Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 -- 4363 2023-06-14 15:05:02 |
2 layout & references Meta information modification 4363 2023-06-16 03:25:59 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Mat Lazim, N.; Yousaf, A.; Abusalah, M.A.H.; Sulong, S.; Mohd Ismail, Z.I.; Mohamud, R.; Abu-Harirah, H.A.; Alramadneh, T.N.; Hassan, R.; Abdullah, B. Epigenetic Alterations in Salivary Gland Tumors. Encyclopedia. Available online: (accessed on 28 November 2023).
Mat Lazim N, Yousaf A, Abusalah MAH, Sulong S, Mohd Ismail ZI, Mohamud R, et al. Epigenetic Alterations in Salivary Gland Tumors. Encyclopedia. Available at: Accessed November 28, 2023.
Mat Lazim, Norhafiza, Anam Yousaf, Mai Abdel Haleem Abusalah, Sarina Sulong, Zul Izhar Mohd Ismail, Rohimah Mohamud, Hashem A. Abu-Harirah, Tareq Nayef Alramadneh, Rosline Hassan, Baharudin Abdullah. "Epigenetic Alterations in Salivary Gland Tumors" Encyclopedia, (accessed November 28, 2023).
Mat Lazim, N., Yousaf, A., Abusalah, M.A.H., Sulong, S., Mohd Ismail, Z.I., Mohamud, R., Abu-Harirah, H.A., Alramadneh, T.N., Hassan, R., & Abdullah, B.(2023, June 14). Epigenetic Alterations in Salivary Gland Tumors. In Encyclopedia.
Mat Lazim, Norhafiza, et al. "Epigenetic Alterations in Salivary Gland Tumors." Encyclopedia. Web. 14 June, 2023.
Epigenetic Alterations in Salivary Gland Tumors

Salivary gland carcinomas (SGCs) are a diverse collection of malignant tumors with marked differences in biological activity, clinical presentation and microscopic appearance. Although the etiology is varied, secondary radiation, oncogenic viruses as well as chromosomal rearrangements have all been linked to the formation of SGCs. Epigenetic modifications are any heritable changes in gene expression that are not caused by changes in DNA sequence. It is widely accepted that epigenetics plays an important role in SGC development.

Salivary gland cancers epigenetic modifications DNA methylation noncoding RNAs histone modifications

1. Introduction

The embryonic development of the tubulo-acinar exocrine organ known as the salivary gland begins between week 6 and week 8 of intrauterine life. Submandibular and sublingual glands originate in the embryonic endoderm, while the parotid gland is thought to develop from the oral ectoderm [1]. Salivary glands have a two-tiered structure with luminal (acinar and ductal) and abluminal (myoepithelial and basal) cell layers. Rapid entry into the cell cycle makes these cells vulnerable to neoplastic transformation [2]. Salivary gland carcinomas (SGCs) are uncommon compared to the other carcinoma types but are common in the context of head and neck tumours [3][4]. Salivary gland carcinomas (SGCs) account for between 3–6% of all head and neck malignancies. The parotid gland is the most commonly involved, especially by benign type followed by the submandibular gland and the minor salivary glands. Among the malignant histological subtypes are mucoepidermoid carcinoma (MEC), carcinoma ex pleomorphic adenoma, intraductal carcinoma, acinic cell carcinoma, adenoid cystic carcinoma (ACC), and carcinosarcoma [5][6][7]. Mucoepidermoid carcinoma is further classified into a low-grade and high-grade tumor where the treatment approaches are significantly differed. It is challenging to get earlier diagnosis of these SGCs and deliver adequate treatment due to existing high histological heterogeneity.
Salivary gland carcinomas (SGCs) are exceptionally rare, hence very little is known about their etiology. A few studies have reported that alcohol consumption, tobacco use, diet high in animal fat and low in vegetables, and heavy cell phone use are associated with an increased risk of SGCs [8][9]. Radiation exposure (such as radiotherapy to the head and neck) and certain occupational exposures (such as silica dust, nickel alloy dust, asbestos, and rubber products manufacturing and mining) have also been implicated [9]. A history of cancer [10] and perhaps exposure to the human papillomavirus [11], Epstein Barr virus [9], and HIV [12] have also been identified (Figure 1).
