Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 3911 2023-09-16 09:18:24 |
2 layout & references Meta information modification 3911 2023-09-18 02:55:18 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Du, X.; Lin, Z.; Wang, X.; Zhang, K.; Hu, H.; Dai, S. Electrode Materials in Hybrid Supercapacitors. Encyclopedia. Available online: https://encyclopedia.pub/entry/49262 (accessed on 23 July 2024).
Du X, Lin Z, Wang X, Zhang K, Hu H, Dai S. Electrode Materials in Hybrid Supercapacitors. Encyclopedia. Available at: https://encyclopedia.pub/entry/49262. Accessed July 23, 2024.
Du, Xiaobing, Zhuanglong Lin, Xiaoxia Wang, Kaiyou Zhang, Hao Hu, Shuge Dai. "Electrode Materials in Hybrid Supercapacitors" Encyclopedia, https://encyclopedia.pub/entry/49262 (accessed July 23, 2024).
Du, X., Lin, Z., Wang, X., Zhang, K., Hu, H., & Dai, S. (2023, September 16). Electrode Materials in Hybrid Supercapacitors. In Encyclopedia. https://encyclopedia.pub/entry/49262
Du, Xiaobing, et al. "Electrode Materials in Hybrid Supercapacitors." Encyclopedia. Web. 16 September, 2023.
Electrode Materials in Hybrid Supercapacitors
Edit

Energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness.

hybrid supercapacitors electrode materials design structure energy storage mechanism

1. Introduction

In recent years, the increasing environmental problems and energy challenges have stimulated urgent demand for developing green, efficient, and sustainable energy sources, as well as revolutionary technologies associated with energy conversion and storage systems [1][2]. Among the diverse energy storage devices, supercapacitors (SCs) have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability [3][4][5]. Generally, SCs can be classified as electrical double-layer capacitors (EDLCs), pseudocapacitors (PCs), or hybrid supercapacitors (HSCs) depending on the energy storage mechanism [6][7][8][9][10]. EDLCs collect energy through the ion absorption/desorption on the electrode/electrolyte interface without the charge transfer reaction [7][8]. PCs harvest energy through fast redox reactions at or near the surface of the electrode material [3][9]. Different charge storage mechanisms occur in the electrode materials of HSCs. For example, the negative electrode utilizes the double-layer storage mechanism (activated carbon, graphene), whereas the others accumulate charge by using fast redox reactions (typically transition metal oxides and hydroxides) [11][12][13][14]. HSCs have attracted enormous attention as they can provide excellent performance with higher energy and power densities at high charge/discharge rates [12][13]. More importantly, HSCs provide an important future opportunity for energy storage devices to meet the demands of both higher energy and power densities for powering portable electronic devices, hybrid electric vehicles, and industrial equipment.
At present, nanostructured transition metal oxides, sulfides, and hydroxides [15][16][17][18][19][20][21] are being widely explored as positive electrodes for HSCs. Such materials display a very fast charge/discharge rate to offer high power density. Unfortunately, many battery-type electrodes, such as Ni(OH)2 [22][23] or other materials, that exhibit faradaic behavior (even those that are electrochemically irreversible) have been considered as pseudocapacitive materials in many reports, which confuses the readers [24][25][26]. As suggested by Gogosti et al. [10], it is inappropriate to describe nickel-based oxides, sulfides, and hydroxides as pseudocapacitive electrode materials in alkaline aqueous electrolytes because they undergo faradaic reactions, where their electrochemical signature is analogous to that of a “battery” material. Therefore, the concept of “capacitance” (F) cannot be applied to purely faradaic behavior, and “capacity” (C or mAh) is the most appropriate and meaningful metric to represent the performance of such materials [26]. In addition, some researchers may mistakenly consider the HSCs as asymmetric supercapacitors (ASCs) that are based on two different supercapacitor-type electrodes (i.e., capacitive electrodes and/or pseudocapacitive electrodes), which also aggravates the confusion for readers [27]. The definition of an ASC device is very broad since it refers to every combination of positive and negative electrodes with the same nature regardless of the difference between the two electrodes (weight, thickness, material, etc.) [7]. However, an HSC device should be used when pairing two electrodes with different charge storage behaviors, such as one capacitive and the other faradaic, and the performance of such a device is in between a supercapacitor and a battery [27]. Some researchers have presented a well-rounded view in recent literature [27][28][29].

2. Recent Advances in Materials for Hybrid Supercapacitors

HSCs are generally composed of three components (Figure 1): electrodes, electrolytes, and separators. The performance of HSCs is mainly determined by the electrochemical activity and kinetic features of the electrodes. To improve the energy and power density of HSCs, it is crucial to enhance the kinetics of ion and electron transport in electrodes and at the electrode/electrolyte interface [30]. Therefore, electrode materials, as the essential soul of the devices, play a decisive role in the performance of HSCs.
Figure 1. Illustration of a hybrid supercapacitor system.

2.1. Positive Electrode Materials

The performance of a HSC device is mainly determined by the positive electrode materials [10]. In recent years, transition metal oxides/sulfides/hydroxides [31] have been considered as promising electrode materials for HSCs since they can provide a variety of oxidation states for fast surface redox reactions.

2.1.1. Nickel Oxides/Hydroxides/Sulfides

Recently, Ni-based oxides/hydroxides, such as NiO [32][33][34][35][36] and Ni(OH)2 [37][38][39][40][41], have been widely reported as electrode materials for HSCs due to their attractive theoretical specific capacity and potentially high-rate capability in alkaline aqueous solutions. NiO is a promising battery-type material due to its high theoretical specific capacity (1292 C g−1 in a potential window of 0.5 V), well-defined redox behavior, and low cost [35]. For instance, Ren et al. [42] prepared honeycomb-like mesoporous NiO microspheres and revealed a high specific capacitance of 635 C g−1 at 1 A g−1. Even at 5 A g−1, it also exhibited a high specific capacity of 472.5 C g−1 with 88.4% retention after 3500 cycles, demonstrating its superior performance. Cai et al. [43] prepared NiO nanoparticles and found a high specific capacity of 693 C g−1 at 1 A g−1, but the rate of capability could only retain 62% (430 C g−1) as the current density increased to 50 A g−1. The poor rate performance is caused by its low electrical conductivity. Although many recent efforts have been carried out on NiO electrodes, the acquired specific capacity is usually lower than the theoretical capacity of NiO. The relatively poor conductivity of NiO limited its specific capacity, and hindered the fast electron transport required for high charge–discharge rates.
