.
  62. Olson, K.C.; Chen, G.; Lynch, C.J. Quantification of branched-chain keto acids in tissue by ultra fast liquid chromatography-mass spectrometry. Anal. Biochem. 2013, 439, 116–122.
  63. Noguchi, K.; Mizukoshi, T.; Miyano, H.; Yamada, N. Development of a New LC-MS/MS Method for the Quantification of Keto Acids. Chromatography 2014, 35, 117–123.
  64. Li, R.; Liu, P.; Liu, P.; Tian, Y.; Hua, Y.; Gao, Y.; He, H.; Chen, J.; Zhang, Z.; Huang, Y. A novel liquid chromatography tandem mass spectrometry method for simultaneous determination of branched-chain amino acids and branched-chain α-keto acids in human plasma. Amino Acids 2016, 48, 1523–1532.
  65. Poinsignon, V.; Mercier, L.; Nakabayashi, K.; David, M.D.; Lalli, A.; Penard-Lacronique, V.; Quivoron, C.; Saada, V.; Botton, S.D.; Broutin, S.; et al. Quantitation of isocitrate dehydrogenase (IDH)-induces D and L enantiomers of 2-hydroxyglutaric acid in biological fluids by a fully validated liquid tandem mass spectrometry method, suitable for clinical applications. J. Chromatogr. B. 2016, 1022, 290–297.
  66. Cheng, Q.-Y.; Xiong, J.; Huang, W.; Ma, Q.; Ci, W.; Feng, Y.-Q.; Yuan, B.-F. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis. Sci. Rep. 2015, 5, 15217.
  67. Petrikovics, I.; Thompson, D.E.; Rockwood, G.A.; Logue, B.A.; Martin, S.; Jayanna, P.; Yu, J.C.C. Organ-distribution of the metabolite 2-aminotiazoline-4-carboxylic acid in a rat model following cyanide exposure. Biomarkers 2011, 16, 686–690.
  68. Jackson, R.; Petrikovics, I.; Lai, E.P.C.; Yu, J.C.C. Molecularly imprinted polymer stir bar sorption extraction and electrospray ionization tandem mass spectrometry for determination of 2-aminothiazoline-4-carboxylic acid as a marker for cyanide exposure in forensic urine analysis. Anal. Methods 2010, 2, 552–557.
  69. Petrikovics, I.; Yu, J.C.C.; Thompson, D.E.; Jayanna, P.; Logue, B.A.; Nasr, J.; Bhandari, R.K.; Baskin, S.I.; Rockwood, G. Plasma persistence of 2-aminothiazoline-4-carboxylic acid in rat system determined by liquid chromatography tandem mass spectrometry. J. Chromatogr. B. 2012, 891–892, 81–84.
  70. Luliński, P.; Giebułtowicz, J.; Wroczyński, P.; Maciejewska, D. A highly selective molecularly imprinted sorbent for extraction of 2-aminothiazoline-4-carboxylic acid – Synthesis, characterization and application in post-mortem whole blood analysis. J. Chromatogr. A. 2015, 1420, 16–25.
  71. Giebułtowicz, J.; Sobiech, M.; Rużycka, M.; Luliński, P. Theoretical and experimental approach to hydrophilic interaction dispersive solid-phase extraction of 2-aminothiazoline-4-carboxylic acid from human post-mortem blood. J. Chromatogr. A. 2019, 1587, 61–72.
  72. Giebułtowicz, J.; Rużycka, M.; Fudalej, M.; Krajewski, P.; Wroczyński, P. LC-MS/MS method development and validation for quantitative analysis of 2-aminothiazoline-4-carboxylic acid – a new cyanide exposure marker in post mortem blood. Talanta 2016, 150, 586–592.
  73. Reischl, R.J.; Bicker, W.; Keller, T.; Lamprecht, G.; Lindner, W. Occurrence of 2-methyltiazoline-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption. Anal. Bioanal. Chem. 2012, 404, 1779–1787.
  74. Chen, C.-W.; Shih, T.-S.; Li, C.-C.; Chou, J.-S. High Performance Liquid Chromatographic Determination of 2-Thiotiazolidine-4-Carboxylic Acid as a Marker of Occupational Exposure to Carbon Disulfide. Chromatographia 2001, 53, 665–668.
  75. Higashi, T.; Ichikawa, T.; Inagaki, S.; Min, J.Z.; Fukushima, T.; Toyo’oka, T. Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 809–818.
  76. Mochizuki, Y.; Inagaki, S.; Suzuki, M.; Min, J.Z.; Inoue, K.; Todoroki, K.; Toyo’oka, T. A novel derivatization reagent possessing a bromoquinolinium structure for biological carboxylic acids in HPLC-ESI-MS/MS. J. Sep. Sci. 2013, 36, 1883–1889.
  77. Li, G.-L.; Chen, G.; Liu, Y.-Q.; Jing, N.-H.; You, J.-M. A sensitive and selective HPLC-FLD method with fluorescent labeling for simultaneous detection of bile acid and free fatty acid in human serum. J. Chromatogr. B. 2012, 895–896, 191–195.
  78. Shi, Y.; Xiong, J.; Sun, D.; Liu, W.; Wei, F.; Ma, S.; Lin, R. Simultaneous quantification of the major bile acids in Artificial Calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control. J. Sep. Sci. 2015, 38, 2753–2762.
  79. Kakiyama, G.; Muto, A.; Takei, H.; Nittono, H.; Murai, T.; Kurosawa, T.; Hofmann, A.F.; Pandak, W.M.; Bajaj, J.S. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: Validation by GC-MS and LC-MS. J. Lipid. Res. 2014, 55, 978–990.
  80. Abdel-Khalik, J.; Crick, P.J.; Yutuc, E.; DeBarber, A.E.; Duell, P.B.; Steiner, R.D.; Laina, I.; Wang, Y.; Griffiths, W.J. Identification of 7α,24-dihydroxy-3-oxocholest-4-en-26-oic and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acids in human cerebrospinal fluid and plasma. Biochimie 2018, 153, 86–98.
  81. Matsumoto, T.; Yamazaki, W.; Jo, A.; Ogawa, S.; Mitamura, K.; Ikegawa, S.; Higashi, T. A Method for Quantification of Tetrahydroglucocorticoid Glucuronides in Human Urine by LC/MS/MS with Isotope-coded Derivatization. Anal. Sci. 2018, 34, 1003–1009.
  82. La Marca, G.; Casetta, B.; Zammarchi, E. Rapid determination of orotic acid in urine by a fast liquid chromatography/tandem mass spectrometric method. Rapid Commun. Mass Spectrom. 2003, 17, 788–793.
  83. Guo, K.; Li, L. High-Performance Isotope Labeling for Profiling Carboxylic Acid-Containing Metabolites in Biofluids by Mass Spectrometry. Anal. Chem. 2010, 82, 8789–8793.
  84. Zhao, S.; Li, L. Dansylhydrazine Isotope Labeling LC-MS for Comprehensive Carboxylic Acid Submetabolome Profiling. Anal. Chem. 2018, 90, 13514–13522.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 793
Revision: 1 time (View History)
Update Date: 05 Feb 2021
1000/1000
Video Production Service