Figure 1. Etiological factors of salivary gland carcinoma. Multiple factors are working together to drive SGC from a few aberrant cells to a tumour phenotype with the capacity to metastasis. Therefore, the optimum environment for malignant development is maintained by a complex interplay of genetic events, risk factors, and epigenetic mechanisms. All of these factors work together to promote an unstable genome and hence, promote cancer progression.
Epigenetic and genetic changes have been proposed as etiological variables, but there are yet few research investigating its function in SGT (Figure 2) [1][3][13]. Epigenetic events can take the form of DNA methylation, alterations in the expression of non-coding RNAs such as microRNAs (miRNAs), or abnormalities in the structural modification of histones [14][15][16]. Several cancers, including SGCs, develop and progress due to epigenetic alterations that cause considerable changes in gene expression [3]. In addition, significant genetic alterations have been documented in all SGCs, and these alterations can be grouped according to their role in prediction, diagnosis and prognosis [13].
Figure 2. Salivary gland carcinomas can be affected by a number of epigenetic events that can alter the development and progression of the cancer.

2. Epigenetics Mechanisms

Epigenetics is a broad word that refers to molecular mechanisms that affect gene expression without altering the DNA base sequence. Transcription regulators, epigenetic writers, gene imprinting, histone modification as well as DNA methylation are important epigenetic processes implicated in gene expression alterations (Figure 2) [17]. DNA methylation involves transformation of methylated cytosine by treatment with sodium bisulfite, into thymine and two distinct probes which used to target each site of CpG [18]. Mechanism of histone modifications involves chemical post-translational modifications (PTMs) such as sumoylation, ubiquitylation, acetylation, phosphorylation as well as methylation, to the histone proteins, that causes chromatin structure to change or attract histone modifiers [19]. Another epigenetic mechanism is genomic imprinting that impacts a small group of genes, resulting in monoallelic expression of genes which is parental specific origin in manner. Gene expression as well as genomic region compaction are controlled by epigenetic alterations, which are produced by specific enzymes called as “writers” and eventually identified by the effector proteins called as “readers” and removed by erasers, all of which together contribute to the regulation of gene transcription, and abnormalities can result in tumor formation as well as development [20]. Additionally, the creation of a different research known as nutrigenomic results from epigenetic regulation via diverse nutritional substances [21][22].


  1. Iyer, J.; Hariharan, A.; Cao, U.M.N.; Mai, C.T.T.; Wang, A.; Khayambashi, P.; Nguyen, B.H.; Safi, L.; Tran, S.D. An Overview on the Histogenesis and Morphogenesis of Salivary Gland Neoplasms and Evolving Diagnostic Approaches. Cancers 2021, 13, 3910.
  2. Sreeja, C.; Shahela, T.; Aesha, S.; Satish, M.K. Taxonomy of salivary gland neoplasm. J. Clin. Diagn. Res. 2014, 8, 291–293.
  3. Dos Santos, E.S.; Ramos, J.C.; Normando, A.G.C.; Mariano, F.V.; Paes Leme, A.F. Epigenetic alterations in salivary gland tumors. Oral Dis. 2020, 26, 1610–1618.
  4. El-Naggar, A.K.; Batsakis, J.G. Tumors of the Salivary Glands. In Essentials of Anatomic Pathology; Cheng, L., Bostwick, D.G., Eds.; Humana Press: Totowa, NJ, USA, 2006.
  5. Da Silva, L.P.; Serpa, M.S.; Viveiros, S.K.; Sena, D.A.C.; de Carvalho Pinho, R.F.; de Abreu Guimarães, L.D.; de Sousa Andrade, E.S.; Dias Pereira, J.R.; Silveira, M.; Sobral, A.P.V.; et al. Salivary gland tumors in a Brazilian population: A 20-year retrospective and multicentric study of 2292 cases. J. Craniomaxillofac. Surg. 2018, 46, 2227–2233.
  6. Gao, M.; Hao, Y.; Huang, M.X.; Ma, D.Q.; Chen, Y.; Luo, H.Y.; Gao, Y.; Cao, Z.Q.; Peng, X.; Yu, G.Y. Salivary gland tumours in a northern Chinese population: A 50-year retrospective study of 7190 cases. Int. J. Oral Maxillofac. Surg. 2017, 46, 343–349.