Compared to NiO materials, Ni(OH)2 has been considered as a promising candidate for HSCs due to its high theoretical capacity (1041 C g−1 in a potential window of 0.5 V), excellent redox behavior, ease of synthesis, abundant sources, low cost, and environmental friendliness [44]. Currently, many advances have been widely reported, as summarized in Table 1. During the last decades, numerous efforts have been devoted to fabricating high-performance electrodes based on Ni(OH)2 materials for energy storage devices, but there are still some challenging issues. Owing to its low conductivity, the Faradic redox reactions can only take place on its surface, and most of the reported Ni(OH)2 materials are inaccessible to electrolyte ions and remain as dead volumes in HSCs [45][46]. In recent years, many strategies have been explored to address this issue, including the synthesis of nanoscale or porous structures (Figure 2a), atomic substitution or doping (Figure 2b), and forming a composite with carbon-based or other materials (Figure 2c) [47][48]. For instance, the as-prepared hybrid electrode (Ni(OH)2/carbonnantube/polymer) by Jiang et al. [46] delivered an ultrahigh specific capacity of 1631 C g−1 at 5 mV s−1, excellent rate capability (71.9% capacity retention at 100 mV s−1), and long cycle life (85% capacitance retention after 20,000 cycles). In the hybrid, the conducting polymer coating contributes to stabilizing the whole electrode by reducing the dissolution of active materials, thus greatly improving the rate capability and cycling stability of the electrode. Fabricating a composite by incorporating highly conductive graphene nanosheets into Ni(OH)2 materials is considered as the most effective strategy to enhance the intrinsic properties of Ni(OH)2. Li et al. [49] reported a novel Ni(OH)2/rGO hybrid material, which not only exhibited a high specific capacity (1007.5 C g−1 at 0.5 A g−1), but also showed good life cycle stability (108% capacitance retention after 8000 cycles), revealing its good performance by incorporating rGO. Guo et al. [50] prepared a Ni(OH)2/rGO hybrid electrode and found a high specific capacity (1388 C g−1 at 2 A g−1) and remarkable rate capability (785 C g−1 at 50 A g−1). A Ni(OH)2-porous nitrogen-doped graphene hybrid architecture was also synthesized by Aghazadeh et al. [51]. The composite exhibited a specific capacity of 701 C g−1 and a capacity retention of 92.8% after 7000 cycles at 10 A g−1. In addition, the electrochemical performances of Ni(OH)2/rGO composites that have been reported thus far are compared in Table 2. It clearly reveals that, despite great achievement by hybridizing with rGO, Ni(OH)2 still requires further improvements, particularly in high-rate performance as well as in long cycle life.
Figure 2. Illustration of nanoscale or porous structures of Ni(OH)2 (a), atomic substitution or doping (b), and fabricating a composite with carbon-based or other materials (c).
Table 1. Specific capacity of Ni(OH)2 electrodes.
Table 2. Summary of performances of Ni(OH)2/rGO composites.

References

  1. Zhu, Y.C.; Deng, J.; Olivier, F. Breaking the strength barrier. Nat. Energy 2023, 23, 1264.
  2. Wang, F.; Lee, J.Y.; Chen, L.; Zhang, G.Y.; He, S.J.; Han, J.Q.; Ahn, J.; Cheong, J.Y.; Jiang, S.H.; Kim, I.D. Inspired by Wood: Thick Electrodes for Supercapacitors. ACS Nano 2023, 17, 8866–8898.
  3. Feng, D.W.; Lei, T.; Lukatskaya, M.R.; Park, J.; Huang, Z.H.; Lee, M.; Shaw, L.; Chen, S.C.; Yakovenko, A.A.; Kulkarni, A.; et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36.
  4. Li, K.D.; Zhao, T.; Wang, H.F.; Zhang, S.; Deng, C. From 1D nanotube arrays to 2D nanosheet networks on silver-coated textiles: New insights into the factors determining the performance of a core-shell hierarchical structure for wearable supercapacitors. J. Mater. Chem. A 2018, 6, 1561–1573.
  5. Li, X.M.; Zheng, Q.W.; Li, C.M.; Liu, G.Q.; Yang, Q.Z.; Wang, Y.C.; Sun, P.C.; Tian, H.M.; Wang, C.H.; Chen, X.L.; et al. Bubble Up Induced Graphene Microspheres for Engineering Capacitive Energy Storage. Adv. Energy Mater. 2023, 13, 2203761.
  6. Ma, H.Y.; Liang, J.; Qiu, J.; Li, J.; Ma, L.X.; Sheng, H.W.; Shao, M.J.; Wang, Q.; Li, F.F.; Fu, Y.J.; et al. A Biocompatible Supercapacitor Diode with Enhanced Rectification Capability toward Ion/Electron-Coupling Logic Operations. Adv. Mater. 2023, 35, 2301218.
  7. Brousse, T.; Belanger, D.; Long, J.W. To Be or Not to Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189.
  8. Conway, B.E. Transition from supercapacitor to battery behavior in electrochemical energy storage. J. Electrochem. Soc. 1991, 138, 1539–1548.
  9. Luo, X.Y.; Zheng, H.; Lai, W.D.; Yuan, P.; Li, S.W.; Li, D.; Chen, Y. Defect Engineering of Carbons for Energy Conversion and Storage Applications. Energy Environ. Mater. 2023, 6, e12402.
  10. Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.
  11. Dai, S.G.; Bai, Y.C.; Shen, W.X.; Zhang, S.; Hu, H.; Fu, J.W.; Wang, X.C.; Hu, C.G.; Liu, M.L. Core-shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J. Power Sources 2021, 482, 228915.
  12. Dai, S.G.; Zhao, B.; Qu, C.; Chen, D.C.; Dang, D.; Song, B.; deGleea, B.M.; Fu, J.W.; Hu, C.G.; Wong, C.P.; et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 2017, 33, 522–531.
  13. Zuo, W.H.; Li, R.Z.; Zhou, C.; Li, Y.Y.; Xia, J.L.; Liu, J.P. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017, 4, 1600539.
  14. Dai, S.G.; Zhang, Z.F.; Xu, J.M.; Shen, W.X.; Zhang, Q.B.; Yang, X.G.; Xu, T.T.; Dang, D.; Hu, H.; Zhao, B.T.; et al. In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy 2019, 64, 103919.
  15. Huang, N.B.; Sun, Y.; Liu, S.; Wang, X.Y.; Zhang, J.J.; Guo, L.K.; Bi, J.P.; Sun, X.N. Microwave-Assisted Rational Designed CNT-Mn3O4/CoWO4 Hybrid Nanocomposites for High Performance Battery-Supercapacitor Hybrid Device. Small 2023, e2300696.
  16. Soserov, L.; Marinova, D.; Koleva, V.; Stoyanova, A.; Stoyanova, R. Comparison of the Properties of Ni–Mn Hydroxides/Oxides with Ni–Mn Phosphates for the Purpose of Hybrid Supercapacitors. Batteries 2022, 10, 3390.
  17. Shen, W.X.; Zang, J.H.; Hu, H.; Xu, J.M.; Zhang, Z.F.; Yan, R.Q.; Dai, S.G. Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage. Mater. Des. 2020, 195, 108992.
  18. Chen, K.; Li, X.; Zang, J.; Zhang, Z.; Wang, Y.; Lou, Q.; Bai, Y.; Fu, J.; Zhuang, C.; Zhang, Y.; et al. Robust VS4@rGO nanocomposite as a highcapacity and long-life cathode material for aqueous zinc-ion batteries. Nanoscale 2021, 13, 12370–12378.
  19. Meng, H.Y.; Wang, S.L.; Ma, X.Y.; Zhang, D.H.; Zhang, L.L.; Liu, X.Y.; Zhang, L. Matching CP@NCOH/NF Cathode and GH/FNP/NF Anode for High-Performance Asymmetric Supercapacitor. Small 2023, 19, 2207496.
