Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 5108 2023-05-04 02:18:50 |
2 format correct Meta information modification 5108 2023-05-05 02:44:12 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Luvhengo, T.E.; Bombil, I.; Mokhtari, A.; Moeng, M.S.; Demetriou, D.; Sanders, C.; Dlamini, Z. Diagnosis and Management of Follicular Carcinoma. Encyclopedia. Available online: https://encyclopedia.pub/entry/43723 (accessed on 19 August 2024).
Luvhengo TE, Bombil I, Mokhtari A, Moeng MS, Demetriou D, Sanders C, et al. Diagnosis and Management of Follicular Carcinoma. Encyclopedia. Available at: https://encyclopedia.pub/entry/43723. Accessed August 19, 2024.
Luvhengo, Thifhelimbilu Emmanuel, Ifongo Bombil, Arian Mokhtari, Maeyane Stephens Moeng, Demetra Demetriou, Claire Sanders, Zodwa Dlamini. "Diagnosis and Management of Follicular Carcinoma" Encyclopedia, https://encyclopedia.pub/entry/43723 (accessed August 19, 2024).
Luvhengo, T.E., Bombil, I., Mokhtari, A., Moeng, M.S., Demetriou, D., Sanders, C., & Dlamini, Z. (2023, May 04). Diagnosis and Management of Follicular Carcinoma. In Encyclopedia. https://encyclopedia.pub/entry/43723
Luvhengo, Thifhelimbilu Emmanuel, et al. "Diagnosis and Management of Follicular Carcinoma." Encyclopedia. Web. 04 May, 2023.
Diagnosis and Management of Follicular Carcinoma
Edit

Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid gland, accounting for up to 20% of all primary malignant tumors in iodine-replete areas. The diagnostic work-up, staging, risk stratification, management, and follow-up strategies in patients who have FTC are modeled after those of papillary thyroid carcinoma (PTC), even though FTC is more aggressive. FTC has a greater propensity for haematogenous metastasis than PTC. Furthermore, FTC is a phenotypically and genotypically heterogeneous disease. The diagnosis and identification of markers of an aggressive FTC depend on the expertise and thoroughness of pathologists during histopathological analysis. 

follicular carcinoma genomics multi-omics

1. Introduction

Primary thyroid carcinoma (TC) can originate from the follicular cells, para-follicular cells, or lymphoid tissues. Thyroid cancers constitute 1–5% of malignancies in adults [1][2]. Cancers of the thyroid of follicular cell origin are divided into well-differentiated thyroid carcinoma (WDTC), poorly differentiated and undifferentiated/anaplastic carcinoma thyroid carcinoma (ATC) [1][2][3][4][5][6][7]. The WDTCs include papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and oncocytic cell carcinoma (OC) [8][9]. Papillary carcinoma and FTC consist of several subtypes. The diagnosis of PTC and FTC together with their subtypes is based on the presence of classical nuclear features and the architecture of the tumor [10][11][12].
Over 90% of WDTCs are sporadic. The major risk factors for WDTCs include previous exposure to ionizing radiation, a persistently abnormal level of iodine, and Hashimoto’s thyroiditis [13][14][15][16][17]. Around 85–90% of thyroid cancers in an iodine-replete environment are classical and other subtypes of PTC [18][19]. The prevalence of FTC is influenced by the iodine status of that region [20][21][22][23][24]. The experience of the histopathologists also influences the rate of diagnosis, as other benign and malignant lesions of the thyroid may be mistaken for FTC [25]. Although FTC can occur in children, it is predominantly a disease of females over the age of 40 [26][27].
The majority of patients who have TC present with euthyroid goiter, and a few present due to metastasis to cervical lymph nodes or distant sites from an occult primary tumor [28][29]. Sometimes a WDTC is detected incidentally during the histological analysis of a specimen following a thyroidectomy for supposedly benign goiter [30]. Sometimes, a patient who has a localized or metastatic FTC may present with hyperthyroidism [31][32]. The diagnostic work-up of a patient who is suspected to have TC includes thyroid function testing (TFT), ultrasound, and fine needle aspiration cytology (FNAC) [33][34]. The diagnosis of PTC following FNAC is based on the existence of typical nuclear features and/or architectural changes [35]. Supplementary imaging investigations, immunohistochemistry, mutational analysis, and diagnostic thyroid lobectomy are added if FNAC is not diagnostic, which is likely in the case of FTC [36][37][38][39].
The definitive management of WDTC is either lobectomy or total thyroidectomy. Lymph node dissection, thyroid stimulating hormone (TSH) suppression, I-131 treatment, tyrosine kinase inhibitors, and external beam radiotherapy are added based on clinicopathological findings [1][8][40]. The risk level of the disease influences the choice of the management strategy for WDTC [8][41]. Well-differentiated thyroid cancers are heterogeneous tumors with divergent clinical behavior, response to treatment, and overall outcome [42][43]. Risk stratification of FTC includes the age of a patient, tumour size, evidence and extent of extra-thyroidal extension. The other factors that are important in the risk stratification of a patient who has FTC are the existence lymph node or systemic metastasis, pre-operative level of thyroglobulin (Tg) and completeness of surgical excision. The histological subtype, tumour differentiation of the tumour, immunohistochemistry, genomics, epigenomics, metabolomics and the changes in the micro-environment of the tumour also have an influence on the prognosis of WDTC and therefore guide of appropriate treatment [26][27][28][41][44][45][46][47][48][49][50][51]. Additional markers that have been found to be useful in the risk stratification of patients with TC include serum Vitamin D and the neutrophil-to-lymphocyte ratio (NLR) [52][53].
Although observation alone or lobectomy with lifelong follow-up may be appropriate for low-risk WDTC, patients whose tumors have a high risk of local recurrence or mortality should have total thyroidectomy with or without lymph node dissection, adjuvant or therapeutic I-131, aggressive TSH suppression, and intense monitoring during follow-up [1]. Although the 10-year survival of 90% of patients who are diagnosed with WDTC is over 95%, around 10% of the WDTCs are however unexpectedly aggressive and have a markedly reduced disease-free survival [2][3][8]. Patients who have been diagnosed with WDTC need a lifelong follow-up, which should be more intense in the first year following the initiation of treatment [1][54][55][56][57]. The follow-up program for patients who have WDTC includes clinical evaluation, neck ultrasound, monitoring of serum Tg, and radioisotope scanning, based on the patient’s risk level [1].