  7. Wang, X.D.; Meng, L.J.; Hou, T.T.; Huang, S.H. Tumours of the salivary glands in northeastern China: A retrospective study of 2508 patients. Br. J. Oral Maxillofac. Surg. 2015, 53, 132–137.
  8. Barnes, L.; Eveson, J.W.; Reichart, P.; Sidransky, D. Pathology and Genetics of Head and Neck Tumours. In WHO/IARC Classification of Tumours, 3rd ed.; WHO Press: Geneva, Switzerland, 2005; Volume 9.
  9. Sadetzki, S.; Chetrit, A.; Jarus-Hakak, A.; Cardis, E.; Deutch, Y.; Duvdevani, S.; Zultan, A.; Novikov, I.; Freedman, L.; Wolf, M. Cellular phone use and risk of benign and malignant parotid gland tumors—A nationwide case-control study. Am. J. Epidemiol. 2008, 167, 457–467.
  10. Dong, C.; Hemminki, K. Second primary neoplasms among 53 159 haematolymphoproliferative malignancy patients in Sweden, 1958–1996: A search for common mechanisms. Br. J. Cancer 2001, 85, 997–1005.
  11. Isayeva, T.; Said-Al-Naief, N.; Ren, Z.; Li, R.; Gnepp, D.; Brandwein-Gensler, M. Salivary mucoepidermoid carcinoma: Demonstration of transcriptionally active human papillomavirus 16/18. Head Neck Pathol. 2013, 7, 135–148.
  12. Shebl, F.M.; Bhatia, K.; Engels, E.A. Salivary gland and nasopharyngeal cancers in individuals with acquired immunodeficiency syndrome in United States. Int. J. Cancer 2010, 126, 2503–2508.
  13. Toper, M.H.; Sarioglu, S. Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv. Anat. Pathol. 2021, 28, 81–93.
  14. Costa, F.F. Epigenomics in cancer management. Cancer Manag. Res. 2010, 2, 255–265.
  15. Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36.
  16. Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell 2012, 150, 12–27.
  17. Gibney, E.R.; Nolan, C.M. Epigenetics and gene expression. Heredity 2010, 105, 4–13.
  18. Li, Y.; Tollefsbol, T.O. DNA methylation detection: Bisulfite genomic sequencing analysis. Methods Mol. Biol. 2011, 791, 11–21.
  19. Ramazi, S.; Allahverdi, A.; Zahiri, J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J. Biosci. 2020, 45, 135.
  20. Hanna, C.W.; Demond, H.; Kelsey, G. Epigenetic regulation in development: Is the mouse a good model for the human? Hum. Reprod. Update 2018, 24, 556–576.
  21. Pal, A. Epigenetics and DNA Methylation. In Protocols in Advanced Genomics and Allied Techniques; Springer: New York, NY, USA, 2022; pp. 245–278.
  22. Fenech, M.; El-Sohemy, A.; Cahill, L.; Ferguson, L.R.; French, T.A.; Tai, E.S.; Milner, J.; Koh, W.P.; Xie, L.; Zucker, M.; et al. Nutrigenetics and nutrigenomics: Viewpoints on the current status and applications in nutrition research and practice. J. Nutr. Nutr. 2011, 4, 69–89.
  23. Gutschenritter, T.; Machiorlatti, M.; Vesely, S.; Ahmad, B.; Razaq, W.; Razaq, M. Outcomes and Prognostic Factors of Resected Salivary Gland Malignancies: Examining a Single Institution’s 12-year Experience. Anticancer Res. 2017, 37, 5019–5025.
  24. Fonseca, F.P.; Sena Filho, M.; Altemani, A.; Speight, P.M.; Vargas, P.A. Molecular signature of salivary gland tumors: Potential use as diagnostic and prognostic marker. J. Oral Pathol. Med. 2016, 45, 101–110.
  25. Wagner, V.P.; Martins, M.D.; Guimaraes, D.M.; Vasconcelos, A.C.; Meurer, L.; Vargas, P.A.; Fonseca, F.P.; Squarize, C.H.; Castilho, R.M. Reduced chromatin acetylation of malignant salivary gland tumors correlates with enhanced proliferation. J. Oral Pathol. Med. 2017, 46, 792–797.