  20. Wang, C.X.; Liu, Y.W.; Sun, Y.S.; Cui, L.; Liu, J.Q. 3D nanoflower-like and core–shell structured MCo2O4@MCo2S4@polypyrrole (M = Cu, Mn) composites as supercapacitor electrode materials with ultrahigh specific capacitances. J. Mater. Chem. A 2023, 11, 7639–7651.
  21. Abbas, Z.; Hussain, N.; Ahmed, I.; Mobin, S.M. Cu-Metal Organic Framework Derived Multilevel Hierarchy (Cu/CuxO@NC) as a Bifunctional Electrode for High-Performance Supercapacitors and Oxygen Evolution Reaction. Inorg. Chem. 2023, 62, 8835–8845.
  22. Hu, G.; Tang, C.; Li, C.; Li, H.; Wang, Y.; Gong, H. The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances. J. Electrochem. Soc. 2011, 158, A695–A699.
  23. Chen, X.Y.; Wang, S.C.; Qiao, G.Q.; Lu, G.X.; Cui, H.Z.; Wang, X.Z. Fabrication of Three-Dimensional Porous NiO/Amorphous Ni(OH)2 Composites for Supercapacitors. Energy Fuels 2020, 34, 16783–16790.
  24. Xin, Y.F.; Dai, X.; Lv, G.J.; Wei, X.D.; Li, S.; Li, Z.Q.; Xue, T.; Shi, M.; Zou, K.Y.; Chen, Y.Z.; et al. Stability-Enhanced α-Ni(OH)2 Pillared by Metaborate Anions for Pseudocapacitors. ACS Appl. Mater. Interfaces 2021, 13, 28118–28128.
  25. Bhagwan, J.; Han, J.I. Promotive Effect of MWCNTs on α-NiS Microstructure and Their Application in Aqueous Asymmetric Supercapacitor. Energy Fuels 2022, 36, 15210–15220.
  26. Wang, Y.Z.; Liu, Y.X.; Wang, H.Q.; Liu, W.; Li, Y.; Zhang, J.F.; Hou, H.; Yang, J.L. Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Appl. Energy Mater. 2019, 2, 2063–2071.
  27. Wang, Y.G.; Song, Y.F.; Xia, Y.Y. Electrochemical capacitors: Mechanism, materials. systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.
  28. Cericola, D.; Kotz, R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta 2012, 782, 1–17.
  29. Thounthong, P.; Raël, S.; Davat, B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J. Power Sources 2009, 193, 376–385.
  30. Liu, C.; Li, F.; Ma, L.P.; Cheng, H.M. Advanced materials for energy storage. Adv Mater. 2010, 22, E28–E62.
  31. Marinova, D.; Kalapsazova, M.; Zlatanova, Z.; Mereacre, L.; Zhecheva, E.; Stoyanova, R. Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures. Materials 2023, 16, 4798.
  32. Kang, M.; Zhou, H.; Qin, B.; Zhao, N.; Lv, B.L. Ultrathin Nanosheet-Assembled, Phosphate Ion-Functionalized NiO Microspheres as Efficient Supercapacitor Materials. ACS Appl. Energy Mater. 2020, 3, 9980–9988.
  33. Zhao, J.; Wang, S.M.; Gao, L.J.; Zhang, D.; Guo, Y.Y.; Xu, R.Q. NiO Nanoparticles Anchored on N-Doped Laser-Induced Graphene for Flexible Planar Micro-Supercapacitors. ACS Appl. Nano Mater. 2022, 5, 11314–11323.
  34. Wang, G.S.; Yan, Z.X.; Wang, N.H.; Xiang, M.; Xu, Z.H. NiO/Ni Metal-Organic Framework Nanostructures for Asymmetric Supercapacitors. ACS Appl. Nano Mater. 2021, 4, 9034–9043.
  35. Meng, G.; Yang, Q.; Wu, X.C.; Wan, P.B.; Li, Y.P.; Lei, X.D.; Sun, X.M.; Liu, J.F. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 2016, 30, 831–839.
  36. Gao, D.Y.; Liu, R.N.; Han, D.D.; Xu, P.C.; Wang, P.; Wei, Y. Constructing Ni-Co PBA derived 3D/1D/2D NiO/NiCo2O4/NiMn-LDH hierarchical heterostructures for ultrahigh rate capability in hybrid supercapacitors. J. Mater. Chem. A 2023, 11, 9546–9554.
  37. Wu, X.L.; Zeng, F.; Song, X.Y.; Sha, X.F.; Zhou, H.T.; Zhang, X.G.; Liu, Z.; Yu, M.H.; Jiang, C.Z. In-situ growth of Ni(OH)2 nanoplates on highly oxidized graphene for all-solid-state flexible supercapacitors. Chem. Eng. J. 2023, 456, 140947.
  38. Lu, Y.; Qin, Y.H.; Chen, M.Y.; Liu, G.F.; Qi, P.C.; Wu, H.; Tang, Y.W. Multi-dimensional Ni(OH)2/(Ni(OH)2(NiOOH).167).857@Ni3S2 hierarchical structure for high-performance asymmetric supercapacitor. Appl. Surf. Sci. 2023, 6, 155625.
  39. Wang, K.; Zhang, X.L.; Zhang, X.Q.; Chen, D.Y.; Lin, Q.L. A novel Ni(OH)2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors. J. Power Sources 2016, 9, 153.
  40. Han, C.; Si, H.Z.; Sang, S.B.; Liu, K.Y.; Liu, H.T.; Wu, Q.M. Carbon Dots Doped with Ni(OH)2 as Thin-Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 12106–12114.
  41. Jiang, Z.M.; Xu, T.T.; Dai, S.G.; Yan, C.C.; Ma, C.Y.; Wang, X.C.; Xu, J.M.; Zhang, S.; Wang, Y. 3D mesoporous Ni(OH)2/WS2 nanofibers with highly enhanced performance for energy storage devices. Energy Technol. 2019, 7, 1800476.
  42. Ren, X.C.; Guo, C.L.; Xu, L.Q.; Li, T.T.; Hou, L.F.; We, Y.H. Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19930–19940.
  43. Cai, G.F.; Wang, X.; Cui, M.Q.; Darmawan, P.; Wang, J.X.; Eh, A.L.; Lee, P.S. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 2015, 12, 258–267.
  44. Krishna, P.G.; Debendra, A.; Indu, B.; Vivek, S.; Maya, D.; Shova, N.; Jyotendra, K.; Kisan, C.; Amar, P.Y. Nickel Oxide-Incorporated Polyaniline Nanocomposites as an Efficient Electrode Material for Supercapacitor Application. Inorganics 2022, 10, 86.
  45. Hong, Y.W.; Yang, J.X.; Choi, W.M.; Wang, J.J.; Xu, J.L. B-Doped g-C3N4 Quantum Dots-Modified Ni(OH)2 Nanoflowers as an Efficient and Stable Electrode for Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 1496–1504.
  46. Jiang, W.C.; Yu, D.S.; Zhang, Q.; Goh, K.L.; Wei, L.; Yong, Y.L.; Jiang, R.G.; Wei, J.; Chen, Y. Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv. Funct. Mater. 2015, 25, 1063–1073.
