Monoclonal Antibody 5B2
Edit

Candidiasis (either mucocutaneous or systemic) is an opportunistic infection caused mainly by Candida albicans, a yeast and natural commensal of the human digestive tract and vagina. Unlike true pathogens, the presence of yeasts alone does not indicate their pathogenic character, which depends essentially on the susceptibility of the host and the expression of pathogenicity factors by some yeast strains. It is therefore essential to have markers associated with pathogenicity to understand the mechanisms of infection and to diagnose these infections as accurately as possible. The development of hybridoma technology/advent of monoclonal antibodies (mAbs) led to considerable progress in answering some of these questions. Among the monoclonal antibodies (mAbs) developed, mAb 5B2 allowed us to make considerable progress in understanding the mechanisms of pathogenesis and also contributed to the diagnosis of candidiasis and the tracing of more pathogenic strains. 

monoclonal antibody diagnosis mAb 5B2 yeast  Candida albicans

1. Immunochemical Identification of mAb 5B2 Epitopes, Their Carrier Molecules and Genes Involved in Their Synthesis

Unlike many mAbs generated from the immunisation of mice with killed yeasts or molecules extracted from yeasts, mAb 5B2 was generated from an experimental infection in a rat [1].
As the epitope was found to be present in mannan, a major C. albicans cell wall polysaccharide both quantitatively and qualitatively, its precise nature was determined through a series of immunobiochemical studies concerning this molecule. These studies consisted of sequential depolymerisation and nuclear magnetic resonance analysis and were based around the impressive pioneering structural studies conducted in Japan by Prof. Suzuki’s group on Candida mannans or, more exactly, phosphopeptidomannans (PPMs), focusing on the so-called antigenic factors allowing Candida species or serotype identification by direct agglutination [2][3][4]. The 5B2 epitope was identified among the β-1,2-linked mannoside series [5][6][7][8][9]. These structures are rare in the living world and are expressed in large quantities in the most pathogenic species of the genus Candida, namely C. glabrata and C. tropicalis, which are isolated second and third, respectively, after C. albicans from human disease. A considerable amount of information on β-1,2 oligomannosides has been gathered by S. Suzuki’s group according to their relation with antigenic factors [10] and expression in different strains depending on growth conditions showing important changes related to pH [11] and temperature [12], triggering the yeast to hyphal transition [13]. An impressive synthesis gathering all this information was presented in a review published in 2012 [4]. The precise identification of the 5B2 epitope showed reactivity against a minimal degree of polymerisation of two β-1,2 linked mannoside residues, thus corresponding to antigenic factor 5 and in part antigenic factor 6 [14].
Western blot profiles revealed that the 5B2 epitope was expressed on a large number of C. albicans molecules [15] distributed among very high relative molecular weight polydispersed material containing large amounts of polysaccharides and bands with lower molecular weight and better resolution in gels, corresponding to mannosylated proteins. These patterns were observed for several other pathogenic Candida species, with each having specific mapping of the 5B2 epitope [16]. In turn, an analysis of these profiles led to the discovery of concanavalin A-unreactive glycoconjugates with no protein moiety and to the identification of a glycolipid we named phospholipomannan (PLM) [17]. PLM was then studied extensively and characterised as a cell wall molecule belonging to the manno-inositol-phosphoceramide family [9][18][19][20][21].
Refinement of the methods of extraction of C. albicans cell wall mannoproteins based on the knowledge of their mode of insertion (PPM, glycosylphosphatidylinositol (GPI)-anchored proteins with internal repeats (PIR proteins and secreted proteins)) led to a complete mapping of the molecules containing the 5B2 epitope, among which were well known “proteins” described as virulence factors, including Hwp1 and HSP 70 [22]. mAb 5B2 mapping of β-mannose epitopes in the mannoproteins of different cell wall fractions of mutants defective in the map kinase pathway revealed its importance in regulating the exposure of different surface anomery and modulation of the immune response [23].
Finally, mAb 5B2 contributed uniquely to the discovery and identification of the nine members of the gene family encoding β-mannosyl transferases (BMTs 1–9), responsible for the sequential addition of β-Mans on different carrier molecules. This has significantly improved our understanding of the β-Man biosynthetic pathway in C. albicans [24]. Further definition of BMT functions was achieved through sequential deletion in the strain BWP17 by PCR gene targeting. Briefly, β-Man transfer is under the control of BMTs 1 and 3 for the acid-stable fraction of PPM and BMTs 2, 3 and 4 for the acid-labile fraction. None of these four enzymes act on PLM, nevertheless BMTs 5 and 6 are specifically involved in the β-mannosylation of PLM. Concerning the O-mannosylation of cell wall mannoproteins, this depends on BMTs 1 and 3 [25][26][27][28]. Gene deletion of BMTs 7–9 was inconclusive and has not been the subject of specific studies to date. Only transcriptome analysis carried out to decipher C. albicans iron homeostasis mentions BMT 7 and BMT 9 in alternative genetic programs adapting to blood stream versus gut environments [29][30].