  26. Fonseca, F.P.; Carvalho Mde, V.; de Almeida, O.P.; Rangel, A.L.; Takizawa, M.C.; Bueno, A.G.; Vargas, P.A. Clinicopathologic analysis of 493 cases of salivary gland tumors in a Southern Brazilian population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 230–239.
  27. Nikolic, N.; Carkic, J.; Ilic Dimitrijevic, I.; Eljabo, N.; Radunovic, M.; Anicic, B.; Tanic, N.; Falk, M.; Milasin, J. P14 methylation: An epigenetic signature of salivary gland mucoepidermoid carcinoma in the Serbian population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 52–58.
  28. Wang, Z.; Ling, S.; Rettig, E.; Sobel, R.; Tan, M.; Fertig, E.J.; Considine, M.; El-Naggar, A.K.; Brait, M.; Fakhry, C.; et al. Epigenetic screening of salivary gland mucoepidermoid carcinoma identifies hypomethylation of CLIC3 as a common alteration. Oral Oncol. 2015, 51, 1120–1125.
  29. Zhang, C.Y.; Mao, L.; Li, L.; Tian, Z.; Zhou, X.J.; Zhang, Z.Y.; Li, J. Promoter methylation as a common mechanism for inactivating E-cadherin in human salivary gland adenoid cystic carcinoma. Cancer 2007, 110, 87–95.
  30. Daa, T.; Kashima, K.; Kondo, Y.; Yada, N.; Suzuki, M.; Yokoyama, S. Aberrant methylation in promoter regions of cyclin-dependent kinase inhibitor genes in adenoid cystic carcinoma of the salivary gland. Apmis 2008, 116, 21–26.
  31. Li, J.; El-Naggar, A.; Mao, L. Promoter methylation of p16INK4a, RASSF1A, and DAPK is frequent in salivary adenoid cystic carcinoma. Cancer 2005, 104, 771–776.
  32. Yousaf, A.; Sulong, S.; Abdullah, B.; Lazim, N.M. Heterogeneity of Genetic Landscapes in Salivary Gland Tumors and Their Critical Roles in Current Management. Medeni. Med. J. 2022, 37, 194–202.
  33. Durr, M.L.; Mydlarz, W.K.; Shao, C.; Zahurak, M.L.; Chuang, A.Y.; Hoque, M.O.; Westra, W.H.; Liegeois, N.J.; Califano, J.A.; Sidransky, D.; et al. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors. PLoS ONE 2010, 5, e10828.
  34. Hu, Y.H.; Zhang, C.Y.; Tian, Z.; Wang, L.Z.; Li, J. Aberrant protein expression and promoter methylation of p16 gene are correlated with malignant transformation of salivary pleomorphic adenoma. Arch. Pathol. Lab. Med. 2011, 135, 882–889.
  35. Esteller, M.; Herman, J.G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 2002, 196, 1–7.
  36. Nikolic, N.; Anicic, B.; Carkic, J.; Simonovic, J.; Toljic, B.; Tanic, N.; Tepavcevic, Z.; Vukadinovic, M.; Konstantinovic, V.S.; Milasin, J. High frequency of p16 and p14 promoter hypermethylation and marked telomere instability in salivary gland tumors. Arch. Oral Biol. 2015, 60, 1662–1666.
  37. Nishimine, M.; Nakamura, M.; Kishi, M.; Okamoto, M.; Shimada, K.; Ishida, E.; Kirita, T.; Konishi, N. Alterations of p14ARF and p16INK4a genes in salivary gland carcinomas. Oncol. Rep. 2003, 10, 555–560.
  38. Ishida, E.; Nakamura, M.; Ikuta, M.; Shimada, K.; Matsuyoshi, S.; Kirita, T.; Konishi, N. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol. 2005, 41, 614–622.
  39. Guo, X.L.; Sun, S.Z.; Wang, W.X.; Wei, F.C.; Yu, H.B.; Ma, B.L. Alterations of p16INK4a tumour suppressor gene in mucoepidermoid carcinoma of the salivary glands. Int. J. Oral Maxillofac. Surg. 2007, 36, 350–353.