  47. Zhao, B.; Zhang, L.; Zhang, Q.B.; Chen, D.C.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X.H.; Song, B.; et al. Rational Design of Nickel Hydroxide-Based Nanocrystals on Graphene for Ultrafast Energy Storage. Adv. Energy Mater. 2017, 8, 1702247.
  48. Wan, N.W.K.; Lim, H.N.; Ibrahim, I.; Huang, N.M.; Foo, C.Y.; Jiang, Z.T. Electrochemical performance of aqueous hybrid supercapacitor based on LiFePO4/Si/graphene composite. Chem. Eng. J. 2023, 456, 141132.
  49. Li, Z.Y.; Ma, Q.; Zhang, H.B.; Zhang, Q.H.; Zhang, K.L.; Mei, H.; Xu, B.; Sun, D.F. Self-Assembly of Metal-Organic Frameworks on Graphene Oxide Nanosheets and In Situ Conversion into a Nickel Hydroxide/Graphene Oxide Battery-Type Electrode. Inorg. Chem. 2022, 61, 12129–12137.
  50. Guo, B.L.; Gao, Y.H.; Li, Y.Y.; Sun, X.; Chen, S.L.; Li, M.C. Ni(OH)2 Nanosheets Grown on Reduced Graphene Oxide for Supercapacitor Electrodes. ACS Appl. Nano Mater. 2022, 5, 7471–7480.
  51. Aghazadeh, M.; Rad, H.F. In situ growth of Ni(OH)2-porous nitrogen-doped graphene composite onto Ni foam support as advanced electrochemical supercapacitors materials. J. Mater. Sci. Mater. Electron. 2022, 33, 11038–11054.
  52. Girish, S.G.; Deepak, P.D.; Sujata, S.S.; Chandrakant, D.L. One step hydrothermal synthesis of micro-belts like β-Ni(OH)2 thin films for supercapacitors. Ceram. Int. 2013, 1, 91.
  53. Ji, J.Y.; Zhang, L.L.; Ji, H.X.; Li, Y.; Zhao, X.; Bai, X.; Fan, X.B.; Zhang, F.B.; Ruoff, R.S. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013, 7, 6237–6243.
  54. Li, H.B.; Yu, M.H.; Wang, F.X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C.X.; Tong, Y.X.; Yang, G.W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.
  55. Meng, X.H.; Deng, D. Bio-inspired synthesis of α-Ni(OH)2 nanobristles on various substrates and their applications. J. Mater. Chem. A 2016, 4, 6919–6925.
  56. Du, H.M.; Wang, Y.J.; Yuan, H.T.; Jiao, L.F. Facile synthesis and high capacitive performance of 3D hierarchical Ni(OH)2 microspheres. Electrochim. Acta 2016, 196, 84–91.
  57. Ambade, R.B.; Lee, H.; Lee, K.H.; Lee, H.; Veerasubramani, G.K.; Kim, Y.B.; Han, T.H. Ultrafast flashlight sintered mesoporous NiO nanosheets for stable asymmetric supercapacitors. Chem. Eng. J. 2022, 135, 41.
  58. Zhou, S.Y.; Wang, S.; Zhou, S.J.; Xu, H.B.; Zhao, J.P.; Wang, J.; Li, Y. An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 2020, 12, 8934–8941.
  59. Du, H.; Jiao, L.; Cao, K.; Wang, Y.; Yuan, H. Polyol-mediated synthesis of mesoporous alpha-Ni(OH)2 with enhanced supercapacitance. ACS Appl. Mater. Interfaces 2013, 5, 6643–6648.
  60. Fu, Y.; Song, J.; Zhu, Y.; Cao, C. High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 2014, 262, 344–348.
  61. Li, Z.; Han, J.; Fan, L.; Wang, M.; Tao, S.; Guo, R. The anion exchange strategy towards mesoporous alpha-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem. Commun. 2015, 51, 3053–3056.
  62. Xie, M.J.; Duan, S.Y.; Shen, Y.; Fang, K.; Wang, Y.Z.; Lin, M.; Guo, X.F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.
  63. Sun, W.P.; Rui, X.H.; Ulaganathan, M.; Madhavi, S.; Yan, Q.Y. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J. Power Sources 2015, 295, 323–328.
  64. Alhebshi, N.A.; Rakhi, R.B.; Alshareef, H.N. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A 2013, 1, 14897–14903.
  65. Li, L.; Tan, L.; Li, G.N.; Zhang, Y.M.; Liu, L.L. Self-templated synthesis of porous Ni(OH)2 nanocube and its high electrochemical performance for supercapacitor. Langmuir 2017, 33, 12087–12094.
  66. Kore, R.M.; Lokhande, B.J. Hierarchical mesoporous network of amorphous a-Ni(OH)2 for high performance supercapacitor electrode material synthesized from a novel solvent deficient approach. Electrochim. Acta 2017, 245, 780–790.
  67. Aguilera, L.; Leyet, Y.; Garcia, R.P.; Hernández, E.P.; Passos, R.R.; Pocrifka, L.A. Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem. Phys. Lett. 2017, 677, 75–79.
  68. Xiong, X.H.; Ding, D.; Chen, D.C.; Waller, G.; Bu, Y.F.; Wang, Z.X.; Liu, M.L. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 2015, 11, 154–161.
  69. Li, L.J.; Xu, J.; Lei, J.L.; Zhang, J.; McLarnon, F.; Wei, Z.D.; Li, N.B.; Pan, F.S. A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J. Mater. Chem. A 2015, 3, 1953–1960.
  70. Cui, H.T.; Xue, J.Y.; Ren, W.Z.; Wang, M.M. Ultra-high specific capacitance of β-Ni(OH)2 monolayer nanosheets synthesized by an exfoliation-free sol-gel route. J. Nanopart. Res. 2014, 16, 2601.
  71. Naveen, N.; Park, C.; Sohn, K.S.; Pyo, M. Nickel hydroxide nanoplatelets via dendrimer-assisted growth on graphene for high-performance energy-storage applications. Electrochim. Acta 2017, 248, 313–321.
  72. Zhang, L.; Wu, T.; Na, H.; Pan, C.; Xu, X.; Huang, G.; Liu, Y.; Liu, Y.; Gao, J. Self-assembly method to fabricate reduced graphene oxide aerogels loaded with nickel hydroxyl nanoparticles and their excellent properties in absorbing and supercapacitors. Ind. Eng. Chem. Res. 2016, 55, 6553–6562.
  73. Zhang, H.; Zhang, X.; Zhang, D.; Sun, X.; Lin, H.; Wang, C.; Ma, Y. One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 2013, 117, 1616–1627.
  74. Sun, Z.; Lu, X. A solid-state reaction route to anchoring Ni(OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res. 2012, 51, 9973–9979.
  75. Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2841.
  76. Li, Z.; Zhang, W.; Sun, C.; Feng, Z.; Yang, B. Controlled synthesis of Ni(OH)2/graphene composites and their transformation to NiO/graphene for energy storage. Electrochim. Acta 2016, 212, 390–398.
  77. Xiao, J.; Yang, S. Nanocomposites of Ni(OH)2/reduced graphene oxides with controllable composition, size, and morphology: Performance variations as pseudocapacitor electrodes. ChemPlusChem 2012, 77, 807–816.