Recent developments in this area of research concern a highly pathogenic Candida species that emerged simultaneously in different countries worldwide with the characteristics of antifungal resistance and high virulence, leading to high rates of mortality among patients in intensive care units. This species, C. auris, was also shown to synthesise β-Mans [31].
Analysis of the distribution of the mAb 5B2 epitope confirmed high expression in some strains, placing C. auris in the same group as C. albicans, C. tropicalis and C. glabrata, namely the most pathogenic Candida species (Leroy et al., unpublished data to date). Experimentally, it has been shown that an IgG3 mAb specific for a β-1,2 linked mannotriose described as protective against C. albicans [32] also protected mice against C. auris infection [33]. Addressing the general topic of the interplay between Candida and human antibodies, an impressive study demonstrated that C. albicans was able to shape the antibody repertoire though CARD9-dependent induction of host-protective antifungal IgG, including against C. auris [34]. On the fungal side, a mechanism of yeast surface modulation of antigens, including β-mannosides, able to direct macrophage responses was discovered to be under the control of C. albicans mitochondrial proteins [35]. In our view, these fascinating findings from this area of research deserve to be highlighted.

2. Cytological and Histopathological Analysis of mAb 5B2 Epitope Expression

In parallel to the identification of these molecules, mAb 5B2 was involved in studies aimed at localising the expression of 5B2 epitopes. At the population level, direct immunoperoxidase staining of C. albicans colonies grown on agar revealed an unforeseen complex expression of the epitope distributed according to different sectors [36]. Immunofluorescence and confocal microscopy studies revealed a complex expression due to the multiplicity of molecules differently expressing the epitope on yeasts and hyphal forms at a given time in the cell cycle [37]. Among these, shedding of PLM from the cell wall on contact with host cells was demonstrated unambiguously [38][39]. mAb 5B2 was used early on in histopathological studies to assess the presence of invasive foci of Candida in different clinical situations and experimental models [40]. At the gut level, it was used to assess colonisation by yeast species expressing β-mannosides and to identify host and yeast backgrounds modulating intestinal interactions [41][42].
At the ultrastructural level, transmission electron microscopy studies on C. albicans ultrathin liquid nitrogen frozen sections probed with 5B2 directly coupled to gold particles showed its localisation within cytoplasmic vesicles merging with the cell membrane and crossing the cell wall through channels [43][44]. The merging of these channels at the cell wall surface corresponded to the “patchy” distribution of β-Man epitopes reported by other authors in immunofluorescence studies [45].

3. Contribution of mAb 5B2 to the Analysis of the Immunological Interface between C. albicans and 5B2 Epitopes or Molecules Expressing These Epitopes—Identification of the Ligands and Triggering Consequences

As a counterpart to the identification of the 5B2 epitope and the C. albicans molecules expressing these specific motifs, mAb 5B2 was involved in experiments to assess the properties of these molecules. In these immunobiological studies, mAb 5B2 was the probe used as a reference. One of the major findings was the identification of Galectin-3 (Gal-3) as the mammalian receptor for β-mannosides [37][38][39][46][47][48][49][50][51][52][53][54][55]. Although research on Gal-3, known as Mac2 antigen, was limited at this time [52], Gal-3 is now established as a lectin playing an important role in numerous human diseases; its important pleiotropic roles have generated more than 5000 papers. Interestingly, regarding Candida pathogenesis, circulating levels of Gal-3 appear to be markers of both infection and inflammation [56], a duality compatible with its ability to predict the recurrence of Crohn’s disease after surgery associated with persistent inflammation and C. albicans colonisation [57]. Regarding relative importance of Gal-3 among other C. albicans receptors, its discovery at the end of the 1990s was among the first of a long list of what has been called later Pathogens Recognition Receptors (PRRs) as a counterpart of fungal Pathogen Associated Microbial Patterns (PAMPs). Only mannose receptor was identified at this time [58][59], as early