  40. Weber, A.; Langhanki, L.; Schütz, A.; Wittekind, C.; Bootz, F.; Tannapfel, A. Alterations of the INK4a-ARF gene locus in pleomorphic adenoma of the parotid gland. J. Pathol. 2002, 198, 326–334.
  41. De Oliveira, S.R.; Da Silva, I.C.; Mariz, B.A.; Pereira, A.M.; De Oliveira, N.F. DNA methylation analysis of cancer-related genes in oral epithelial cells of healthy smokers. Arch. Oral Biol. 2015, 60, 825–833.
  42. Saldaña-Meyer, R.; Recillas-Targa, F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 2011, 6, 1068–1077.
  43. Daniel, M.; Peek, G.W.; Tollefsbol, T.O. Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012, 498, 135–146.
  44. Renaud, S.; Loukinov, D.; Abdullaev, Z.; Guilleret, I.; Bosman, F.T.; Lobanenkov, V.; Benhattar, J. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res. 2007, 35, 1245–1256.
  45. Roh, J.L.; Wang, X.V.; Manola, J.; Sidransky, D.; Forastiere, A.A.; Koch, W.M. Clinical correlates of promoter hypermethylation of four target genes in head and neck cancer: A cooperative group correlative study. Clin. Cancer Res. 2013, 19, 2528–2540.
  46. Virani, S.; Bellile, E.; Bradford, C.R.; Carey, T.E.; Chepeha, D.B.; Colacino, J.A.; Helman, J.I.; McHugh, J.B.; Peterson, L.A.; Sartor, M.A.; et al. NDN and CD1A are novel prognostic methylation markers in patients with head and neck squamous carcinomas. BMC Cancer 2015, 15, 825.
  47. Al-Kaabi, A.; van Bockel, L.W.; Pothen, A.J.; Willems, S.M. p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: A review. Dis. Markers 2014, 2014, 260549.
  48. Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 1999, 96, 8681–8686.
  49. Sasahira, T.; Kurihara, M.; Yamamoto, K.; Bhawal, U.K.; Kirita, T.; Kuniyasu, H. Downregulation of runt-related transcription factor 3 associated with poor prognosis of adenoid cystic and mucoepidermoid carcinomas of the salivary gland. Cancer Sci. 2011, 102, 492–497.
  50. Ling, S.; Rettig, E.M.; Tan, M.; Chang, X.; Wang, Z.; Brait, M.; Bishop, J.A.; Fertig, E.J.; Considine, M.; Wick, M.J.; et al. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening. Int. J. Oncol. 2016, 49, 225–234.
  51. Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054.
  52. Bell, A.; Bell, D.; Weber, R.S.; El-Naggar, A.K. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011, 117, 2898–2909.
  53. Phuchareon, J.; Ohta, Y.; Woo, J.M.; Eisele, D.W.; Tetsu, O. Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PLoS ONE 2009, 4, e6040.
  54. Clapham, D.E. Not so funny anymore: Pacing channels are cloned. Neuron 1998, 21, 5–7.
  55. Pape, H.C. Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 1996, 58, 299–327.
  56. Michels, G.; Brandt, M.C.; Zagidullin, N.; Khan, I.F.; Larbig, R.; van Aaken, S.; Wippermann, J.; Hoppe, U.C. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations. Cardiovasc. Res. 2008, 78, 466–475.
  57. Maruya, S.; Kurotaki, H.; Shimoyama, N.; Kaimori, M.; Shinkawa, H.; Yagihashi, S. Expression of p16 protein and hypermethylation status of its promoter gene in adenoid cystic carcinoma of the head and neck. ORL J. Otorhinolaryngol. Relat. Spec. 2003, 65, 26–32.
  58. Takata, T.; Kudo, Y.; Zhao, M.; Ogawa, I.; Miyauchi, M.; Sato, S.; Cheng, J.; Nikai, H. Reduced expression of p27(Kip1) protein in relation to salivary adenoid cystic carcinoma metastasis. Cancer 1999, 86, 928–935.