Thyroid cancer is a heterogeneous disease clinically and genotypically among patients and within itself and its metastases [58][59]. There is also high inter- and intra-observer variability during the interpretation of the results of imaging and FNAC or histopathological specimens of follicular-patterned neoplasms of the thyroid gland [60]. The current diagnostic and staging modalities used in WDTC are not able to accurately quantify the burden of the disease, and recurrence or progression of WDTC is sometimes detected late. Untreated WDTC has a propensity towards de-differentiating and becoming more aggressive as it progresses, and a previously low-risk and well-differentiated cancer may acquire new mutations, de-differentiate, and become aggressive and resistant to I-131 [8][9][61][62].
Follicular thyroid carcinoma cannot be diagnosed pre-operatively on FNAC because it can be confused with a follicular adenoma, rarely spread to lymph nodes, and has a different mutational landscape from that of PTC [9][25][47][63]. Additionally, FTC has a higher tendency, when compared with PTC and other thyroid malignancies, to present with systemic metastases from an occult primary tumor [57][64][65]. Additionally, patients who have FTC may present with hyperthyroidism [31][32][66]. The prognosis of patients with FTC is worse than that of classical PTC [56]. Table 1 contains a summary of the comparison of FTC with PTC.
Table 1. Comparison of demography and clinicopathological features of follicular and papillary carcinomas.

References

  1. Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133.
  2. Lamartina, L.; Grani, G.; Durante, C.; Filetti, S. Recent advances in managing differentiated thyroid cancer. F1000Research 2018, 7.
  3. Bolin, J. Thyroid follicular epithelial cell–derived cancer: New approaches and treatment strategies. J. Nucl. Med. Technol. 2021, 49, 199–208.
  4. Katoh, H.; Yamashita, K.; Enomoto, T.; Watanabe, M. Classification and general considerations of thyroid cancer. Ann. Clin. Pathol. 2015, 3, 1045.
  5. Pulcrano, M.; Boukheris, H.; Talbot, M.; Caillou, B.; Dupuy, C.; Virion, A.; De Vathaire, F.; Schlumberger, M. Poorly differentiated follicular thyroid carcinoma: Prognostic factors and relevance of histological classification. Thyroid 2007, 17, 639–646.
  6. Romano, C.; Martorana, F.; Pennisi, M.S.; Stella, S.; Massimino, M.; Tirrò, E.; Vitale, S.R.; Di Gregorio, S.; Puma, A.; Tomarchio, C. Opportunities and challenges of liquid biopsy in thyroid cancer. Int. J. Mol. Sci. 2021, 22, 7707.
  7. Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.-C. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin. Cancer Res. 2018, 24, 3059–3068.
  8. Ferrari, S.M.; Fallahi, P.; Politti, U.; Materazzi, G.; Baldini, E.; Ulisse, S.; Miccoli, P.; Antonelli, A. Molecular targeted therapies of aggressive thyroid cancer. Front. Endocrinol. 2015, 6, 176.
  9. Singh, A.; Ham, J.; Po, J.W.; Niles, N.; Roberts, T.; Lee, C.S. The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy. Cells 2021, 10, 1082.
  10. Kakudo, K.; Bai, Y.; Liu, Z.; Ozaki, T. Encapsulated papillary thyroid carcinoma, follicular variant: A misnomer. Pathol. Int. 2012, 62, 155–160.
  11. Podda, M.; Saba, A.; Porru, F.; Reccia, I.; Pisanu, A. Follicular thyroid carcinoma: Differences in clinical relevance between minimally invasive and widely invasive tumors. World J. Surg. Oncol. 2015, 13, 1–7.
  12. Tallini, G.; Tuttle, R.M.; Ghossein, R.A. The History of the Follicular Variant of Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 15–22.
  13. Araque, K.A.; Gubbi, S.; Klubo-Gwiezdzinska, J. Updates on the management of thyroid cancer. Horm. Metab. Res. 2020, 52, 562–577.
  14. Huszno, B.; Szybiński, Z.; Przybylik-Mazurek, E.; Stachura, J.; Trofimiuk, M.; Buziak-Bereza, M.; Gołkowski, F.; Pantoflinski, J. Influence of iodine deficiency and iodine prophylaxis on thyroid cancer histotypes and incidence in endemic goiter area. J. Endocrinol. Investig. 2003, 26, 71–76.
  15. Nicol, F.; McLaren, K.M.; Toft, A.D. Multifocal follicular carcinoma of thyroid following radiotherapy for Hodgkin’s disease. Postgrad. Med. J. 1982, 58, 180–181.
  16. Ogbera, A.O.; Kuku, S.F. Epidemiology of thyroid diseases in Africa. Indian J. Endocrinol. Metab. 2011, 15, S82.
  17. Sáez, J.M.G. Hashimoto’s Thyroiditis and thyroid cancer. J. Hum. Endocrinol. 2016, 1.
  18. Deivanathan, N.; Rathinam, S.; Gopal, K.A.; Anandan, H. Incidence of Types of Thyroid Carcinoma in an Iodine-rich Area: Thoothukudi Southern Coastal City. Int. J. Sci. Study 2016, 4, 137–139.
  19. Zhang, W.; Ruan, X.; Li, Y.; Zhi, J.; Hu, L.; Hou, X.; Shi, X.; Wang, X.; Wang, J.; Ma, W. KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/β-catenin signaling pathway. Theranostics 2022, 12, 1500.
  20. Ivanova, L.B.; Vukov, M.I.; Vassileva-Valerianova, Z.G. Thyroid Cancer Incidence in Bulgaria before and after the Introduction of Universal Salt Iodization: An Analysis of the National Cancer Registry Data. Balk. Med. J. 2020, 37, 330.