as in the 1980s, so that differentiating at this time a and β mannose binding was important. To our knowledge, apart from MBL, which was described simultaneously in 2000 [60], other major receptors were identified later: Dectin-1 in 2001 [61][62][63]; first TLRs in 2002 [64][65]; DC-Sign in 2003 [66]; Dectin-2 in 2006 [67][68]. Comprehensive reviews regularly synthesized the importance of these interactions in shaping the host immune response [69][70][71]. Regarding the modulation liable to be linked to Gal-3, a reason to delve into this notion is that the presence of β-1,2-mannosides in N-linked mannan reduces the production of inflammatory cytokines by dendritic cells [72]. This seems of pathophysiological relevance since the morphological transformation of Candida conidia into hyphae form is characterized by a decrease in the amount of phosphodiesterified acid-labile β-1,2-linked manno-oligosaccharides, whereas the amount of acid-stable β-1,2 linkage-containing side chains does not change [13]. The corollary to these findings may be that Candida variants reacting with mAb 5B2 are unable to induce a robust proinflammatory and an appropriate mechanism of antigen presentation. This should be noticed because dendritic cells show a unique pattern of C-lectin type receptors to carry out non-opsonic phagocytosis and produce cytokines that tailor the microenvironment in the immune synapsis to initiate the adaptive immune response. This disappearance of β-Man is of importance regarding unmaking of α-Mans. This topic relates to the so-called ASCA, human antibodies revealed by S. cerevisiae mannan allowing the diagnosis of Crohn’s disease but generated by C. albicans pathogenic phase [73]. These antibodies are indeed anti-oligomannose antibodies reacting with α-1,3 mannose at the non-reducing end of 2 or 3 α-1,2 linked mannose. Besides Crohn’s disease, ASCA are associated with a strong inflammatory response in a wide range of human diseases, most of which are associated with fungal dysbiosis and a C. albicans overgrowth [74].

4. Construction of mAb 5B2 Epitope Synthetic Analogues (β-1,2 Oligomannoside Series) and Analysis of Their Biological and Immunological Properties

With regard to the difficulties in producing β-1,2 oligomannosides by sequential degradation of C. albicans PPM, synthetic analogues were produced by chemical synthesis. mAb 5B2 was used to assess their conformity with natural products through the development of chemical synthesis steps. These synthetic probes mimicking adhesins were shown to prevent C. albicans colonisation in experimental mouse models [53]. When coupled to biotin sulfone, it was possible to detect specific antibodies either on microspheres by multi-analyte profiling technology (Luminex) or surface plasmonic analysis [75]. A recent paper involving mAb 5B2 used the same technology to determine the structural basis for protective epitope specificity and to discriminate the humoral responses of infected versus colonised patients [76].
In a similar approach aimed at identifying the structures mimicking β-Mans, a phage library expressing random peptides was screened with mAb 5B2. The application of this phage display methodology led to the isolation of peptides presenting with the same specificity as β-Mans in terms of adhesion and immunogenicity [77].

References

  1. Hopwood, V.; Poulain, D.; Fortier, B.; Evans, G.; Vernes, A. A monoclonal antibody to a cell wall component of Candida albicans. Infect Immun 1986, 54, 222-227, doi:10.1128/iai.54.1.222-227.1986.
  2. Suzuki, S. Structural Investigation of Mannans of Medically Relevant Candida Species; Detremination of Chemical Structures of Antigenic Factors, 1, 4,5, 6, 9 and 13b. In In: Fungal Cells in Biodefense Mechanisms, , S. Suzuki and M. Suzuki, E., Ed.; Saikon Publishing CO. LTD.: Tokyo, Japan, 1997; pp. 1-15.
  3. Suzuki, M.; Fukazawa, Y. Immunochemical characterization of Candida albicans cell wall antigens: specific determinant of Candida albicans serotype A mannan. Microbiol Immunol 1982, 26, 387-402, doi:10.1111/j.1348-0421.1982.tb00189.x.
  4. Shibata, N.; Kobayashi, H.; Suzuki, S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci 2012, 88, 250-265, doi:10.2183/pjab.88.250.
  5. Faille, C.; Wieruszeski, J.M.; Michalski, J.C.; Poulain, D.; Strecker, G. Complete 1H- and 13C-resonance assignments for D-mannooligosaccharides of the beta-D-(1-->2)-linked series released from the phosphopeptidomannan of Candida albicans VW.32 (serotype A). Carbohydr Res 1992, 236, 17-27, doi:10.1016/0008-6215(92)85004-j.