  78. Min, S.; Zhao, C.; Zhang, Z.; Chen, G.; Qian, X.; Guo, Z. Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 2015, 3, 3641–3650.
  79. Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 131, 7472–7477.
  80. Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fan, Z.J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494–11502.
  81. Lee, J.W.; Ahn, T.; Soundararajan, D.; Koc, J.M.; Kim, J.D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 2011, 22, 6305–6307.
  82. Fang, D.L.; Chen, Z.D.; Liu, X.; Wu, Z.F.; Zheng, C.H. Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim. Acta 2012, 81, 321–329.
  83. Wang, R.H.; Jayakumar, A.; Xu, C.; Lee, J.M. Ni(OH)2 nanoflowers/graphene hydrogels: A new assembly for supercapacitors. ACS Sustain. Chem. Eng. 2016, 4, 3736–3742.
  84. Parveen, N.; Ansari, S.A.; Ansari, S.G.; Fouadc, H.; Cho, M.H. Intercalated reduced graphene oxide and its content effect on the supercapacitance performance of the three dimensional flower-like β-Ni(OH)2 architecture. New J. Chem. 2017, 41, 10467–10475.
  85. Liu, Y.; Wang, R.; Yan, X. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in highperformance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095.
  86. Que, T.N.; Umesh, T.N.; Chen, J.Y.; Soojin, P.; Sungjune, P. Ceria nanoflowers decorated Co3O4 nanosheets electrodes for highly efficient electrochemical supercapacitors. Appl. Surf. Sci. 2023, 613, 156034.
  87. He, Y.; Zhou, W.Q.; Li, D.Q.; Liang, Y.M.; Chao, S.X.; Zhao, X.Q.; Zhang, M.M.; Xu, J.K. Rare Earth Doping Engineering Tailoring Advanced Oxygen-Vacancy Co3O4 with Tunable Structures for High-Efficiency Energy Storage. Small 2023, 19, 2206956.
  88. Zhang, W.; Zhang, R.J.; Shi, M.P.; Ma, L.N.; Huang, Y.D. Hierarchical polygon Co3O4 flakes/N, O-dual doped porous carbon frameworks for flexible hybrid supercapacitors. Electrochim. Acta 2022, 424, 140631.
  89. Yang, C.Q.; Li, W.Q.; Liu, X.Q.; Song, X.M.; Li, H.P.; Tan, L.C. Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor. Molecules 2023, 28, 3177.
  90. Merum, D.; Pitcheri, R.; Gonuguntla, V.; Joo, S.W.B. Synthesis and properties of oxygen-deficient cobalt oxide nanocubes for supercapacitor application. Mater. Lett. 2023, 347, 134585.
  91. Liu, Q.P.; Zhou, Q.P.; Gao, C.S.; Liu, L.; Ye, H.Y. Excellent electrochemical stability of Co3O4 array with carbon hybridization derived from metal-organic framework. Nanotechnology 2021, 32, 485710.
  92. Sivakumar, P.; Raj, C.; Justin, J.H.; Park, H.S. 2D/2D nanoarchitecture of Ni/NiCo2O4 deposited onto reduced graphene oxide for high-performance hybrid supercapacitor applications. J. Energy Storage 2023, 69, 107946.
  93. Babaahmadi, V.; Pourhosseini, S.E.M.; Norouzi, O.; Naderi, H.R. Designing 3D ternary hybrid composites composed of graphene, biochar and manganese dioxide as high-performance supercapacitor electrodes. Nanomaterials 2023, 13, 1866.
  94. Pathak, D.K.; Ghosh, T.; Kumar, R. Improved inclusive performance of bi-stacked NiO nanoflakes coated nano-Co3O4 for dual function: An electrochromic-supercapacitor. J. Energy Storage 2023, 67, 107643.
  95. Silambarasan, S.; Sivakumar, M.; Kumar, K.R.; Jiang, Z.Q.; Maiyalagan, T. Nickel-doped Co3O4 spinel nanospheres embedded in nitrogen-doped carbon composites derived from bimetallic NiCo metal-organic framework as a high-performance asymmetric supercapacitor. New J. Chem. 2023, 47, 8649–8660.
  96. Yang, D.D.; Xu, M.; Liang, X.; Wang, J.Y.; Fang, W.Y.; Zhu, C.G.; Wang, F.W. Facile synthesis of Pr-doped Co3O4 nanoflakes on the nickel-foam for high performance supercapacitors. Electrochim. Acta 2022, 406, 139815.
  97. Zhang, H.; Geng, S.Y.; Ouyang, M.Z.; Mao, M.X.; Xie, F.; Riley, D.J. Using Metal Cation to Control the Microstructure of Cobalt Oxide in Energy Conversion and Storage Applications. Small 2022, 18, 2106391.
  98. Cong, Y.; Jiang, T.T.; Dai, Y.M.; Wu, X.F.; Lv, M.Y.; Chen, M.T.; Ye, T.W.; Wu, Q. 3D network structure of Co(OH)2 nanoflakes/Ag dendrites via a one-step electrodeposition for high-performance supercapacitors. Mater. Res. Bull. 2023, 157, 112013.
  99. Liu, Z.Q.; Qiu, Y.L.; Zhang, A.T.; Yang, W.R.; Barrow, C.J.; Razal, J.M.; Li, A.H.; Liu, J.Q. In-situ formation of α-Co(OH)2 nanosheet arrays on magnesium cobaltate nanowires for hybrid supercapacitors with enhanced electrochemical performance. Appl. Surf. Sci. 2021, 568, 150856.
  100. Hao, J.Y.; Yan, J.; Hu, Q.; Bai, Y.C.; Zhou, Y.; Zou, X.F.; Xiang, B. Design of Co(OH)2 composite electrode with high active surface area by sulfur control and graphene encapsulation strategies. Appl. Surf. Sci. 2022, 596, 153612.
  101. Wang, X.X.; Liu, K.H.; Li, J.; Liu, Y.Y.; Wang, M.R.; Cui, H.T. Creation of an extrinsic pseudocapacitive material presenting extraordinary cycling-life with the battery-type material Co(OH)2 by S2− doping for application in supercapacitors. Chem. Eng. J. 2023, 451, 138969.
  102. Zheng, L.X.; Xu, P.H.; Zhao, Y.J.; Peng, J.X.; Yang, P.J.; Shi, X.W.; Zheng, H.J. Unique core-shell Co2(OH)2CO3@MOF nanoarrays with remarkably improved cycling life for high performance pseudocapacitors. Electrochim. Acta 2022, 412, 140142.
  103. Li, J.B.; Li, Z.H.; Zhan, F.; Shao, M.F. Phase engineering of cobalt hydroxide toward cation intercalation. Chem. Sci. 2021, 12, 1756–1761.
  104. Xu, L.; Li, L.; Shen, J.; Li, Z.H.; Liu, S.Y. Metal-organic frameworks induced robust layered Co(OH)2 nanostructures for ultra-high stability hybrid supercapacitor electrodes in aqueous electrolyte. J. Power Sources 2020, 477, 228974.