  21. Mulaudzi, T.V.; Ramdial, P.K.; Madiba, T.E.; Callaghan, R.A. Thyroid carcinoma at King Edward VIII Hospital, Durban, South Africa. East Afr. Med. J. 2001, 78, 242–245.
  22. Mitro, S.D.; Rozek, L.S.; Vatanasapt, P.; Suwanrungruang, K.; Chitapanarux, I.; Srisukho, S.; Sriplung, H.; Meza, R. Iodine deficiency and thyroid cancer trends in three regions of Thailand, 1990–2009. Cancer Epidemiol. 2016, 43, 92–99.
  23. Shin, D.Y.; Jo, Y.S. Clinical implications of follicular and Hurthle cell carcinoma in an iodine-sufficient area. Korean J. Intern. Med. 2014, 29, 305–306.
  24. Zimmermann, M.B.; Galetti, V. Iodine intake as a risk factor for thyroid cancer: A comprehensive review of animal and human studies. Thyroid Res. 2015, 8, 1–21.
  25. Widder, S.; Guggisberg, K.; Khalil, M.; Pasieka, J.L. A pathologic re-review of follicular thyroid neoplasms: The impact of changing the threshold for the diagnosis of the follicular variant of papillary thyroid carcinoma. Surgery 2008, 144, 80–85.
  26. Grigsby, P.W.; Gal-or, A.; Michalski, J.M.; Doherty, G.M. Childhood and adolescent thyroid carcinoma. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2002, 95, 724–729.
  27. Oka, K.; Shien, T.; Otsuka, F. Thyroid follicular carcinoma in a teenager: A case report. J. Gen. Fam. Med. 2018, 19, 170–172.
  28. Lin, J.-D.; Lin, S.-F.; Chen, S.-T.; Hsueh, C.; Li, C.-L.; Chao, T.-C. Long-term follow-up of papillary and follicular thyroid carcinomas with bone metastasis. PLoS ONE 2017, 12, e0173354.
  29. Parameswaran, R.; Shulin Hu, J.; Min En, N.; Tan, W.B.; Yuan, N.K. Patterns of metastasis in follicular thyroid carcinoma and the difference between early and delayed presentation. Ann. R. Coll. Surg. Engl. 2017, 99, 151–154.
  30. Bombil, I.; Bentley, A.; Kruger, D.; Luvhengo, T.E. Incidental cancer in multinodular goitre post thyroidectomy. South Afr. J. Surg. 2014, 52, 5–9.
  31. Karimifar, M. A case of functional metastatic follicular thyroid carcinoma that presented with hip fracture and hypercalcemia. Adv. Biomed. Res. 2018, 7.
  32. Liu, J.; Wang, Y.; Da, D.; Zheng, M. Hyperfunctioning thyroid carcinoma: A systematic review. Mol. Clin. Oncol. 2019, 11, 535–550.
  33. Cibas, E.S.; Ali, S.Z. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 2017, 27, 1341–1346.
  34. Ustun, B.; Chhieng, D.; Prasad, M.L.; Holt, E.; Hammers, L.; Carling, T.; Udelsman, R.; Adeniran, A.J. Follicular variant of papillary thyroid carcinoma: Accuracy of FNA diagnosis and implications for patient management. Endocr. Pathol. 2014, 25, 257–264.
  35. Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simoes, M.; Tallini, G. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr. Pathol. 2022, 33, 27–63.
  36. Armanious, H.; Adam, B.; Meunier, D.; Formenti, K.; Izevbaye, I. Digital gene expression analysis might aid in the diagnosis of thyroid cancer. Curr. Oncol. 2020, 27, 93–99.
  37. Endo, M.; Sipos, J.A.; Ringel, M.D.; Porter, K.; Nagaraja, H.N.; Phay, J.E.; Shirley, L.A.; Long, C.; Wright, C.L.; Roll, K. Prevalence of cancer and the benign call rate of afirma gene classifier in 18F-Fluorodeoxyglucose positron emission tomography positive cytologically indeterminate thyroid nodules. Cancer Med. 2021, 10, 1084–1090.
  38. Kim, K.; Jung, C.K.; Lim, D.-J.; Bae, J.S.; Kim, J.S. Clinical and pathologic features for predicting malignancy in thyroid follicular neoplasms. Gland Surg. 2021, 10, 50.
  39. Zhao, L.; Zhu, X.-Y.; Jiang, R.; Xu, M.; Wang, N.; Chen, G.G.; Liu, Z.-M. Role of GPER1, EGFR and CXCR1 in differentiating between malignant follicular thyroid carcinoma and benign follicular thyroid adenoma. Int. J. Clin. Exp. Pathol. 2015, 8, 11236.
  40. Zaydfudim, V.; Feurer, I.D.; Griffin, M.R.; Phay, J.E. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery 2008, 144, 1070–1078.
  41. Matsuura, D.; Yuan, A.; Harris, V.; Shaha, A.R.; Tuttle, R.M.; Patel, S.G.; Shah, J.P.; Ganly, I. Surgical management of low-/intermediate-risk node negative thyroid cancer: A single-institution study using propensity matching analysis to compare thyroid lobectomy and total thyroidectomy. Thyroid 2022, 32, 28–36.
  42. Schneider, D.F.; Elfenbein, D.; Lloyd, R.V.; Chen, H.; Sippel, R.S. Lymph node metastases do not impact survival in follicular variant papillary thyroid cancer. Ann. Surg. Oncol. 2015, 22, 158–163.
  43. Xu, B.; Farhat, N.; Barletta, J.A.; Hung, Y.P.; Biase, D.d.; Casadei, G.P.; Onenerk, A.M.; Tuttle, R.M.; Roman, B.R.; Katabi, N. Should subcentimeter non-invasive encapsulated, follicular variant of papillary thyroid carcinoma be included in the noninvasive follicular thyroid neoplasm with papillary-like nuclear features category? Endocrine 2018, 59, 143–150.
  44. Brecelj, E.; Grazio, S.F.; Auersperg, M.; Bračko, M. Prognostic value of E-cadherin expression in thyroid follicular carcinoma. Eur. J. Surg. Oncol. 2005, 31, 544–548.