  6. Faille, C.; Wieruszeski, J.M.; Lepage, G.; Michalski, J.C.; Poulain, D.; Strecker, G. 1H-NMR spectroscopy of manno-oligosaccharides of the beta-1,2-linked series released from the phosphopeptidomannan of Candida albicans VW-32 (serotype A). Biochem Biophys Res Commun 1991, 181, 1251-1258, doi:10.1016/0006-291x(91)92073-s.
  7. Faille, C.; Michalski, J.C.; Strecker, G.; Mackenzie, D.W.; Camus, D.; Poulain, D. Immunoreactivity of neoglycolipids constructed from oligomannosidic residues of the Candida albicans cell wall. Infect Immun 1990, 58, 3537-3544, doi:10.1128/iai.58.11.3537-3544.1990.
  8. Faille, C.; Mackenzie, D.W.; Michalski, J.C.; Poulain, D. Evaluation of an enzyme immunoassay using neoglycolipids constructed from Candida albicans oligomannosides to define the specificity of anti-mannan antibodies. Eur J Clin Microbiol Infect Dis 1992, 11, 438-446, doi:10.1007/BF01961859.
  9. Trinel, P.A.; Lepage, G.; Jouault, T.; Strecker, G.; Poulain, D. Definitive chemical evidence for the constitutive ability of Candida albicans serotype A strains to synthesize beta-1,2 linked oligomannosides containing up to 14 mannose residues. FEBS Lett 1997, 416, 203-206, doi:10.1016/s0014-5793(97)01205-2.
  10. Shibata, N.; Arai, M.; Haga, E.; Kikuchi, T.; Najima, M.; Satoh, T.; Kobayashi, H.; Suzuki, S. Structural identification of an epitope of antigenic factor 5 in mannans of Candida albicans NIH B-792 (serotype B) and J-1012 (serotype A) as beta-1,2-linked oligomannosyl residues. Infect Immun 1992, 60, 4100-4110, doi:10.1128/iai.60.10.4100-4110.1992.
  11. Kobayashi, H.; Giummelly, P.; Takahashi, S.; Ishida, M.; Sato, J.; Takaku, M.; Nishidate, Y.; Shibata, N.; Okawa, Y.; Suzuki, S. Candida albicans serotype A strains grow in yeast extract-added Sabouraud liquid medium at pH 2.0, elaborating mannans without beta-1,2 linkage and phosphate group. Biochem Biophys Res Commun 1991, 175, 1003-1009, doi:10.1016/0006-291x(91)91664-x.
  12. Okawa, Y.; Takahata, T.; Kawamata, M.; Miyauchi, M.; Shibata, N.; Suzuki, A.; Kobayashi, H.; Suzuki, S. Temperature-dependent change of serological specificity of Candida albicans NIH A-207 cells cultured in yeast extract-added Sabouraud liquid medium: disappearance of surface antigenic factors 4, 5, and 6 at high temperature. FEBS Lett 1994, 345, 167-171, doi:10.1016/0014-5793(94)00434-x.
  13. Shibata, N.; Suzuki, A.; Kobayashi, H.; Okawa, Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 2007, 404, 365-372, doi:10.1042/BJ20070081.
  14. Poulain, D.; Jouault, T.; Trinel, P. Immunoreactivity of Candida albicans b-1,2 Linked Oligomannosides and Phospholipomannan. In In: Fungal Cells in Biodefense Mechanisms, , S. Suzuki and M. Suzuki, E., Ed.; Saikon Publishing CO. LTD.: Tokyo, Japan, 1997; Volume Pp. 175-181.
  15. Trinel, P.A.; Faille, C.; Jacquinot, P.M.; Cailliez, J.C.; Poulain, D. Mapping of Candida albicans oligomannosidic epitopes by using monoclonal antibodies. Infect Immun 1992, 60, 3845-3851, doi:10.1128/iai.60.9.3845-3851.1992.
  16. Cantelli, C.; Trinel, P.A.; Bernigaud, A.; Jouault, T.; Polonelli, L.; Poulain, D. Mapping of beta-1,2-linked oligomannosidic epitopes among glycoconjugates of Candida species. Microbiology (Reading) 1995, 141 ( Pt 10), 2693-2697, doi:10.1099/13500872-141-10-2693.
  17. Trinel, P.A.; Borg-von-Zepelin, M.; Lepage, G.; Jouault, T.; Mackenzie, D.; Poulain, D. Isolation and preliminary characterization of the 14- to 18-kilodalton Candida albicans antigen as a phospholipomannan containing beta-1,2-linked oligomannosides. Infect Immun 1993, 61, 4398-4405, doi:10.1128/iai.61.10.4398-4405.1993.