  105. Gong, W.Z.; Wang, M.J.; An, Y.; Wang, J.L.; Zhou, L.X.; Xia, Y.; Wang, C.J.; Dong, K.; Pan, C.; Zhou, R.F. Rational design and synthesis of hydrotalcite-like α-Co(OH)2 nanoflakes for extrinsic pseudocapacitive electrodes with superb cycling stability. J. Energy Storage 2021, 38, 102579.
  106. Gan, Z.W.; Ren, X.H.; Sun, Y.X.; Sun, M.X.; Yan, Y.J.; Cao, B.B.; Shen, W.Z.; Yu, H.J.; Li, Z.J.; Fu, Y.Q. Highly porous nanocomposites of Mn doped cobalt-based hydroxide/sulfide as high-performance electrode materials for hybrid supercapacitors. J. Energy Storage 2023, 69, 107934.
  107. Wang, E.T.; Jiang, S.S.; Bu, X.D. One-pot electrochemical assembling of porous cobalt hydroxide/nitrogen-doped porous graphene onto Ni foam as a binder-free electrode for supercapacitor applications. J. Energy Storage 2020, 32, 101881.
  108. Salunkhe, A.D.; Pawar, P.S.; Torane, A.P. MOF derived NiCo2O4 nanosheets for high performance asymmetric supercapacitor. J. Electroanal. Chem. 2023, 939, 117475.
  109. Ghaemi, S.P.; Masoudpanah, S.M.; Alamolhoda, S. CTAB-assisted synthesis of porous cuboid NiCo2O4 powders for high-performance supercapacitor. J. Energy Storage 2023, 67, 107635.
  110. Pore, O.C.; Fulari, A.V.; Lohar, G.M. Synthesis of NiCo2O4 microflowers by facile hydrothermal method: Effect of precursor concentration. Chem. Phys. Lett. 2023, 824, 140551.
  111. Zhao, Y.B.; Li, H.; Tang, R.Y.; Wang, X.Y.; Wu, Y.; Shi, Y.; Zhang, Y. Photo-assisted asymmetric supercapacitors based on dual photoelectrodes for enhanced photoelectric energy storage. J. Mater. Chem. A 2023, 11, 15844–15854.
  112. Yang, W.D.; Xiang, J.; Wu, F.F. Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2022, 49, 4422–4434.
  113. Ma, Q.H.; Cui, F.; Cui, T.Y. Built-in electric field boosted ionic transport kinetics in the heterostructured ZnCo2O4/ZnO nanobelts for high-performance supercapacitor. J. Colloid Interface Sci. 2023, 629, 649–659.
  114. Abbas, Q.; Siyal, S.H.; Bocchetta, P. Flower-like Highly Open-Structured Binder-Free Zn-Co-Oxide Nanosheet for High-Performance Supercapacitor Electrodes. Molecules 2022, 27, 4850.
  115. Rajangam, I. Hybrid nanostructures made of porous binary transition metal oxides for high performance asymmetric supercapacitor application. J. Energy Storage 2023, 67, 107530.
  116. Karthik, R.; Sukanya, R.; Chen, S.M.; Hasan, M.; Dhakal, G.; Shafi, P.M.; Shim, J.J. Development of an Amorphous Nickel Boride/Manganese Molybdate Heterostructure as an Efficient Electrode Material for a High-Performance Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2023, 15, 11927–11939.
  117. Li, P.X.; Qiao, D.W.; Bai, J.K.; Li, X.L. Facile synthesis of petal-like MnMoO4/Ni(OH)2 ultrathin nanosheets for high-performance asymmetric supercapacitor. Mater. Lett. 2023, 337, 134007.
  118. Nandagopal, T.; Balaji, G.; Vadivel, S. Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide (rGO) as asymmetric supercapacitor devices. J. Energy Storage 2023, 68, 107710.
  119. Yang, R.; Zhang, Y.; Huang, X.; Yin, H.Q.; Zhang, K.Y.; Qin, A.M.; Chen, S.P. In-situ growth of KCu7S4@CoMoO4 core-shell structure on Ni foam for high performance supercapacitor electrode. J. Alloys Compd. 2022, 927, 166996.
  120. Liu, L.Y.; Dai, D.F.; Yang, B.; Li, B.; Liu, X.Y. Green preparation of CoMoO4 nanoparticles through a mechanochemical method for energy storage applications. New J. Chem. 2022, 46, 23369–23378.
  121. Zhou, J.H.; Chen, Z.X.; Yang, H.; Liu, M.J.; Gu, B.N.; Chen, C.C.; Lv, H.F.; Zhou, Z.Y.; Chueh, Y.L. Hierarchically Hybrid Porous Co3O4@NiMoO4/CoMoO4 Heterostructures for High-Performance Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 8282–8296.
  122. Shen, L.F.; Yu, L.; Yu, X.Y.; Zhang, X.G.; Lou, X.W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 1868–1872.
  123. Ji, C.C.; Liu, F.Z.; Xua, L.; Yang, S.C. Urchin-like NiCo2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 5568–5576.
  124. Li, Q.; Lu, C.X.; Chen, C.M.; Xie, L.J.; Liu, Y.D.; Li, Y.; Kong, Q.Q.; Wang, H. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Mater. 2017, 8, 59–67.
  125. Al-Rubaye, S.; Rajagopalan, R.; Dou, S.X.; Cheng, Z.X. Facile synthesis of a reduced graphene oxide wrapped porous NiCo2O4 composite with superior performance as an electrode material for supercapacitors. J. Mater. Chem. A 2017, 5, 18989–18997.
  126. Sun, S.M.; Wang, S.; Li, S.D.; Li, Y.N.; Zhang, Y.H.; Chen, J.L.; Zhang, Z.H.; Fang, S.M.; Wang, P.Y. Asymmetric supercapacitors based on a NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density. J. Mater. Chem. A 2016, 4, 18646–18653.
  127. Zhao, B.; Chen, D.C.; Xiong, X.H.; Song, B.; Hu, R.Z.; Zhang, Q.B.; Rainwater, B.H.; Waller, G.H.; Zhen, D.X.; Ding, Y.; et al. A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 2017, 7, 32–39.
  128. Liu, S.; Lee, S.C.; Patil, U.; Shackery, I.; Kang, S.; Zhang, K.; Park, J.H.; Chung, K.Y.; Jun, S.C. Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core-shell heterostructures as advanced electrodes for supercapacitors. J. Mater. Chem. A 2017, 5, 1043–1049.
  129. Kierzek, K.; Frackowiak, E.; Lota, G.; Gryglewicz, G.; Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 2004, 49, 515–523.
  130. Wang, H.; Liang, Y.; Gong, M.; Li, Y.; Chang, W.; Mefford, T.; Zhou, J.; Wang, J.; Regier, T.; Wie, F.; et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917.
  131. Zhang, J.T.; Gong, L.Y.; Sun, K.; Jiang, J.C.; Zhang, X.G. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 2012, 16, 2179–2186.
  132. Zhang, B.; Zhao, B.; Wang, J.X.; Qu, C.; Sun, H.B.; Zhang, K.L.; Liu, M.L. High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy 2016, 28, 475–785.
  133. Liu, S.D.; Lee, S.C.; Patil, U.M.; Ray, C.; Sankar, K.V.; Zhang, K.; Kundu, A.; Kang, S.N.; Park, J.H.; Jun, S.C. Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J. Mater. Chem. A 2017, 5, 4543–4549.
