Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 4307 2023-01-09 17:41:03 |
2 format correct Meta information modification 4307 2023-01-12 03:28:13 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Mukelabai, M.D.;  Wijayantha, K.G.U.;  Blanchard, R.E. Hydrogen for Cooking. Encyclopedia. Available online: https://encyclopedia.pub/entry/39926 (accessed on 27 April 2024).
Mukelabai MD,  Wijayantha KGU,  Blanchard RE. Hydrogen for Cooking. Encyclopedia. Available at: https://encyclopedia.pub/entry/39926. Accessed April 27, 2024.
Mukelabai, Mulako D., K. G. U. Wijayantha, Richard E. Blanchard. "Hydrogen for Cooking" Encyclopedia, https://encyclopedia.pub/entry/39926 (accessed April 27, 2024).
Mukelabai, M.D.,  Wijayantha, K.G.U., & Blanchard, R.E. (2023, January 09). Hydrogen for Cooking. In Encyclopedia. https://encyclopedia.pub/entry/39926
Mukelabai, Mulako D., et al. "Hydrogen for Cooking." Encyclopedia. Web. 09 January, 2023.
Hydrogen for Cooking
Edit

About 3 billion people use conventional carbon-based fuels such as wood, charcoal, and animal dung for their daily cooking needs. Cooking with biomass causes deforestation and habitat loss, emissions of greenhouse gases, and smoke pollution that affects people’s health and well-being. Hydrogen can play a role in enabling clean and safe cooking by reducing household air pollution and reducing greenhouse gas emissions.

hydrogen cooker clean cooking decarbonization modelling and simulation techno-economic analysis hydrogen economy developing countries

1. Introduction

Cooking is an essential activity that plays an integral role in facilitating microbiological food safety [1][2][3] by killing active bacteria such as Salmonella and E. coli. However, cooking is an energy-intensive process on a domestic scale, and this compels about 2.8 billion people to use polluting fuels such as charcoal, wood, cow dung, and crop residues. Access to clean and affordable energy is a basic human need and is emphasized in the United Nations Sustainable Development Goal (SDG) 7 [4]. Moreover, the United Nations SDGs are highly interlinked, and clean cooking has a pivotal role in meeting them. Clean cooking can play a part in meeting SDGs 3, 5, and 13 by promoting good health and well-being, combating gender inequality, and mitigating greenhouse gases. For example, the role of a kitchen in promoting gender equality has been overlooked in developing countries—which is one of the reasons why over 300 million people in developing countries still use wood fuels for cooking [5][6][7][8]. The kitchens (which are predominantly seen as women’s responsibilities in the global south) are usually left out of the decarbonisation picture. The pollution from wood fuels affects the health of the users such as premature death through indoor pollution—which is severely experienced by women and children [9][10]. Women’s needs are usually ignored during policy formulation resulting in a lack of appreciation of these policies by women [6].
Developing countries do not only depend on traditional biomass as the primary energy source for cooking but also to meet daily energy requirements such as heating. Pachauri et al. [11] defined clean cooking as cooking with liquid petroleum gas, electricity, and piped fossil fuel gas which results in little or no household emissions. However, this implies that cooking with electricity from coal or oil is also clean cooking. Thus ‘household’ should be removed from the definition. Over 80% of the global population without access to clean cooking is located in Africa and Asia [12]. Combusting biomass fuels to satisfy household energy requirements contributes to global warming, promotes inequality, worsens energy poverty, threatens the health of people, increases indoor and outside air pollution, and reduces the life span [13][14][15][16]. Moreover, an extended recession after the COVID-19 pandemic could increase the population without access to clean cooking by 470 million in 2030, with adverse effects in Sub-Saharan Africa and Asia [11].