  45. Dai, Y.; Miao, Y.; Zhu, Q.; Gao, M.; Hao, F. Expression of long non-coding RNA H19 predicts distant metastasis in minimally invasive follicular thyroid carcinoma. Bioengineered 2019, 10, 383–389.
  46. Gupta, A.; Jain, S.; Khurana, N.; Kakar, A.K. Expression of p63 and Bcl-2 in malignant thyroid tumors and their correlation with other diagnostic immunocytochemical markers. J. Clin. Diagn. Res. 2016, 10, EC04.
  47. Heriyanto, D.S.; Laiman, V.; Limantara, N.V.; Anantawikrama, W.P.; Yuliani, F.S.; Cempaka, R.; Anwar, S.L. High frequency of KRAS and EGFR mutation profiles in BRAF-negative thyroid carcinomas in Indonesia. BMC Res. Notes 2022, 15, 369.
  48. Indrasena, B.S.H. Use of thyroglobulin as a tumour marker. World J. Biol. Chem. 2017, 8, 81.
  49. McCaffrey, J.C. Aerodigestive tract invasion by well-differentiated thyroid carcinoma: Diagnosis, management, prognosis, and biology. Laryngoscope 2006, 116, 1–11.
  50. Mahmoudian-Sani, M.-R.; Jalali, A.; Jamshidi, M.; Moridi, H.; Alghasi, A.; Shojaeian, A.; Mobini, G.-R. Long non-coding RNAs in thyroid cancer: Implications for pathogenesis, diagnosis, and therapy. Oncol. Res. Treat. 2019, 42, 136–142.
  51. Wang, X.; Zheng, X.; Zhu, J.; Li, Z.; Wei, T. Impact of Extent of Surgery on Long-Term Prognosis of Follicular Thyroid Carcinoma Without Extrathyroidal Extension and Distant Metastasis. World J. Surg. 2022, 46, 104–111.
  52. Bains, A.; Mur, T.; Wallace, N.; Noordzij, J.P. The role of vitamin D as a prognostic marker in papillary thyroid cancer. Cancers 2021, 13, 3516.
  53. Riguetto, C.M.; Barreto, I.S.; Maia, F.F.R.; Assumpção, L.V.M.d.; Zantut-Wittmann, D.E. Usefulness of pre-thyroidectomy neutrophil–lymphocyte, platelet–lymphocyte, and monocyte–lymphocyte ratios for discriminating lymph node and distant metastases in differentiated thyroid cancer. Clinics 2021, 76.
  54. Fakhar, Y.; Khooei, A.; Aghaee, A.; Mohammadzadeh Kosari, H.; Wartofsky, L.; Zakavi, S.R. Bone metastasis from noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP); a case report. BMC Endocr. Disord. 2021, 21, 1–5.
  55. Nwaeze, O.; Obidike, S.; Mullen, D.; Aftab, F. Follicular variant papillary thyroid carcinoma with a twist. Int. J. Surg. Case Rep. 2015, 8, 107–110.
  56. Kammori, M.; Fukumori, T.; Sugishita, Y.; Hoshi, M.; Yamada, T. Therapeutic strategy for low-risk thyroid cancer in Kanaji Thyroid Hospital. Endocr. J. 2014, 61, 1–12.
  57. Omar, B.; Yassir, H.; Youssef, O.; Sami, R.; Larbi, A.R.; Mohamed, R.; Mohamed, M. A rare case of follicular thyroid carcinoma metastasis to the sacral region: A case report with literature review. Int. J. Surg. Case Rep. 2022, 94, 107001.
  58. Swierniak, M.; Pfeifer, A.; Stokowy, T.; Rusinek, D.; Chekan, M.; Lange, D.; Krajewska, J.; Oczko-Wojciechowska, M.; Czarniecka, A.; Jarzab, M. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol. Cell. Endocrinol. 2016, 433, 130–137.
  59. Vaisman, F.; Momesso, D.; Bulzico, D.A.; Pessoa, C.H.C.N.; Cruz, M.D.G.d.; Dias, F.; Corbo, R.; Vaisman, M.; Tuttle, R.M. Thyroid lobectomy is associated with excellent clinical outcomes in properly selected differentiated thyroid cancer patients with primary tumors greater than 1 cm. J. Thyroid Res. 2013, 2013.
  60. Pignatti, E.; Vighi, E.; Magnani, E.; Kara, E.; Roncati, L.; Maiorana, A.; Santi, D.; Madeo, B.; Cioni, K.; Carani, C. Expression and clinicopathological role of miR146a in thyroid follicular carcinoma. Endocrine 2019, 64, 575–583.
  61. Capdevila, J.; Awada, A.; Führer-Sakel, D.; Leboulleux, S.; Pauwels, P. Molecular diagnosis and targeted treatment of advanced follicular cell-derived thyroid cancer in the precision medicine era. Cancer Treat. Rev. 2022, 102380.
  62. Fallahi, P.; Ferrari, S.M.; Galdiero, M.R.; Varricchi, G.; Elia, G.; Ragusa, F.; Paparo, S.R.; Benvenga, S.; Antonelli, A. Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin. Cancer Biol. 2022, 79, 180–196.
  63. Aboelnaga, E.M.; Ahmed, R.A. Difference between papillary and follicular thyroid carcinoma outcomes: An experince from Egyptian institution. Cancer Biol. Med. 2015, 12, 53–59.
  64. Vuong, H.G.; Kondo, T.; Oishi, N.; Nakazawa, T.; Mochizuki, K.; Inoue, T.; Tahara, I.; Kasai, K.; Hirokawa, M.; Tran, T.M. Genetic alterations of differentiated thyroid carcinoma in iodine-rich and iodine-deficient countries. Cancer Med. 2016, 5, 1883–1889.
  65. Battoo, A.J.; Rasool, Z.; Sheikh, Z.A.; Haji, A.G. Follicular thyroid carcinoma presenting as solitary liver metastasis: A case report. J. Med. Case Rep. 2016, 10, 1–7.