  134. Li, M.; Liu, F.; Zhang, X.B.; Cheng, J.P. A comparative study of Ni-Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors. Phys. Chem. Chem. Phys. 2016, 18, 30068–30078.
  135. Zhang, C.Q.; Chen, Q.D.; Zhan, H.B. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22977–22987.
  136. Guan, B.; Li, Y.; Yin, B.Y.; Liu, K.F.; Wang, D.W.; Zhang, H.H.; Cheng, C.J. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 2017, 308, 1165–1173.
  137. Zhao, J.; Guan, B.; Hu, B.; Xu, Z.Y.; Wang, D.W.; Zhang, H.H. Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim. Acta 2017, 230, 428–437.
  138. Li, T.; Li, H.; Li, L.H.; Liu, L.; Xu, Y.; Ding, H.Y. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2562–2572.
  139. Shang, Y.Y.; Xie, T.; Gai, Y.S.; Su, L.H.; Gong, L.Y.; Lu, H.J.; Dong, F.Y. Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors. Electrochim. Acta 2017, 253, 281–290.
  140. Song, D.M.; Zhu, J.K.; Li, J.; Pu, T.; Huang, B.; Zhao, C.L.; Xie, L.; Chen, L.Y. Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim. Acta 2017, 257, 455–464.
  141. Peng, T.Q.; Yi, H.; Sun, P.; Jing, Y.T.; Wang, R.J.; Wang, H.W.; Wang, X.F. In situ growth of binder-free CNTs@Ni-Co-S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 8888–8897.
  142. Yang, J.; Zhang, Y.; Sun, C.C.; Guo, G.L.; Sun, W.P.; Huang, W.; Yan, Q.Y.; Dong, X.C. Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. J. Mater. Chem. A 2015, 3, 11462–11470.
  143. Liu, S.; Jun, S.C. Hierarchical manganese cobalt sulfide coreeshell nanostructures for high-performance asymmetric supercapacitors. J. Power Sources 2017, 342, 629–637.
  144. Yu, L.; Zhang, L.; Wu, H.B.; Lou, W. Formation of NixCo3−xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem. 2014, 126, 3785–3788.
  145. Guan, B.Y.; Yu, L.; Wang, X.; Song, S.Y.; Lou, X.W. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605051.
  146. Li, S.F.; Yu, C.; Yang, J.; Zhao, C.T.; Zhang, M.D.; Huang, W.; Liu, Z.B.; Guo, W.; Qiu, J.S. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 2017, 10, 1958–1965.
  147. Wang, T.; Zhang, S.L.; Yan, X.B.; Lu, M.Q.; Wang, L.Z.; Bell, J.; Wang, H.X. 2-Methylimidazole-derived Ni-Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 15510–15524.
  148. Lu, Y.; Zhang, Z.; Liu, X.; Wang, W.; Peng, T.; Guo, P.; Sun, H.; Yan, H.; Luo, Y. NiCo2S4/carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. CrystEngComm 2016, 18, 7696–7706.
  149. Wang, X.Q.; Li, X.M.; Du, X.; Ma, X.L.; Hao, X.G.; Xue, C.F.; Zhu, H.Y.; Li, S.S. Controllable Synthesis of NiCo LDH nanosheets for fabrication of high-performance supercapacitor electrodes. Electroanalysis 2017, 29, 1286–1293.
  150. Xu, J.; Ma, C.J.; Cao, J.Y.; Chen, Z.D. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors. Dalton Trans. 2017, 46, 3276–3283.
  151. Bai, X.; Liu, Q.; Lu, Z.T.; Liu, J.Y.; Chen, R.R.; Li, R.M.; Song, D.L.; Jing, X.Y.; Liu, P.L.; Wang, J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal-organic framework for sustainable energy storage. ACS Sustain. Chem. Eng. 2017, 5, 9923–9934.
  152. Zhang, Y.X.; Jin, Y.H.; Song, Y.Y.; Wang, H.; Jia, M.Q. Induced bimetallic sulfide growth with reduced graphene oxide for high-performance sodium storage. J. Colloid Interface Sci. 2023, 642, 554–564.
  153. Wu, N.S.; Low, J.X.; Liu, T.; Yu, J.G.; Cao, S.W. Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Appl. Surf. Sci. 2017, 413, 35–40.
  154. Ye, L.; Zhao, L.J.; Zhang, H.; Zan, P.; Ge, S.; Shi, W.H.; Han, B.; Sun, H.M.; Yang, X.J.; Xu, T.H. Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 1603–1613.
  155. Li, W.; Xin, L.P.; Wu, M.; Long, Y.; Huang, H.T.; Lou, X.J. Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 2017, 330, 1334–1341.
  156. Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 1996, 41, 1633–1639.
  157. Devarajan, J.; Arumugam, P. Nitrogen and phosphorous co-doped carbon nanotubes for high-performance supercapacitors. Carbon Lett. 2023, 23, 532.
  158. Huang, X.W.; Huang, J.H.; Yang, J.; Yang, D.; Li, T.T.; Dong, A.G. High-Yield Exfoliation of Large MXene with Flake Sizes over 10 µm Using Edge-Anchored Carbon Nanotubes. Adv. Funct. Mater. 2023, 33, 2303003.
  159. Jung, M.Y.; Sivakumar, P.; Park, H.S. Carbon nanotube branch-grown nickel nanoparticles/graphene composites for a high-capacitance electrode. J. Phys. Energy 2023, 5, 025005.
  160. Guo, Q.H.; Li, C.W.; Yang, K.H.; Zhou, P.D.; Hua, N.B.; Weng, M.C. Polyaniline/Reduced Graphene Oxide/Carbon Nanotube Composites for Actuation-Based Sensing for Energy Storage. ACS Appl. Nano Mater. 2023, 6, 4925–4935.
  161. Han, Y.; Ha, H.; Choi, C.; Yoon, H.; Matteini, P.; Cheong, J.Y.; Hwang, B. Review of Flexible Supercapacitors Using Carbon Nanotube-Based Electrodes. Appl. Sci. 2023, 13, 3290.
  162. Mayank, P.; Kiran, M.S. CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy Storage Mater. 2023, 57, 136–170.
  163. Wang, J.G.; Liu, H.Z.; Zhang, X.Y.; Li, X.; Liu, X.R.; Kang, F.Y. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-effcient energystorage. Small 2018, 14, 1703950.
  164. Baughman, R.H.; Zakhidov, A.A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792.
  165. Chiu, C.T.; Chen, D.H. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnology 2018, 29, 175602.
  166. Kim, D.K.; Kim, N.D.; Park, S.K.; Seong, K.D.; Hwang, M.; You, N.H.; Piao, Y.Z. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. J. Power Sources 2018, 380, 55–63.
  167. Jin, L.N.; Shao, F.; Jin, C.; Zhang, J.N.; Liu, P.; Guo, M.X.; Bian, S.W. High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochim. Acta 2017, 249, 387–394.
  168. Zhou, G.H.; Kim, N.R.; Chun, S.E.; Lee, W.; Um, M.K.; Chou, T.W.; Islam, M.F.; Byun, J.H. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 37–144.
  169. Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Environ. Sci. Technol. 2013, 6, 1249–1259.
