1000/1000
Hot
Most Recent
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens.
Several natural sources like plants [13], animals [21], microorganisms [22], bacteriocins [23], and even bacteriophages [24] are being exploited for the identification of bioactive leads against the growth and biofilm formation of foodborne pathogens, which consequently ended up with an overabundance of compounds [22][25]. Phytocompounds are one of the bioactive secondary metabolites that might be used as natural food preservatives. Herbal and plant medicines continue to garner interest as potential therapeutics.
Essential oils are highly concentrated, volatile, hydrophobic chemicals present in a wide variety of plants. The hydroxyl groups of essential oil components, such as those in thymol, carvacrol, and eugenol, react with the phospholipid bilayer of microorganisms resulting in leakage of ions, nucleic acids, and ATP and water imbalance, leading to cell death [25]. The said compounds at sub-MIC were reported to target the biofilm formation of bacterial pathogens in a concentration-dependent manner.
Furthermore, the bioactives from thyme and rosemary plants reduce the biofilm growth of L. monocytogenes and garlic extract can prevent quorum sensing (QS) signaling in multidrug-resistant bacterial pathogens [25][26]. In addition, flavones under the flavonoid class form a complex with the components of the bacterial cell wall and impede cell adherence and proliferation. In this regard, the genes Staphylococcus accessory regulator (sarA) and intercellular adhesins (ica) are both downregulated by baicalein to suppress the virulence regulation of S. aureus [27].
Glycolipid is a biosurfactant with potential anticancer and antibacterial effects and currently has a wide variety of therapeutic uses [28] including in the pharmaceutical, food, and petroleum sectors. Sophorolipid is one of the glycolipids produced by the yeast Starmerella bombicola that has antibacterial and antibiofilm properties against foodborne pathogens such as C. jejuni, E. coli, Listeria spp., and Salmonella spp. [29][30][31].
Nanotechnology is a promising technology that has the ability to convert an individual particle to one billionth of its original size. The converted particles are nano-sized (1–100 nm), have a large surface area and mass ratio, and are highly reactive, making them completely different from the exact composition of the bulk material [37]. The converted nanoparticles have many advantages, including an increased impact against the target pathogenic microorganisms with multiple functional sites. The exact antibacterial mechanism of nanoparticles has not been entirely elucidated. Many studies have suggested possible mechanisms of action. The absorption of nanoparticles into the cell membrane and the subsequent disintegration are the initial steps involved in the antibacterial mechanism of nanoparticles [38]. Following absorption and disintegration, the cell-penetrating nanoparticles target bacterial growth through intracellular content leakage, generation of reactive oxygen species, impairment of the electron transport system, inactivation of efflux pumps, and most importantly, interference with the enzymatic and metabolic activities of the cell [38].