  59. Sherr, C.J.; Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9, 1149–1163.
  60. Song, S.H.; Jong, H.S.; Choi, H.H.; Kang, S.H.; Ryu, M.H.; Kim, N.K.; Kim, W.H.; Bang, Y.J. Methylation of specific CpG sites in the promoter region could significantly down-regulate p16(INK4a) expression in gastric adenocarcinoma. Int. J. Cancer 2000, 87, 236–240.
  61. Benassi, M.S.; Molendini, L.; Gamberi, G.; Magagnoli, G.; Ragazzini, P.; Gobbi, G.A.; Sangiorgi, L.; Pazzaglia, L.; Asp, J.; Brantsing, C.; et al. Involvement of INK4A gene products in the pathogenesis and development of human osteosarcoma. Cancer 2001, 92, 3062–3067.
  62. Yakushiji, T.; Uzawa, K.; Shibahara, T.; Noma, H.; Tanzawa, H. Over-expression of DNA methyltransferases and CDKN2A gene methylation status in squamous cell carcinoma of the oral cavity. Int. J. Oncol. 2003, 22, 1201–1207.
  63. Lee, J.K.; Kim, M.J.; Hong, S.P.; Hong, S.D. Inactivation patterns of p16/INK4A in oral squamous cell carcinomas. Exp. Mol. Med. 2004, 36, 165–171.
  64. Maruya, S.; Kurotaki, H.; Wada, R.; Saku, T.; Shinkawa, H.; Yagihashi, S. Promoter methylation and protein expression of the E-cadherin gene in the clinicopathologic assessment of adenoid cystic carcinoma. Mod. Pathol. 2004, 17, 637–645.
  65. Esteller, M. Epigenetic lesions causing genetic lesions in human cancer: Promoter hypermethylation of DNA repair genes. Eur. J. Cancer 2000, 36, 2294–2300.
  66. Mokarram, P.; Kumar, K.; Brim, H.; Naghibalhossaini, F.; Saberi-firoozi, M.; Nouraie, M.; Green, R.; Lee, E.; Smoot, D.T.; Ashktorab, H. Distinct high-profile methylated genes in colorectal cancer. PLoS ONE 2009, 4, e7012.
  67. Devaney, J.M.; Wang, S.; Furbert-Harris, P.; Apprey, V.; Ittmann, M.; Wang, B.D.; Olender, J.; Lee, N.H.; Kwabi-Addo, B. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 2015, 10, 319–328.
  68. Ambrosone, C.B.; Young, A.C.; Sucheston, L.E.; Wang, D.; Yan, L.; Liu, S.; Tang, L.; Hu, Q.; Freudenheim, J.L.; Shields, P.G.; et al. Genome-wide methylation patterns provide insight into differences in breast tumor biology between American women of African and European ancestry. Oncotarget 2014, 5, 237–248.
  69. Wang, Y.Q.; Yuan, Y.; Jiang, S.; Jiang, H. Promoter methylation and expression of CDH1 and susceptibility and prognosis of eyelid squamous cell carcinoma. Tumour Biol. 2016, 37, 9521–9526.
  70. Shargh, S.A.; Sakizli, M.; Khalaj, V.; Movafagh, A.; Yazdi, H.; Hagigatjou, E.; Sayad, A.; Mansouri, N.; Mortazavi-Tabatabaei, S.A.; Khorram Khorshid, H.R. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med. Oncol. 2014, 31, 250.
  71. Li, G.; Liu, Y.; Yin, H.; Zhang, X.; Mo, X.; Tang, J.; Chen, W. E-cadherin gene promoter hypermethylation may contribute to the risk of bladder cancer among Asian populations. Gene 2014, 534, 48–53.
  72. Persson, M.; Andrén, Y.; Mark, J.; Horlings, H.M.; Persson, F.; Stenman, G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA 2009, 106, 18740–18744.
  73. Li, Y.X.; Lu, Y.; Li, C.Y.; Yuan, P.; Lin, S.S. Role of CDH1 promoter methylation in colorectal carcinogenesis: A meta-analysis. DNA Cell Biol. 2014, 33, 455–462.
  74. Lombaerts, M.; van Wezel, T.; Philippo, K.; Dierssen, J.W.; Zimmerman, R.M.; Oosting, J.; van Eijk, R.; Eilers, P.H.; van de Water, B.; Cornelisse, C.J.; et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br. J. Cancer 2006, 94, 661–671.