  170. Annamalai, K.; Gao, J.; Liu, L.; Mei, J.; Lau, W.; Tao, Y. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J. Mater. Chem. A 2015, 3, 11740–11744.
  171. Khaw, L.F.; Koh, W.S.; Yeap, S.P.; Lim, J.K.; Ahmad, A.L.; Toh, P.Y.; Khosravi, V. Shape-controlled synthesis of polyaniline and its synergistic effect with reduced graphene oxide for the fabrication of flexible electrode. Polym. Eng. Sci. 2023, 63, 2295–2308.
  172. Zhang, Y.; Zhou, Q.Y.; Ma, W.H.; Wang, C.H.; Wang, X.F.; Chen, J.J.; Yu, T.T.; Fan, S. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors. Nano Res. 2023, 23, 5736.
  173. Dai, S.G.; Liu, Z.; Zhao, B.; Zeng, J.H.; Hu, H.; Zhang, Q.B.; Chen, D.C.; Qu, C.; Dang, D.; Liu, M.L. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 2018, 387, 43–48.
  174. Feng, R.M.; Chen, Y.J.; Yang, L.F.; Du, Q.Z.; Zhuo, K.L. Ethyl viologen-functionalized reduced graphene oxide composites for asymmetric ionic liquid-based supercapacitors. Chem. Eng. J. 2023, 468, 143693.
  175. Qiu, C.J.; Jiang, L.L.; Gao, Y.G.; Sheng, L.Z. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952.
  176. Sima, L.; Manila, O.V.; Rajinder, P.; Michael, A.P. Electrolyte-mediated assembly of graphene-based supercapacitors using adsorbed ionic liquid/non-ionic surfactant complexes. J. Mater. Chem. A 2023, 11, 11222–11234.
  177. Qin, Y.; Yuan, J.; Li, J.; Chen, D.C.; Kong, Y.; Chu, F.Q.; Tao, Y.X.; Liu, M.L. Crosslinking graphene oxide into robust 3D porous N-doped graphene. Adv. Mater. 2015, 27, 5171–5175.
  178. Wang, K.L.; Xu, M.; Gu, Y.; Gu, Z.G.; Liu, J.; Fan, Q.H. Low-temperature plasma exfoliated n-doped graphene for symmetrical electrode supercapacitors. Nano Energy 2017, 31, 486–494.
  179. Sedlovets, D.M. N-Doped Graphene-like Film/Silicon Structures as Micro-Capacitor Electrodes. Materials 2023, 16, 4007.
  180. Lee, D.; Banda, H.; Périé, S.; Marcucci, C.; Chenavier, Y.; Dubois, L.; Taberna, P.L.; Simon, P.; Paëpe, G.D.; Duclairoir, F. Revealing Electrolytic Ion Sorption in Layered Graphene Galleries through Low-Temperature Solid-State. NMR Chem. Mater. 2023, 35, 3841–3848.
  181. Qiu, Z.P.; Liu, Z.; Lu, X.L.; Zhang, S.; Yan, Y.C.; Chi, C.L.; Chao, H.F.; Wang, G.W.; Gao, P.F.; Chi, W.H.; et al. Dual Molecules Cooperatively Confined In-Between Edge-oxygen-rich Graphene Sheets as Ultrahigh Rate and Stable Electrodes for Supercapacitors. Small 2023, 19, e2302316.
  182. Peng, X.Q.; Du, Y.P.; Gu, Z.; Deng, K.; Liu, X.S.; Lv, X.B.; Tian, W.; Ji, J.Y. Rearrangement of GO nanosheets with inner and outer forces under high-speed spin for supercapacitor. J. Colloid Interface Sci. 2023, 644, 167–176.
  183. Cung, D.; Nguyen, T.; Mai, V.D.; Vu, V.P.; Kim, S.; Lee, S.H. Integrated solar-rechargeable supercapacitors with a dual-functional-layered electrode. J. Power Sources 2023, 572, 233086.
  184. Pang, J.; Li, J.; Guo, J.H.; Jia, M.J.; Zhang, J.W. Tuning the aggregation structure and surface composition of reduced graphene oxide microspheres for high-rate supercapacitors. Diam. Relat. Mater. 2023, 136, 109920.
  185. Li, Z.; Huang, T.Q.; Gao, W.W.; Xu, Z.; Chang, D.; Zhang, C.X.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056–11065.
  186. Liu, Z.; Jiang, L.L.; Sheng, L.Z.; Zhou, Q.H.; Wei, T.; Zhang, B.S.; Fan, Z.J. Oxygen clusters distributed in graphene with “Paddy Land” structure: Ultrahigh capacitance and rate performance for supercapacitors. Adv. Funct. Mater. 2018, 28, 1705258.
  187. Hang, W.L.; Xu, C.; Ma, C.Q.; Li, G.X.; Wang, Y.Z.; Zhang, K.Y.; Li, F.; Liu, C.; Cheng, H.M.; Du, Y.W.; et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.
  188. Zhang, W.Y.; Liu, H.L.; Kang, H.W.; Zhang, S.R.; Yang, B.C.; Li, Z.K. 2-aminoanthraquinone anchored on N-doped reduced graphene oxide for symmetric supercapacitor with boosting energy density. Electrochim. Acta 2023, 448, 142194.
  189. Liang, J.Y.; Wang, Z.; Huang, L.T.; Zou, P.; Liu, X.L.; Ni, Q.; Wang, X.Y.; Wang, W.J.; Tao, R.M. Facile and Tunable Synthesis of Nitrogen-Doped Graphene with Different Microstructures for High-Performance Supercapacitors. ACS Mater. Lett. 2023, 5, 944–954.
  190. Song, B.; Zhao, J.X.; Wang, M.J.; Mullaveya, J.; Zhua, Y.T.; Geng, Z.S.; Chen, D.C.; Ding, Y.; Moon, K.; Liu, M.L.; et al. Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. Nano Energy 2017, 31, 183–193.
  191. Zhang, S.; Sui, L.N.; Dong, H.Z.; He, W.B.; Dong, L.F.; Yu, L.Y. High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes. ACS Appl. Mater. Interfaces 2018, 10, 15.
  192. Li, L.Y.; Song, B.; Maurer, L.; Lin, Z.Y.; Lian, G.; Tuan, C.C.; Moon, K.S.; Wong, C.P. Molecular engineering of aromatic amine spacers for high-performance graphene-based supercapacitors. Nano Energy 2016, 21, 276–294.
  193. Zhao, C.M.; Zheng, W.T. A review for aqueous electrochemical supercapacitors. Front. Energy Res. 2015, 3, 23.
  194. Amaral, M.M.; Venâncio, R.; Peterlevitz, A.C.; Zanin, H. Recent advances on quasi-solid-state electrolytes for supercapacitors. J. Energy Chem. 2021, 11, 11.
  195. Xu, T.; Liu, K.; Sheng, N.; Zhang, M.H.; Liu, W.; Liu, H.Y.; Dai, L.; Zhang, X.Y.; Si, C.L.; Du, H.H.; et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 3, 13.
More
Information
Subjects: Electrochemistry
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , ,
View Times: 311
Revisions: 2 times (View History)
Update Date: 18 Sep 2023
1000/1000
Video Production Service