These challenges highlight the crucial role that hydrogen can play in enabling clean cooking for all. Hydrogen is the most abundant element in the universe, and it exists in compounds such as water (hydrogen and oxygen) and fossil fuels (hydrogen and carbon) [17]. However, the current global hydrogen production capacity is about 120 million tons [17]. About 80% of this capacity is through steam methane reforming and coal gasification without carbon capture [18]. This production capacity represents about 65% pure hydrogen, and about 33% is a mixture with other gases [17]. This hydrogen is a feedstock in the petrochemical industries and crude oil refineries, ammonia synthesis using the Haber Bosch process primarily for fertilizer production, and methanol production for various products such as plastics [17]. This carbonized hydrogen production implies that hydrogen production should be decarbonized and scaled rapidly to meet the expected growing demand across the various sectors and new sectors/markets, such as the cooking sector.

References

  1. Akhtar, S.; Sarker, M.R.; Hossain, A. Microbiological food safety: A dilemma of developing societies. Crit. Rev. Microbiol. 2014, 40, 348–359.
  2. Dudeja, P.; Singh, A. Safe cooking practices and food safety in home kitchen and eating establishment. In Food Safety in the 21st Century; Gupta, R.K., Dudeja, P., Minhas, A.S., Eds.; Elsevier: London, UK, 2017; pp. 373–385. ISBN 9780128018460.
  3. Fung, F.; Wang, H.S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95.
  4. United Nations. Do You Know All 17 SDGs? 2022. Available online: https://sdgs.un.org/goals (accessed on 27 May 2022).
  5. Vyas, S.; Gupta, A.; Khalid, N. Gender and LPG use after government intervention in rural north India. World Dev. 2021, 148, 105682.
  6. Francisco Chicombo, A.F.; Musango, J.K. Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique. Renew. Sustain. Energy Rev. 2022, 157, 112029.
  7. Winther, T.; Ulsrud, K.; Saini, A. Solar powered electricity access: Implications for women’s empowerment in rural Kenya. Energy Res. Soc. Sci. 2018, 44, 61–74.
  8. Njenga, M.; Gitau, J.K.; Mendum, R. Women’s work is never done: Lifting the gendered burden of firewood collection and household energy use in Kenya. Energy Res. Soc. Sci. 2021, 77, 102071.
  9. World LP Gas Association. Cooking With Gas: Why Women in Developing Countries Want LPG and How They Can Get it; World LP Gas Association: Dublin, Republic of Ireland, 2014.
  10. IEA. Africa Energy Outlook 2019; IEA: Paris, France, 2019.
  11. Pachauri, S.; Poblete-Cazenave, M.; Aktas, A.; Gidden, M.J. Access to clean cooking services in energy and emission scenarios after COVID-19. Nat. Energy 2021, 6, 1067–1076.
  12. Sustainable Energy for All Overall Progress. 2022. Available online: https://www.seforall.org/data-stories/seforall-analysis-of-sdg7-progress#:~:text=Forelectricity%2Cthehigh-impact,Uganda%2CUnitedRepublicofTanzania (accessed on 26 November 2022).
  13. To, L.S.; Bruce, A.; Munro, P.; Santagata, E.; MacGill, I.; Rawali, M.; Raturi, A. A research and innovation agenda for energy resilience in Pacific Island Countries and Territories. Nat. Energy 2021, 6, 1098–1103.
  14. Broto, V.C.; Stevens, L.; Ackom, E.; Tomei, J.; Parikh, P.; Bisaga, I.; To, L.S.; Kirshner, J.; Mulugetta, Y. A research agenda for a people-centred approach to energy access in the urbanizing global south. Nat. Energy 2017, 2, 776–779.
  15. Rao, N.D.; Min, J.; Mastrucci, A. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 2019, 4, 1025–1032.
  16. Sovacool, B.K.; Heffron, R.J.; McCauley, D.; Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nat. Energy 2016, 1, 16024.
  17. IRENA. Geopolitics of the Energy Transformation: The Hydrogen Factor; IRENA: Abu Dhabi, United Arab Emirates, 2022.
  18. IEA. Hydrogen; IEA: Paris, France, 2021.
  19. Li, Q.; Jiang, J.; Wang, S.; Rumchev, K.; Mead-Hunter, R.; Morawska, L.; Hao, J. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci. Total Environ. 2017, 576, 347–361.