  66. Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Shimizu, T.; Tsuchiya, H. Current management of bone metastases from differentiated thyroid cancer. Cancers 2021, 13, 4429.
  67. Sharma, P.; Kumar, N.; Gupta, R.; Jain, S. Follicular Carcinoma of the Thyroid with Hyperthyroidism. Acta Cytol. 2004, 48, 219–222.
  68. Oyer, S.L.; Fritsch, V.A.; Lentsch, E.J. Comparison of survival rates between papillary and follicular thyroid carcinomas among 36,725 patients. Ann. Otol. Rhinol. Laryngol. 2014, 123, 94–100.
  69. Chow, S.M.; Law, S.C.K.; Au, S.K.; Leung, T.W.; Chan, P.T.M.; Mendenhall, W.M.; Lau, W.H. Differentiated thyroid carcinoma: Comparison between papillary and follicular carcinoma in a single institute. J. Sci. Spec. Head Neck 2002, 24, 670–677.
  70. Nicolson, N.G.; Paulsson, J.O.; Juhlin, C.C.; Carling, T.; Korah, R. Transcription factor profiling identifies spatially heterogenous mediators of follicular thyroid cancer invasion. Endocr. Pathol. 2020, 31, 367–376.
  71. Schmidbauer, B.; Menhart, K.; Hellwig, D.; Grosse, J. Differentiated thyroid cancer—Treatment: State of the art. Int. J. Mol. Sci. 2017, 18, 1292.
  72. Puliafito, I.; Esposito, F.; Prestifilippo, A.; Marchisotta, S.; Sciacca, D.; Vitale, M.P.; Giuffrida, D. Target therapy in thyroid cancer: Current challenge in clinical use of tyrosine kinase inhibitors and management of side effects. Front. Endocrinol. 2022, 13.
  73. Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175.
  74. Rudzińska, M.; Czarnocka, B. The impact of transcription factor prospero homeobox 1 on the regulation of thyroid cancer malignancy. Int. J. Mol. Sci. 2020, 21, 3220.
  75. Liang, P.; Wang, S.; Chen, K.B.; Li, M.; Liu, Y.; Li, S.; Pan, Y.W.; Zhang, Y.X.; Jiang, Y. The diagnosis and treatment of primary thyroid lymphoma. Chin. J. Otorhinolaryngol. Head Neck Surg. 2016, 51, 313–316.
  76. Badulescu, C.I.; Piciu, D.; Apostu, D.; Badan, M.; Piciu, A. Follicular thyroid carcinoma-clinical and diagnostic findings in a 20-year follow up study. Acta Endocrinol. 2020, 16, 170.
  77. Miasaki, F.Y.; Saito, K.C.; Yamamoto, G.L.; Boguszewski, C.L.; de Carvalho, G.A.; Kimura, E.T.; Kopp, P.A. Thyroid and Breast Cancer in 2 Sisters With Monoallelic Mutations in the Ataxia Telangiectasia Mutated (ATM) Gene. J. Endocr. Soc. 2022, 6, bvac026.
  78. Nosé, V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv. Anat. Pathol. 2010, 17, 428–436.
  79. Howell, G.M.; Hodak, S.P.; Yip, L. RAS mutations in thyroid cancer. Oncology 2013, 18, 926–932.
  80. Motoi, N.; Sakamoto, A.; Yamochi, T.; Horiuchi, H.; Motoi, T.; Machinami, R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 2000, 196, 1–7.
  81. Bhuiyan, M.; Machowski, A. Nodular thyroid disease and thyroid malignancy: Experience at Polokwane Mankweng Hospital Complex, Limpopo Province, South Africa. South Afr. Med. J. 2015, 105, 570–572.
  82. Trovato, M.; Campennì, A.; Giovinazzo, S.; Siracusa, M.; Ruggeri, R.M. Hepatocyte growth factor/C-met axis in thyroid cancer: From diagnostic biomarker to therapeutic target. Biomark. Insights 2017, 12, 1177271917701126.
  83. Livolsi, V.A.; Asa, S.L. The demise of follicular carcinoma of the thyroid gland. Thyroid 1994, 4, 233–236.
  84. Cipriani, N.A.; Nagar, S.; Kaplan, S.P.; White, M.G.; Antic, T.; Sadow, P.M.; Aschebrook-Kilfoy, B.; Angelos, P.; Kaplan, E.L.; Grogan, R.H. Follicular thyroid carcinoma: How have histologic diagnoses changed in the last half-century and what are the prognostic implications? Thyroid 2015, 25, 1209–1216.
  85. De Crea, C.; Raffaelli, M.; Sessa, L.; Ronti, S.; Fadda, G.; Bellantone, C.; Lombardi, C.P. Actual incidence and clinical behaviour of follicular thyroid carcinoma: An institutional experience. Sci. World J. 2014, 2014.
  86. DeMay, R.M. Follicular Lesions of the Thyroid: W(h)ither Follicular Carcinoma? Am. J. Clin. Pathol. 2000, 114, 681–683.
  87. Lee, S.R.; Jung, C.K.; Kim, T.E.; Bae, J.S.; Jung, S.L.; Choi, Y.J.; Kang, C.S. Molecular genotyping of follicular variant of papillary thyroid carcinoma correlates with diagnostic category of fine-needle aspiration cytology: Values of RAS mutation testing. Thyroid 2013, 23, 1416–1422.
  88. Kapur, U.; Wojcik, E.M. Follicular neoplasm of the thyroid—Vanishing cytologic diagnosis? Diagn. Cytopathol. 2007, 35, 525–528.
  89. Ahmadi, S.; Stang, M.; Jiang, X.S.; Sosa, J.A. Hürthle cell carcinoma: Current perspectives. OncoTargets Ther. 2016, 6873–6884.
  90. Lau, L.W.; Ghaznavi, S.; Frolkis, A.D.; Stephenson, A.; Robertson, H.L.; Rabi, D.M.; Paschke, R. Malignancy risk of hyperfunctioning thyroid nodules compared with non-toxic nodules: Systematic review and a meta-analysis. Thyroid Res. 2021, 14, 1–16.