  75. Corso, G.; Figueiredo, J.; Biffi, R.; Trentin, C.; Bonanni, B.; Feroce, I.; Serrano, D.; Cassano, E.; Annibale, B.; Melo, S.; et al. E-cadherin germline mutation carriers: Clinical management and genetic implications. Cancer Metastasis Rev. 2014, 33, 1081–1094.
  76. Liu, J.; Sun, X.; Qin, S.; Wang, H.; Du, N.; Li, Y.; Pang, Y.; Wang, C.; Xu, C.; Ren, H. CDH1 promoter methylation correlates with decreased gene expression and poor prognosis in patients with breast cancer. Oncol. Lett. 2016, 11, 2635–2643.
  77. Yan, F.; Shen, N.; Pang, J.; Molina, J.R.; Yang, P.; Liu, S. The DNA Methyltransferase DNMT1 and Tyrosine-Protein Kinase KIT Cooperatively Promote Resistance to 5-Aza-2’-deoxycytidine (Decitabine) and Midostaurin (PKC412) in Lung Cancer Cells. J. Biol. Chem. 2015, 290, 18480–18494.
  78. Sato, T.; Tanigami, A.; Yamakawa, K.; Akiyama, F.; Kasumi, F.; Sakamoto, G.; Nakamura, Y. Allelotype of breast cancer: Cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res. 1990, 50, 7184–7189.
  79. Cui, H.; Wang, L.; Gong, P.; Zhao, C.; Zhang, S.; Zhang, K.; Zhou, R.; Zhao, Z.; Fan, H. Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PLoS ONE 2015, 10, e0123926.
  80. Dong, C.; Wu, Y.; Wang, Y.; Wang, C.; Kang, T.; Rychahou, P.G.; Chi, Y.I.; Evers, B.M.; Zhou, B.P. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 2013, 32, 1351–1362.
  81. Kashibuchi, K.; Tomita, K.; Schalken, J.A.; Kume, H.; Takeuchi, T.; Kitamura, T. The prognostic value of E-cadherin, alpha-, beta- and gamma-catenin in bladder cancer patients who underwent radical cystectomy. Int. J. Urol. 2007, 14, 789–794.
  82. Nakayama, S.; Sasaki, A.; Mese, H.; Alcalde, R.E.; Tsuji, T.; Matsumura, T. The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. Int. J. Cancer 2001, 93, 667–673.
  83. Augello, C.; Gregorio, V.; Bazan, V.; Cammareri, P.; Agnese, V.; Cascio, S.; Corsale, S.; Calò, V.; Gullo, A.; Passantino, R.; et al. TP53 and p16INK4A, but not H-KI-Ras, are involved in tumorigenesis and progression of pleomorphic adenomas. J. Cell Physiol. 2006, 207, 654–659.
  84. Xia, R.; Zhou, R.; Tian, Z.; Zhang, C.; Wang, L.; Hu, Y.; Han, J.; Li, J. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma. Arch. Pathol. Lab. Med. 2013, 137, 1761–1769.
  85. Stephens, P.J.; Davies, H.R.; Mitani, Y.; Van Loo, P.; Shlien, A.; Tarpey, P.S.; Papaemmanuil, E.; Cheverton, A.; Bignell, G.R.; Butler, A.P.; et al. Whole exome sequencing of adenoid cystic carcinoma. J. Clin. Investig. 2013, 123, 2965–2968.
  86. Ho, A.S.; Kannan, K.; Roy, D.M.; Morris, L.G.; Ganly, I.; Katabi, N.; Ramaswami, D.; Walsh, L.A.; Eng, S.; Huse, J.T.; et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 2013, 45, 791–798.
  87. Pouloudi, D.; Manou, M.; Sarantis, P.; Tsoukalas, N.; Tsourouflis, G.; Dana, E.; Karamouzis, M.V.; Klijanienko, J.; Theocharis, S. Clinical Significance of Histone Deacetylase (HDAC)-1, -2, -4 and -6 Expression in Salivary Gland Tumors. Diagnostics 2021, 11, 517.