  20. Wu, D.; Zheng, H.; Li, Q.; Jin, L.; Lyu, R.; Ding, X.; Huo, Y.; Zhao, B.; Jiang, J.; Chen, J.; et al. Toxic potency-adjusted control of air pollution for solid fuel combustion. Nat. Energy 2022, 7, 194–202.
  21. Tian, Z.; Tian, Y.; Shen, L.; Shao, S. The health effect of household cooking fuel choice in China: An urban-rural gap perspective. Technol. Forecast. Soc. Change 2021, 173, 121083.
  22. Trubetskaya, A.; Lin, C.; Ovadnevaite, J.; Ceburnis, D.; O’Dowd, C.; Leahy, J.J.; Monaghan, R.F.D.; Johnson, R.; Layden, P.; Smith, W. Study of Emissions from Domestic Solid-Fuel Stove Combustion in Ireland. Energy and Fuels 2021, 35, 4966–4978.
  23. Sinha, A.; Islam, M.M.; Grieshop, A. Influence of Stove, Fuel, and Oxidation Flow Reactor Conditions on Aging of Laboratory-Generated Cookstove Emissions. ACS Earth Sp. Chem. 2021, 5, 1575–1590.
  24. Tao, S.; Ru, M.Y.; Du, W.; Zhu, X.; Zhong, Q.R.; Li, B.G.; Shen, G.F.; Pan, X.L.; Meng, W.J.; Chen, Y.L.; et al. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat. Energy 2018, 3, 567–573.
  25. Wu, S. The health impact of household cooking fuel choice on women: Evidence from China. Sustain. 2021, 13, 12080.
  26. Ali, M.U.; Yu, Y.; Yousaf, B.; Munir, M.A.M.; Ullah, S.; Zheng, C.; Kuang, X.; Wong, M.H. Health impacts of indoor air pollution from household solid fuel on children and women. J. Hazard. Mater. 2021, 416, 126127.
  27. Zhang, Y.; Meliefste, K.; Hu, W.; Li, J.; Xu, J.; Ning, B.; Yang, K.; Chen, Y.; Liu, D.; Wong, J.; et al. Household air pollution from, and fuel efficiency of, different coal types following local cooking practices in Xuanwei, China. Environ. Pollut. 2021, 290, 117949.
  28. Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Portengen, L.; Qing, L.; Vermeulen, R. Polycyclic aromatic hydrocarbon exposure in household air pollution from solid fuel combustion among the female population of Xuanwei and Fuyuan counties, China. Environ. Sci. Technol. 2014, 48, 14632–14641.
  29. Bachwenkizi, J.; Liu, C.; Meng, X.; Zhang, L.; Wang, W.; van Donkelaar, A.; Martin, R.V.; Hammer, M.S.; Chen, R.; Kan, H. Fine particulate matter constituents and infant mortality in Africa: A multicountry study. Environ. Int. 2021, 156, 106739.
  30. Hu, W.; Downward, G.S.; Reiss, B.; Xu, J.; Bassig, B.A.; Hosgood, H.D.; Zhang, L.; Seow, W.J.; Wu, G.; Chapman, R.S.; et al. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer. Environ. Sci. Technol. 2014, 48, 8456–8464.
  31. Tian, L.; Lan, Q.; Yang, D.; He, X.; Yu, I.T.S.; Hammond, S.K. Effect of chimneys on indoor air concentrations of PM10 and benzopyrene in Xuan Wei, China. Atmos. Environ. 2009, 43, 3352–3355.
  32. Memon, S.A.; Jaiswal, M.S.; Jain, Y.; Acharya, V.; Upadhyay, D.S. A comprehensive review and a systematic approach to enhance the performance of improved cookstove (ICS). J. Therm. Anal. Calorim. 2020, 141, 2253–2263.