  91. Saito, F.; Uruno, T.; Shibuya, H.; Kitagawa, W.; Nagahama, M.; Sugino, K.; Ito, K. Prognosis After Brain Metastasis from Differentiated Thyroid Carcinoma. World J. Surg. 2016, 40, 574–581.
  92. Sugino, K.; Kameyama, K.; Nagahama, M.; Kitagawa, W.; Shibuya, H.; Ohkuwa, K.; Uruno, T.; Akaishi, J.; Suzuki, A.; Masaki, C. Follicular thyroid carcinoma with distant metastasis: Outcome and prognostic factor. Endocr. J. 2014, 61, 273–279.
  93. Tang, J.; Kong, D.; Cui, Q.; Wang, K.; Zhang, D.; Liao, X.; Gong, Y.; Wu, G. Racial disparities of differentiated thyroid carcinoma: Clinical behavior, treatments, and long-term outcomes. World J. Surg. Oncol. 2018, 16, 1–9.
  94. Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Updates on WHO classification, clinicopathological features and staging. Histol Histopathol 2021, 36, 239–248.
  95. Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark Jr, T.J.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer: American thyroid association anaplastic thyroid cancer guidelines task force. Thyroid 2021, 31, 337–386.
  96. Feldkamp, J. The role of genetic alterations in thyroid carcinoma. Front. Endocrinol. 2022, 13.
  97. Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.H.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066.
  98. Penna, G.C.; Vaisman, F.; Vaisman, M.; Sobrinho-Simões, M.; Soares, P. Molecular markers involved in tumorigenesis of thyroid carcinoma: Focus on aggressive histotypes. Cytogenet. Genome Res. 2016, 150, 194–207.
  99. Kostoglou-Athanassiou, I.; Athanassiou, P.; Vecchini, G.; Gogou, L.; Kaldrymides, P. Mixed medullary-follicular thyroid carcinoma. Horm. Res. Paediatr. 2004, 61, 300–304.
  100. Tohidi, M.; Pourbehi, G.; Bahmanyar, M.; Eghbali, S.S.; Kalantar Hormozi, M.; Nabipour, I. Mixed medullary-follicular carcinoma of the thyroid. Case Rep. Endocrinol. 2013, 2013.
  101. Grani, G.; Lamartina, L.; Durante, C.; Filetti, S.; Cooper, D.S. Follicular thyroid cancer and Hürthle cell carcinoma: Challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol. 2018, 6, 500–514.
  102. Nabhan, F.; Ringel, M.D. Thyroid nodules and cancer management guidelines: Comparisons and controversies. Endocr. Relat. Cancer 2017, 24, R13.
  103. Ashamallah, G.A.; El-Adalany, M.A. Risk for malignancy of thyroid nodules: Comparative study between TIRADS and US based classification system. Egypt. J. Radiol. Nucl. Med. 2016, 47, 1373–1384.
  104. Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. Radiology 2011, 260, 892–899.
  105. Kuo, T.-C.; Wu, M.-H.; Chen, K.-Y.; Hsieh, M.-S.; Chen, A.; Chen, C.-N. Ultrasonographic features for differentiating follicular thyroid carcinoma and follicular adenoma. Asian J. Surg. 2020, 43, 339–346.
  106. Fernández Sánchez, J. TI-RADS classification of thyroid nodules based on a score modified regarding the ultrasound criteria for malignancy. Rev. Argent. De Radiol. 2014, 78, 138–148.
  107. Li, M.; Wei, L.; Li, F.; Kan, Y.; Liang, X.; Zhang, H.; Liu, J. High Risk Thyroid Nodule Discrimination and Management by Modified TI-RADS. Cancer Manag. Res. 2021, 225–234.
  108. Mistry, R.; Hillyar, C.R.; Nibber, A.; Sooriyamoorthy, T.; Kumar, N.; Hillyar, C. Ultrasound classification of thyroid nodules: A systematic review. Cureus J. Med. Sci. 2020, 12.
  109. Qiao, J.; Li, C.; Zhang, Y.; Wang, S.; Gao, S. HBME-1 expression in differentiated thyroid carcinoma and its correlation with the ultrasonic manifestation of thyroid. Oncol. Lett. 2017, 14, 6505–6510.
  110. Spinelli, C.; Rallo, L.; Morganti, R.; Mazzotti, V.; Inserra, A.; Cecchetto, G.; Massimino, M.; Collini, P.; Strambi, S. Surgical management of follicular thyroid carcinoma in children and adolescents: A study of 30 cases. J. Pediatr. Surg. 2019, 54, 521–526.
  111. Cibas, E.S.; Ali, S.Z. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009, 19, 1159–1165.
  112. Misiakos, E.P.; Margari, N.; Meristoudis, C.; Machairas, N.; Schizas, D.; Petropoulos, K.; Spathis, A.; Karakitsos, P.; Machairas, A. Cytopathologic diagnosis of fine needle aspiration biopsies of thyroid nodules. World J. Clin. Cases 2016, 4, 38.
  113. Elsherbini, N.; Kim, D.H.; Payne, R.J.; Hudson, T.; Forest, V.-I.; Hier, M.P.; Payne, A.E.; Pusztaszeri, M.P. EIF1AX mutation in thyroid tumors: A retrospective analysis of cytology, histopathology and co-mutation profiles. J. Otolaryngol. Head Neck Surg. 2022, 51, 1–9.
  114. Dom, G.; Frank, S.; Floor, S.; Kehagias, P.; Libert, F.; Hoang, C.; Andry, G.; Spinette, A.; Craciun, L.; de Saint Aubin, N. Thyroid follicular adenomas and carcinomas: Molecular profiling provides evidence for a continuous evolution. Oncotarget 2018, 9, 10343.
  115. Sobrinho-Simoes, M.; Eloy, C.; Magalhaes, J.; Lobo, C.; Amaro, T. Follicular thyroid carcinoma. Mod. Pathol. 2011, 24, S10–S18.
  116. Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883.