  88. Giaginis, C.; Alexandrou, P.; Delladetsima, I.; Giannopoulou, I.; Patsouris, E.; Theocharis, S. Clinical significance of histone deacetylase (HDAC)-1, HDAC-2, HDAC-4, and HDAC-6 expression in human malignant and benign thyroid lesions. Tumour Biol. 2014, 35, 61–71.
  89. Mutze, K.; Langer, R.; Becker, K.; Ott, K.; Novotny, A.; Luber, B.; Hapfelmeier, A.; Göttlicher, M.; Höfler, H.; Keller, G. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann. Surg. Oncol. 2010, 17, 3336–3343.
  90. Seo, J.; Min, S.K.; Park, H.R.; Kim, D.H.; Kwon, M.J.; Kim, L.S.; Ju, Y.S. Expression of Histone Deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in Invasive Ductal Carcinomas of the Breast. J. Breast Cancer 2014, 17, 323–331.
  91. Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692.
  92. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007, 8, 286–298.
  93. Binmadi, N.O.; Basile, J.R.; Perez, P.; Gallo, A.; Tandon, M.; Elias, W.; Jang, S.I.; Alevizos, I. miRNA expression profile of mucoepidermoid carcinoma. Oral Dis. 2018, 24, 537–543.
  94. Chen, Z.; Lin, S.; Li, J.L.; Ni, W.; Guo, R.; Lu, J.; Kaye, F.J.; Wu, L. CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells. Oncogene 2018, 37, 1885–1895.
  95. Brown, A.L.; Al-Samadi, A.; Sperandio, M.; Soares, A.B.; Teixeira, L.N.; Martinez, E.F.; Demasi, A.P.D.; Araújo, V.C.; Leivo, I.; Salo, T.; et al. MiR-455-3p, miR-150 and miR-375 are aberrantly expressed in salivary gland adenoid cystic carcinoma and polymorphous adenocarcinoma. J. Oral Pathol. Med. 2019, 48, 840–845.
  96. Lu, H.; Han, N.; Xu, W.; Zhu, Y.; Liu, L.; Liu, S.; Yang, W. Screening and bioinformatics analysis of mRNA, long non-coding RNA and circular RNA expression profiles in mucoepidermoid carcinoma of salivary gland. Biochem. Biophys. Res. Commun. 2019, 508, 66–71.
  97. Flores, B.C.; Lourenço, S.V.; Damascena, A.S.; Kowaslki, L.P.; Soares, F.A.; Coutinho-Camillo, C.M. Altered expression of apoptosis-regulating miRNAs in salivary gland tumors suggests their involvement in salivary gland tumorigenesis. Virchows Arch. 2017, 470, 291–299.
  98. Xu, W.; Liu, L.; Lu, H.; Fu, J.; Zhang, C.; Yang, W.; Shen, S. Dysregulated long non-coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice. Mol. Med. Rep. 2019, 19, 4735–4742.
  99. Hiss, S.; Eckstein, M.; Segschneider, P.; Mantsopoulos, K.; Iro, H.; Hartmann, A.; Agaimy, A.; Haller, F.; Mueller, S.K. Tumour-Infiltrating Lymphocytes (TILs) and PD-L1 Expression Correlate with Lymph Node Metastasis, High-Grade Transformation and Shorter Metastasis-Free Survival in Patients with Acinic Cell Carcinoma (AciCC) of the Salivary Glands. Cancers 2021, 13, 965.
  100. Li, L.; Wen, Z.; Kou, N.; Liu, J.; Jin, D.; Wang, L.; Wang, F.; Gao, L. LIS1 interacts with CLIP170 to promote tumor growth and metastasis via the Cdc42 signaling pathway in salivary gland adenoid cystic carcinoma. Int. J. Oncol. 2022, 61, 129.
  101. Zhao, D.; Yang, K.; Tang, X.F.; Lin, N.N.; Liu, J.Y. Expression of integrin-linked kinase in adenoid cystic carcinoma of salivary glands correlates with epithelial-mesenchymal transition markers and tumor progression. Med. Oncol. 2013, 30, 619.
Subjects: Oncology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , , , , , , , , ,
View Times: 107
Revisions: 2 times (View History)
Update Date: 16 Jun 2023