  18. Poulain, D.; Faille, C.; Delaunoy, C.; Jacquinot, P.M.; Trinel, P.A.; Camus, D. Probable presence of beta(1-2)-linked oligomannosides that act as human immunoglobulin G3 epitopes and are distributed over a Candida albicans 14- to 18-kilodalton antigen. Infect Immun 1993, 61, 1164-1166, doi:10.1128/iai.61.3.1164-1166.1993.
  19. Trinel, P.A.; Cantelli, C.; Bernigaud, A.; Jouault, T.; Poulain, D. Evidence for different mannosylation processes involved in the association of beta-1,2-linked oligomannosidic epitopes in Candida albicans mannan and phospholipomannan. Microbiology (Reading) 1996, 142 ( Pt 8), 2263-2270, doi:10.1099/13500872-142-8-2263.
  20. Trinel, P.A.; Plancke, Y.; Gerold, P.; Jouault, T.; Delplace, F.; Schwarz, R.T.; Strecker, G.; Poulain, D. The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J Biol Chem 1999, 274, 30520-30526, doi:10.1074/jbc.274.43.30520.
  21. Mille, C.; Janbon, G.; Delplace, F.; Ibata-Ombetta, S.; Gaillardin, C.; Strecker, G.; Jouault, T.; Trinel, P.A.; Poulain, D. Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan beta-mannosylation, reduces virulence, and alters cell wall protein beta-mannosylation. J Biol Chem 2004, 279, 47952-47960, doi:10.1074/jbc.M405534200.
  22. Fradin, C.; Slomianny, M.C.; Mille, C.; Masset, A.; Robert, R.; Sendid, B.; Ernst, J.F.; Michalski, J.C.; Poulain, D. Beta-1,2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N- and O-glycosylation processes. Infect Immun 2008, 76, 4509-4517, doi:10.1128/IAI.00368-08.
  23. Roman, E.; Correia, I.; Salazin, A.; Fradin, C.; Jouault, T.; Poulain, D.; Liu, F.T.; Pla, J. The Cek1‑mediated MAP kinase pathway regulates exposure of alpha‑1,2 and beta‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition. Virulence 2016, 7, 558-577, doi:10.1080/21505594.2016.1163458.
  24. Mille, C.; Bobrowicz, P.; Trinel, P.A.; Li, H.; Maes, E.; Guerardel, Y.; Fradin, C.; Martinez-Esparza, M.; Davidson, R.C.; Janbon, G.; et al. Identification of a new family of genes involved in beta-1,2-mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 2008, 283, 9724-9736, doi:10.1074/jbc.M708825200.
  25. Mille, C.; Fradin, C.; Delplace, F.; Trinel, P.A.; Masset, A.; Francois, N.; Coddeville, B.; Bobrowicz, P.; Jouault, T.; Guerardel, Y.; et al. Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on beta-mannosylation of the phospholipomannan cell-wall glycosphingolipid. Glycobiology 2012, 22, 1332-1342, doi:10.1093/glycob/cws097.
  26. Courjol, F.; Jouault, T.; Mille, C.; Hall, R.; Maes, E.; Sendid, B.; Mallet, J.M.; Guerardel, Y.; Gow, N.A.; Poulain, D.; et al. beta-1,2-Mannosyltransferases 1 and 3 Participate in Yeast and Hyphae O- and N-Linked Mannosylation and Alter Candida albicans Fitness During Infection. Open Forum Infect Dis 2015, 2, ofv116, doi:10.1093/ofid/ofv116.
  27. Cattiaux, L.; Mee, A.; Pourcelot, M.; Sfihi-Loualia, G.; Hurtaux, T.; Maes, E.; Fradin, C.; Sendid, B.; Poulain, D.; Fabre, E.; et al. Candida albicans beta-1,2 mannosyl transferase Bmt3: Preparation and evaluation of a beta (1,2), alpha (1,2)-tetramannosyl fluorescent substrate. Bioorg Med Chem 2016, 24, 1362-1368, doi:10.1016/j.bmc.2016.02.008.
  28. Sfihi-Loualia, G.; Hurtaux, T.; Fabre, E.; Fradin, C.; Mee, A.; Pourcelot, M.; Maes, E.; Bouckaert, J.; Mallet, J.M.; Poulain, D.; et al. Candida albicans beta-1,2-mannosyltransferase Bmt3 prompts the elongation of the cell-wall phosphopeptidomannan. Glycobiology 2016, 26, 203-214, doi:10.1093/glycob/cwv094.
  29. Singh, R.P.; Prasad, H.K.; Sinha, I.; Agarwal, N.; Natarajan, K. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 2011, 286, 25154-25170, doi:10.1074/jbc.M111.233569.