  33. Li, H.; Mou, H.; Zhao, N.; Chen, D.; Zhou, Y.; Dong, R. Impact of fuel size on combustion performance and gaseous pollutant emissions from solid fuel in a domestic cross-draft gasifier stove. Int. J. Environ. Anal. Chem. 2021, 1–12.
  34. Scharler, R.; Archan, G.; Rakos, C.; von Berg, L.; Lello, D.; Hochenauer, C.; Anca-Couce, A. Emission minimization of a top-lit updraft gasifier cookstove based on experiments and detailed CFD analyses. Energy Convers. Manag. 2021, 247, 114755.
  35. Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy 2009, 33, 294–305.
  36. Kshirsagar, M.P.; Kalamkar, V.R. Hybrid draft direct-combustion with secondary air jets in cross-flow for reducing CO and PM2.5 emissions in biomass cookstoves. Sustain. Energy Technol. Assessments 2022, 51, 101913.
  37. Lask, K.; Booker, K.; Gadgil, A. Lessons learned from a comparison study of charcoal stoves for Haiti. Sustain. Energy Technol. Assessments 2017, 22, 188–193.
  38. Sagouong, J.M.; Tchuen, G. A microcontroller and performance testing of three biomass cookstoves commonly used in Cameroon. Int. J. Ambient Energy 2021, 42, 736–743.
  39. Sagouong, J.M.; Tchuen, G. Advanced stoves designing and their thermal behavior prediction: A validated mathematical model. Energy Syst. 2021.
  40. Balogun Mohammed, A.; Vijlee, S.; Belmont, E. Technoeconomic feasibility of a sustainable charcoal industry to reduce deforestation in Haiti. Sustain. Energy Technol. Assessments 2018, 29, 131–138.
  41. Gutiérrez, J.; Chica, E.L.; Pérez, J.F. Parametric Analysis of a Gasification-Based Cookstove as a Function of Biomass Density, Gasification Behavior, Airflow Ratio, and Design. ACS Omega 2022, 7, 7481–7498.
  42. Medina, P.; Núñez, J.; Ruiz-García, V.M.; Beltrán, A. Experimental and numerical comparison of CO2 mass flow rate emissions, combustion and thermal performance for a biomass plancha-type cookstove. Energy Sustain. Dev. 2021, 63, 153–159.
  43. Lebel, E.D.; Finnegan, C.J.; Ouyang, Z.; Jackson, R.B. Methane and NO x Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes. Environ. Sci. Technol. 2022, 56, 2529–2539.
  44. Junus, R.; Vierkant, J.E.; Stubington, J.F.; Sergeant, G.D.; Tas, I. The effects of the design of the cap of a natural gas-fired cooktop burner on flame stability. Int. J. Energy Res. 1998, 22, 175–184.
  45. Junus, R.; Stubington, J.F.; Sergeant, G.D.; Tas, I. Emissions and efficiency of a prototype natural gas-fired domestic cooktop burner with insert. Int. J. Environ. Stud. 2000, 57, 189–205.
  46. Ko, Y.C.; Lin, T.H. Emissions and efficiency of a domestic gas stove burning natural gases with various compositions. Energy Convers. Manag. 2003, 44, 3001–3014.
  47. Maurya, P.; Palanisamy, M.; Mahalingam, A.K.; Kaushik, L.K.; Ramalingam, A. Performance, economic and pilot studies on canister-based methanol stove for household cooking application. Energy Sustain. Dev. 2022, 66, 117–124.
  48. Wang, J.; Zhang, W.; Yang, T.; Yu, Y.; Liu, C.; Li, B. Numerical and experimental investigation on heat transfer enhancement by adding fins on the pot in a domestic gas stove. Energy 2022, 239, 122439.
  49. Jugjai, S.; Rungsimuntuchart, N. High efficiency heat-recirculating domestic gas burners. Exp. Therm. Fluid Sci. 2002, 26, 581–592.