  117. McLeod, D.S.; Jonklaas, J.; Brierley, J.D.; Ain, K.B.; Cooper, D.S.; Fein, H.G.; Haugen, B.R.; Ladenson, P.W.; Magner, J.; Ross, D.S.; et al. Reassessing the NTCTCS Staging Systems for Differentiated Thyroid Cancer, Including Age at Diagnosis. Thyroid 2015, 25, 1097–1105.
  118. Glikson, E.; Alon, E.; Bedrin, L.; Talmi, Y.P. Prognostic Factors in Differentiated Thyroid Cancer Revisited. Isr. Med. Assoc. J. 2017, 19, 114–118.
  119. Jung, C.K.; Bychkov, A.; Kakudo, K. Update from the 2022 world health organization classification of thyroid tumors: A standardized diagnostic approach. Endocrinol. Metab. 2022, 37, 703–718.
  120. Papaleontiou, M.; Haymart, M.R. New insights in risk stratification of differentiated thyroid cancer. Curr. Opin. Oncol. 2014, 26, 1.
  121. Shaha, A.R.; Tuttle, R.M. Thyroid cancer staging and genomics. Ann. Transl. Med. 2019, 7.
  122. Vaisman, F.; Corbo, R.; Vaisman, M. Thyroid carcinoma in children and adolescents—Systematic review of the literature. J. Thyroid Res. 2011, 2011.
  123. Naoum, G.E.; Morkos, M.; Kim, B.; Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 2018, 17, 1–15.
  124. Teo, K.W.; Yuan, N.K.; Tan, W.B.; Parameswaran, R. Comparison of prognostic scoring systems in follicular thyroid cancer. Ann. R. Coll. Surg. Engl. 2017, 99, 479–484.
  125. Nabhan, F.; Dedhia, P.H.; Ringel, M.D. Thyroid cancer, recent advances in diagnosis and therapy. Int. J. Cancer 2021, 149, 984–992.
  126. Lee, S.L. Complications of radioactive iodine treatment of thyroid carcinoma. J. Natl. Compr. Cancer Netw. 2010, 8, 1277–1287.
  127. van Velsen, E.F.S.; Stegenga, M.T.; van Kemenade, F.J.; Kam, B.L.R.; van Ginhoven, T.M.; Visser, W.E.; Peeters, R.P. Comparing the prognostic value of the eighth edition of the American Joint Committee on cancer/tumor node metastasis staging system between papillary and follicular thyroid cancer. Thyroid 2018, 28, 976–981.
  128. Megwalu, U.C.; Green, R.W. Total Thyroidectomy Versus Lobectomy for the Treatment of Follicular Thyroid Microcarcinoma. Anticancer Res 2016, 36, 2899–2902.
  129. Coelho, S.M.; Vaisman, F.; Buescu, A.; Mello, R.C.R.; Carvalho, D.P.; Vaisman, M. Follow-up of patients treated with retinoic acid for the control of radioiodine non-responsive advanced thyroid carcinoma. Braz. J. Med. Biol. Res. 2011, 44, 73–77.
  130. Lorusso, L.; Cappagli, V.; Valerio, L.; Giani, C.; Viola, D.; Puleo, L.; Gambale, C.; Minaldi, E.; Campopiano, M.C.; Matrone, A. Thyroid cancers: From surgery to current and future systemic therapies through their molecular identities. Int. J. Mol. Sci. 2021, 22, 3117.
  131. Poma, A.M.; Giannini, R.; Piaggi, P.; Ugolini, C.; Materazzi, G.; Miccoli, P.; Vitti, P.; Basolo, F. A six-gene panel to label follicular adenoma, low-and high-risk follicular thyroid carcinoma. Endocr. Connect. 2018, 7, 124.
  132. Tong, G.-X.; Mody, K.; Wang, Z.; Hamele-Bena, D.; Nikiforova, M.N.; Nikiforov, Y.E. Mutations of TSHR and TP53 genes in an aggressive clear cell follicular carcinoma of the thyroid. Endocr. Pathol. 2015, 26, 315–319.
  133. Iizuka, Y.; Katagiri, T.; Ogura, K.; Inoue, M.; Nakamura, K.; Mizowaki, T. Comparison of thyroid hormone withdrawal and recombinant human thyroid-stimulating hormone administration for adjuvant therapy in patients with intermediate-to high-risk differentiated thyroid cancer. Ann. Nucl. Med. 2020, 34, 736–741.
  134. Ciarallo, A.; Rivera, J. Radioactive iodine therapy in differentiated thyroid cancer: 2020 update. Am. J. Roentgenol. 2020, 215, 285–291.
  135. Silaghi, H.; Lozovanu, V.; Georgescu, C.E.; Pop, C.; Nasui, B.A.; Cătoi, A.F.; Silaghi, C.A. State of the art in the current management and future directions of targeted therapy for differentiated thyroid cancer. Int. J. Mol. Sci. 2022, 23, 3470.
  136. Corrêa, N.L.; de Sá, L.V.; de Mello, R.C.R. Estimation of second primary cancer risk after treatment with radioactive iodine for differentiated thyroid carcinoma. Thyroid 2017, 27, 261–270.
  137. Fard-Esfahani, A.; Emami-Ardekani, A.; Fallahi, B.; Fard-Esfahani, P.; Beiki, D.; Hassanzadeh-Rad, A.; Eftekhari, M. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl. Med. Commun. 2014, 35, 808–817.
  138. Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarzab, M.; Krajewska, J.; Czarniecka, A.; Jarzab, B. Heterogeneity of thyroid cancer. Pathobiology 2018, 85, 117–129.
  139. Masui, T.; Uemura, H.; Ota, I.; Kimura, T.; Nishikawa, D.; Yamanaka, T.; Yane, K.; Kitahara, T. A study of 17 cases for the identification of prognostic factors for anaplastic thyroid carcinoma. Mol. Clin. Oncol. 2021, 14, 1.
  140. Saji, M.; Ringel, M.D. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol. Cell. Endocrinol. 2010, 321, 20–28.
  141. Zampella, E.; Klain, M.; Pace, L.; Cuocolo, A. PET/CT in the management of differentiated thyroid cancer. Diagn. Interv. Imaging 2021, 102, 515–523.