  30. Chen, C.; Pande, K.; French, S.D.; Tuch, B.B.; Noble, S.M. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 2011, 10, 118-135, doi:10.1016/j.chom.2011.07.005.
  31. Bruno, M.; Kersten, S.; Bain, J.M.; Jaeger, M.; Rosati, D.; Kruppa, M.D.; Lowman, D.W.; Rice, P.J.; Graves, B.; Ma, Z.; et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol 2020, 5, 1516-1531, doi:10.1038/s41564-020-0780-3.
  32. Han, Y.; Riesselman, M.H.; Cutler, J.E. Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 2000, 68, 1649-1654, doi:10.1128/IAI.68.3.1649-1654.2000.
  33. Rosario-Colon, J.; Eberle, K.; Adams, A.; Courville, E.; Xin, H. Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice against Candida auris Invasive Infection. Int J Mol Sci 2021, 22, doi:10.3390/ijms22116162.
  34. Doron, I.; Leonardi, I.; Li, X.V.; Fiers, W.D.; Semon, A.; Bialt-DeCelie, M.; Migaud, M.; Gao, I.H.; Lin, W.Y.; Kusakabe, T.; et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 2021, 184, 1017-1031 e1014, doi:10.1016/j.cell.2021.01.016.
  35. She, X.; Zhang, P.; Shi, D.; Peng, J.; Wang, Q.; Meng, X.; Jiang, Y.; Calderone, R.; Bellanti, J.A.; Liu, W.; et al. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022, 36, e22575, doi:10.1096/fj.202200275RRR.
  36. Fruit, J.; Cailliez, J.C.; Odds, F.C.; Poulain, D. Expression of an epitope by surface glycoproteins of Candida albicans. Variability among species, strains and yeast cells of the genus Candida. J Med Vet Mycol 1990, 28, 241-252, doi:10.1080/02681219080000301.
  37. Trinel, P.A.; Jouault, T.; Cutler, J.E.; Poulain, D. Beta-1,2-mannosylation of Candida albicans mannoproteins and glycolipids differs with growth temperature and serotype. Infect Immun 2002, 70, 5274-5278, doi:10.1128/IAI.70.9.5274-5278.2002.
  38. Poulain, D.; Slomianny, C.; Jouault, T.; Gomez, J.M.; Trinel, P.A. Contribution of phospholipomannan to the surface expression of beta-1,2-oligomannosides in Candida albicans and its presence in cell wall extracts. Infect Immun 2002, 70, 4323-4328, doi:10.1128/IAI.70.8.4323-4328.2002.
  39. Jouault, T.; Fradin, C.; Trinel, P.A.; Bernigaud, A.; Poulain, D. Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid. J Infect Dis 1998, 178, 792-802, doi:10.1086/515361.
  40. Cailliez, J.C.; Boudrissa, A.; Mackenzie, D.W.; Poulain, D. Evaluation of a gold-silver staining method for detection and identification of Candida species by light microscopy. Eur J Clin Microbiol Infect Dis 1990, 9, 886-891, doi:10.1007/BF01967504.
  41. Jawhara, S.; Thuru, X.; Standaert-Vitse, A.; Jouault, T.; Mordon, S.; Sendid, B.; Desreumaux, P.; Poulain, D. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J Infect Dis 2008, 197, 972-980, doi:10.1086/528990.
  42. Charlet, R.; Pruvost, Y.; Tumba, G.; Istel, F.; Poulain, D.; Kuchler, K.; Sendid, B.; Jawhara, S. Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Sci Rep 2018, 8, 3316, doi:10.1038/s41598-018-21422-w.
  43. Poulain, D.; Cailliez, J.C.; Dubremetz, J.F. Secretion of glycoproteins through the cell wall of Candida albicans. Eur J Cell Biol 1989, 50, 94-99.
  44. Cailliez, J.C.; Poulain, D. [Cytologic analysis of the expression of an epitope carried by glycoproteins excreted by Candida albicans]. Ann Inst Pasteur Microbiol 1988, 139, 171-188, doi:10.1016/0769-2609(88)90003-8.
  45. Han, Y.; Kanbe, T.; Cherniak, R.; Cutler, J.E. Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 1997, 65, 4100-4107, doi:10.1128/iai.65.10.4100-4107.1997.
  46. Rehaume, L.M.; Jouault, T.; Chamaillard, M. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease. Trends Immunol 2010, 31, 171-175, doi:10.1016/j.it.2010.01.007.