  50. Hou, S.S.; Lee, C.Y.; Lin, T.H. Efficiency and emissions of a new domestic gas burner with a swirling flame. Energy Convers. Manag. 2007, 48, 1401–1410.
  51. Das, M.; Ganguly, R.; Datta, A.; Verma, M.M.; Bera, A.K. Performance improvement of a domestic liquefied petroleum gas cook stove using an extended spill-tray and an annular metal insert. J. Therm. Sci. Eng. Appl. 2021, 13, 1–10.
  52. Chen, Z.; Zhang, Y.; Qin, C.; Duan, P. Combustion performance of domestic gas cookers with swirling strip-port and normal round-port on various natural gas compositions. Case Stud. Therm. Eng. 2019, 13, 100366.
  53. Boggavarapu, P.; Ray, B.; Ravikrishna, R.V. Thermal efficiency of LPG and PNG-fired burners: Experimental and numerical studies. Fuel 2014, 116, 709–715.
  54. Li, H.B.; Wong, T.T.; Leung, C.W.; Probert, S.D. Thermal performances and CO emissions of gas-fired cooker-top burners. Appl. Energy 2006, 83, 1326–1338.
  55. Masekameni, M.D.; Makonese, T.; Annegarn, H.J. A comparison of emissions and thermal efficiency of three improved liquid fuel stoves. Proc. 23rd Conf. Domest. Use Energy 2015, 2015, 71–76.
  56. Masekela, M.E.; Semenya, K. Factors influencing the use of firewood post-electrification in rural South Africa: The case of Ga-Malahlela village. J. Energy South. Africa 2021, 32, 24–40.
  57. Schwarzer, K.; da Silva, M.E.V. Characterisation and design methods of solar cookers. Sol. Energy 2008, 82, 157–163.
  58. Khatri, R.; Goyal, R.; Sharma, R.K. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 145, 111166.
  59. Herez, A.; Ramadan, M.; Khaled, M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renew. Sustain. Energy Rev. 2018, 81, 421–432.
  60. Indora, S.; Kandpal, T.C. Institutional cooking with solar energy: A review. Renew. Sustain. Energy Rev. 2018, 84, 131–154.
  61. Saxena, A.; Varun; Pandey, S. P.; Srivastav, G. A thermodynamic review on solar box type cookers. Renew. Sustain. Energy Rev. 2011, 15, 3301–3318.
  62. Aramesh, M.; Ghalebani, M.; Kasaeian, A.; Zamani, H.; Lorenzini, G.; Mahian, O.; Wongwises, S. A review of recent advances in solar cooking technology. Renew. Energy 2019, 140, 419–435.
  63. Cuce, E.; Cuce, P.M. A comprehensive review on solar cookers. Appl. Energy 2013, 102, 1399–1421.
  64. Lahkar, P.J.; Samdarshi, S.K. A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renew. Sustain. Energy Rev. 2010, 14, 1615–1621.
  65. Panchal, H.; Patel, J.; Chaudhary, S. A comprehensive review of solar cooker with sensible and latent heat storage materials. Int. J. Ambient Energy 2019, 40, 329–334.
  66. Arunachala, U.C.; Kundapur, A. Cost-effective solar cookers: A global review. Sol. Energy 2020, 207, 903–916.
  67. Muthusivagami, R.M.; Velraj, R.; Sethumadhavan, R. Solar cookers with and without thermal storage-A review. Renew. Sustain. Energy Rev. 2010, 14, 691–701.
  68. Yettou, F.; Azoui, B.; Malek, A.; Gama, A.; Panwar, N.L. Solar cooker realizations in actual use: An overview. Renew. Sustain. Energy Rev. 2014, 37, 288–306.
  69. Panwar, N.L.; Kaushik, S.C.; Kothari, S. State of the art of solar cooking: An overview. Renew. Sustain. Energy Rev. 2012, 16, 3776–3785.