  142. Batrinos, M.L. The problem of exogenous subclinical hyperthyroidism. Horm. Athens 2006, 5, 119.
  143. Yavuz, D.G.; Yazan, C.D.; Hekimsoy, Z.; Aydin, K.; Gokkaya, N.; Ersoy, C.; Akalın, A.; Topaloglu, O.; Aydogan, B.I.; Dilekci, E.N.A. Assesment of attainment of recommended TSH levels and levothyroxine compliance in differentiated thyroid cancer patients. Clin. Endocrinol. 2022, 97, 833–840.
  144. Bartalena, L.; Pinchera, A. Effects of thyroxine excess on peripheral organs. Acta Med. Austriaca 1994, 21, 60–65.
  145. Yang, X.; Guo, N.; Gao, X.; Liang, J.; Fan, X.; Zhao, Y. Meta-analysis of TSH suppression therapy and the risk of cardiovascular events after thyroid cancer surgery. Front. Endocrinol. 2022, 13.
  146. Miccoli, P.; Materazzi, G.; Rossi, L. Levothyroxine therapy in thyrodectomized patients. Front. Endocrinol. 2021, 11, 626268.
  147. Rajan, N.; Khanal, T.; Ringel, M.D. Progression and dormancy in metastatic thyroid cancer: Concepts and clinical implications. Endocrine 2020, 70, 24–35.
  148. Brauckhoff, M. Classification of aerodigestive tract invasion from thyroid cancer. Langenbeck’s Arch. Surg. 2014, 399, 209–216.
  149. Wu, H.-S.; Young, M.T.; Ituarte, P.H.G.; D’Avanzo, A.; Duh, Q.-Y.; Greenspan, F.S.; Loh, K.C.; Clark, O.H. Death from thyroid cancer of follicular cell origin. J. Am. Coll. Surg. 2000, 191, 600–606.
  150. Allen, M.; Spillinger, A.; Arianpour, K.; Johnson, J.; Johnson, A.P.; Folbe, A.J.; Hotaling, J.; Svider, P.F. Tracheal Resection in the Management of Thyroid Cancer: An Evidence-Based Approach. Laryngoscope 2021, 131, 932–946.
  151. Chen, W.-C.; Chou, C.-K.; Chang, Y.-H.; Chiang, P.-L.; Lim, L.-S.; Chi, S.-Y.; Luo, S.-D.; Lin, W.-C. Efficacy of radiofrequency ablation for metastatic papillary thyroid cancer with and without initial biochemical complete status. Front. Endocrinol. 2022, 13.
  152. Ohkuwa, K.; Sugino, K.; Nagahama, M.; Kitagawa, W.; Matsuzu, K.; Suzuki, A.; Tomoda, C.; Hames, K.; Akaishi, J.; Masaki, C. Risk stratification in differentiated thyroid cancer with RAI-avid lung metastases. Endocr. Connect. 2021, 10, 825.
  153. Papanikolaou, V.; Kyrodimos, E.; Mastronikolis, N.; Asimakopoulos, A.D.; Papanastasiou, G.; Tsiambas, E.; Spyropoulou, D.; Katsinis, S.; Manoli, A.; Papouliakos, S. Anti-EGFR/BRAF-Tyrosine Kinase Inhibitors in Thyroid Carcinoma. Cancer Diagn. Progn. 2023, 3, 151.
  154. Broecker-Preuss, M.; Müller, S.; Britten, M.; Worm, K.; Schmid, K.W.; Mann, K.; Fuhrer, D. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. BMC Cancer 2015, 15, 1–13.
  155. Kiyota, N.; Robinson, B.; Shah, M.; Hoff, A.O.; Taylor, M.H.; Li, D.; Dutcus, C.E.; Lee, E.K.; Kim, S.-B.; Tahara, M. Defining radioiodine-refractory differentiated thyroid cancer: Efficacy and safety of lenvatinib by radioiodine-refractory criteria in the SELECT trial. Thyroid 2017, 27, 1135–1141.
  156. Hong, Y.-W.; Lin, J.-D.; Yu, M.-C.; Hsu, C.-C.; Lin, Y.-S. Outcomes and prognostic factors in thyroid cancer patients with cranial metastases: A retrospective cohort study of 4,683 patients. Int. J. Surg. 2018, 55, 182–187.
  157. Slutzky-Shraga, I.; Gorshtein, A.; Popovitzer, A.; Robenshtok, E.; Tsvetov, G.; Akirov, A.; Hirsch, D.; Benbassat, C. Clinical characteristics and disease outcome of patients with non-medullary thyroid cancer and brain metastases. Oncol. Lett. 2018, 15, 672–676.
  158. Choi, J.; Kim, J.W.; Keum, Y.S.; Lee, I.J. The largest known survival analysis of patients with brain metastasis from thyroid cancer based on prognostic groups. PLoS ONE 2016, 11, e0154739.
  159. Wong, K.; Di Cristofano, F.; Ranieri, M.; De Martino, D.; Di Cristofano, A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr. Relat. Cancer 2019, 26, 425.
  160. Thakur, S.; Daley, B.; Millo, C.; Cochran, C.; Jacobson, O.; Lu, H.; Wang, Z.; Kiesewetter, D.; Chen, X.; Vasko, V. 177Lu-DOTA-EB-TATE, a Radiolabeled Analogue of Somatostatin Receptor Type 2, for the Imaging and Treatment of Thyroid CancerRadiolabeled Somatostatin Analogues and Thyroid Cancer. Clin. Cancer Res. 2021, 27, 1399–1409.
  161. Panda, S.K.; Patro, B.; Samantaroy, M.R.; Mishra, J.; Mohapatra, K.C.; Meher, R.K. Unusual presentation of follicular carcinoma thyroid with special emphasis on their management. Int. J. Surg. Case Rep. 2014, 5, 408–411.
  162. Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, N.N.; Sponziello, M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. 2020, 11, 102.
More
Information
Subjects: Oncology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 384
Revisions: 2 times (View History)
Update Date: 05 May 2023
1000/1000
Video Production Service