  47. Jouault, T.; Lepage, G.; Bernigaud, A.; Trinel, P.A.; Fradin, C.; Wieruszeski, J.M.; Strecker, G.; Poulain, D. Beta-1,2-linked oligomannosides from Candida albicans act as signals for tumor necrosis factor alpha production. Infect Immun 1995, 63, 2378-2381, doi:10.1128/iai.63.6.2378-2381.1995.
  48. Jouault, T.; Ibata-Ombetta, S.; Takeuchi, O.; Trinel, P.A.; Sacchetti, P.; Lefebvre, P.; Akira, S.; Poulain, D. Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 2003, 188, 165-172, doi:10.1086/375784.
  49. Jouault, T.; Fradin, C.; Bernigaud, A.; Trinel, P.A.; Poulain, D. Interaction of Candida albicans with macrophages through phospholipomannan. Immunology Letters 1997, 56, 115-116.
  50. Jouault, T.; Bernigaud, A.; Lepage, G.; Trinel, P.A.; Poulain, D. The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology 1994, 83, 268-273.
  51. Ibata-Ombetta, S.; Idziorek, T.; Trinel, P.A.; Poulain, D.; Jouault, T. Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 2003, 278, 13086-13093, doi:10.1074/jbc.M210680200.
  52. Fradin, C.; Poulain, D.; Jouault, T. beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 2000, 68, 4391-4398, doi:10.1128/IAI.68.8.4391-4398.2000.
  53. Fradin, C.; Jouault, T.; Mallet, A.; Mallet, J.M.; Camus, D.; Sinay, P.; Poulain, D. Beta-1,2-linked oligomannosides inhibit Candida albicans binding to murine macrophage. J Leukoc Biol 1996, 60, 81-87, doi:10.1002/jlb.60.1.81.
  54. Dromer, F.; Chevalier, R.; Sendid, B.; Improvisi, L.; Jouault, T.; Robert, R.; Mallet, J.M.; Poulain, D. Synthetic analogues of beta-1,2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 2002, 46, 3869-3876, doi:10.1128/AAC.46.12.3869-3876.2002.
  55. Dalle, F.; Jouault, T.; Trinel, P.A.; Esnault, J.; Mallet, J.M.; d'Athis, P.; Poulain, D.; Bonnin, A. Beta-1,2- and alpha-1,2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect Immun 2003, 71, 7061-7068, doi:10.1128/IAI.71.12.7061-7068.2003.
  56. ten Oever, J.; Giamarellos-Bourboulis, E.J.; van de Veerdonk, F.L.; Stelma, F.F.; Simon, A.; Janssen, M.; Johnson, M.; Pachot, A.; Kullberg, B.J.; Joosten, L.A.; et al. Circulating galectin-3 in infections and non-infectious inflammatory diseases. Eur J Clin Microbiol Infect Dis 2013, 32, 1605-1610, doi:10.1007/s10096-013-1919-4.
  57. Sendid, B.; Salvetat, N.; Sarter, H.; Loridant, S.; Cunisse, C.; Francois, N.; Aijjou, R.; Gele, P.; Leroy, J.; Deplanque, D.; et al. A Pilot Clinical Study on Post-Operative Recurrence Provides Biological Clues for a Role of Candida Yeasts and Fluconazole in Crohn's Disease. J Fungi (Basel) 2021, 7, doi:10.3390/jof7050324.
  58. Warr, G.A. A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity. Biochem Biophys Res Commun 1980, 93, 737-745, doi:10.1016/0006-291x(80)91139-0.
  59. Stahl, P.; Schlesinger, P.H.; Sigardson, E.; Rodman, J.S.; Lee, Y.C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 1980, 19, 207-215, doi:10.1016/0092-8674(80)90402-x.
  60. Neth, O.; Jack, D.L.; Dodds, A.W.; Holzel, H.; Klein, N.J.; Turner, M.W. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 2000, 68, 688-693, doi:10.1128/IAI.68.2.688-693.2000.
  61. Yokota, K.; Takashima, A.; Bergstresser, P.R.; Ariizumi, K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene 2001, 272, 51-60, doi:10.1016/s0378-1119(01)00528-5.
  62. Hermanz-Falcon, P.; Arce, I.; Roda-Navarro, P.; Fernandez-Ruiz, E. Cloning of human DECTIN-1, a novel C-type lectin-like receptor gene expressed on dendritic cells. Immunogenetics 2001, 53, 288-295, doi:10.1007/s002510100326.
  63. Brown, G.D.; Herre, J.; Williams, D.L.; Willment, J.A.; Marshall, A.S.; Gordon, S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 2003, 197, 1119-1124, doi:10.1084/jem.20021890.
  64. Tada, H.; Nemoto, E.; Shimauchi, H.; Watanabe, T.; Mikami, T.; Matsumoto, T.; Ohno, N.; Tamura, H.; Shibata, K.; Akashi, S.; et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 2002, 46, 503-512, doi:10.1111/j.1348-0421.2002.tb02727.x.
  65. Netea, M.G.; Van Der Graaf, C.A.; Vonk, A.G.; Verschueren, I.; Van Der Meer, J.W.; Kullberg, B.J. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 2002, 185, 1483-1489, doi:10.1086/340511.
  66. Cambi, A.; Gijzen, K.; de Vries l, J.; Torensma, R.; Joosten, B.; Adema, G.J.; Netea, M.G.; Kullberg, B.J.; Romani, L.; Figdor, C.G. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 2003, 33, 532-538, doi:10.1002/immu.200310029.
  67. Sato, K.; Yang, X.L.; Yudate, T.; Chung, J.S.; Wu, J.; Luby-Phelps, K.; Kimberly, R.P.; Underhill, D.; Cruz, P.D., Jr.; Ariizumi, K. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006, 281, 38854-38866, doi:10.1074/jbc.M606542200.
  68. McGreal, E.P.; Rosas, M.; Brown, G.D.; Zamze, S.; Wong, S.Y.; Gordon, S.; Martinez-Pomares, L.; Taylor, P.R. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006, 16, 422-430, doi:10.1093/glycob/cwj077.
  69. Hontelez, S.; Sanecka, A.; Netea, M.G.; van Spriel, A.B.; Adema, G.J. Molecular view on PRR cross-talk in antifungal immunity. Cell Microbiol 2012, 14, 467-474, doi:10.1111/j.1462-5822.2012.01748.x.
  70. Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J.; van de Veerdonk, F.L. Immune defence against Candida fungal infections. Nat Rev Immunol 2015, 15, 630-642, doi:10.1038/nri3897.
  71. Poulain, D.; Jouault, T. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol 2004, 7, 342-349, doi:10.1016/j.mib.2004.06.011.
  72. Ueno, K.; Okawara, A.; Yamagoe, S.; Naka, T.; Umeyama, T.; Utena-Abe, Y.; Tarumoto, N.; Niimi, M.; Ohno, H.; Doe, M.; et al. The mannan of Candida albicans lacking beta-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Med Mycol 2013, 51, 385-395, doi:10.3109/13693786.2012.733892.
  73. Standaert-Vitse, A.; Jouault, T.; Vandewalle, P.; Mille, C.; Seddik, M.; Sendid, B.; Mallet, J.M.; Colombel, J.F.; Poulain, D. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn's disease. Gastroenterology 2006, 130, 1764-1775, doi:10.1053/j.gastro.2006.02.009.
  74. Rinaldi, M.; Perricone, R.; Blank, M.; Perricone, C.; Shoenfeld, Y. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity. Clin Rev Allergy Immunol 2013, 45, 152-161, doi:10.1007/s12016-012-8344-9.
  75. Collot, M.; Sendid, B.; Fievez, A.; Savaux, C.; Standaert-Vitse, A.; Tabouret, M.; Drucbert, A.S.; Danze, P.M.; Poulain, D.; Mallet, J.M. Biotin sulfone as a new tool for synthetic oligosaccharide immobilization: application to multiple analysis profiling and surface plasmonic analysis of anti-Candida albicans antibody reactivity against alpha and beta (1-->2) oligomannosides. J Med Chem 2008, 51, 6201-6210, doi:10.1021/jm800099g.
  76. Sendid, B.; Lecointe, K.; Collot, M.; Danze, P.M.; Damiens, S.; Drucbert, A.S.; Fradin, C.; Vilcot, J.P.; Grenouillet, F.; Dubar, F.; et al. Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of beta-1,2 mannotriose protective epitopes. Sci Rep 2021, 11, 10825, doi:10.1038/s41598-021-90402-4.
  77. Jouault, T.; Fradin, C.; Dzierszinski, F.; Borg-Von-Zepelin, M.; Tomavo, S.; Corman, R.; Trinel, P.A.; Kerckaert, J.P.; Poulain, D. Peptides that mimic Candida albicans-derived beta-1,2-linked mannosides. Glycobiology 2001, 11, 693-701, doi:10.1093/glycob/11.8.693.
More
Information
Subjects: Mycology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , ,
View Times: 349
Revisions: 2 times (View History)
Update Date: 16 Jun 2023
Video Production Service