  70. Sharma, A.; Chen, C.R.; Murty, V.V.S.; Shukla, A. Solar cooker with latent heat storage systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 1599–1605.
  71. Abu-Hamdeh, N.H.; Alnefaie, K.A. Assessment of thermal performance of PCM in latent heat storage system for different applications. Sol. Energy 2019, 177, 317–323.
  72. Barton, J.; Bliss, M.; Little, M.; Mbewe, C.G.; Monk, N.; Palmer, D.; Blanchard, R. A Portable Power Station for Humanitarian Contexts. In Proceedings of the 2021 IEEE International Humanitarian Technology Conference (IHTC), UK, 2–4 December 2022.
  73. Modern Energy Cooking Services. 400W DC eCooking Power Station Battery Electric Cooking using Solar PV Charging; User Manual: Loughborough, UK, 2021.
  74. Haruta, M.; Sano, H. Catalytic combustion of hydrogen I-Its role in hydrogen utilization system and screening of catalyst materials. Int. J. Hydrogen Energy 1981, 6, 601–608.
  75. Saint-Just, J.; Etemad, S. Catalytic combustion of hydrogen for heat production. In Compendium of Hydrogen Energy; Barbir, F., Basile, A., Veziroglu, T.N., Eds.; Elsevier: Cambridge, 2016; ISBN 9781782423638.
  76. de Vries, H.; Levinsky, H.B. Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development. Appl. Energy 2020, 259, 114116.
  77. Eichler, C.; Sattelmayer, T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV. Exp. Fluids 2012, 52, 347–360.
  78. Gruber, A.; Chen, J.H.; Valiev, D.; Law, C.K. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 2012, 709, 516–542.
  79. Baumgartner, G.; Boeck, L.R.; Sattelmayer, T. Experimental Investigation of the Transition Mechanism from Stable Flame to Flashback in a Generic Premixed Combustion System with High-Speed Micro-Particle Image Velocimetry and Micro-PLIF Combined with Chemiluminescence Imaging. J. Eng. Gas Turbines Power 2016, 138, 1–10.
  80. Ebi, D.; Bombach, R.; Jansohn, P. Swirl flame boundary layer flashback at elevated pressure: Modes of propagation and effect of hydrogen addition. Proc. Combust. Inst. 2021, 38, 6345–6353.
  81. Hoferichter, V.; Hirsch, C.; Sattelmayer, T. Prediction of boundary layer flashback limits of laminar premixed jet flames. Proc. ASME Turbo Expo 2018, 4, 1–11.
  82. Wang, J.; Nie, Y.; Cai, X.; Guo, S.; Zhang, W.; Xie, Y.; Huang, Z. Investigation on the highly negative curved syngas Bunsen flame and the critical local Karlovitz number when tip opening. Fuel 2018, 215, 429–437.
  83. Fu, J.; Tang, C.; Jin, W.; Huang, Z. Effect of preferential diffusion and flame stretch on flame structure and laminar burning velocity of syngas Bunsen flame using OH-PLIF. Int. J. Hydrogen Energy 2014, 39, 12187–12193.
  84. Kozlovsky, G.; Sivashinsky, G.I. On open and closed tips of bunsen burner flames. Theor. Comput. Fluid Dyn. 1994, 6, 181–192.
  85. Mizobuchi, Y.; Nambu, T.; Takeno, T. Numerical study of tip opening of hydrogen/air Bunsen flame. Proc. Combust. Inst. 2019, 37, 1775–1781.
  86. Goldmann, A.; Dinkelacker, F. Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames. Combust. Flame 2021, 226, 362–379.
  87. Vance, F.H.; de Goey, L.P.H.; van Oijen, J.A. Development of a flashback correlation for burner-stabilized hydrogen-air premixed flames. Combust. Flame 2022, 243, 112045.
  88. Nguyen, V.N.; Deja, R.; Peters, R.; Blum, L.; Stolten, D. Study of the catalytic combustion of lean hydrogen-air mixtures in a monolith reactor. Int. J. Hydrogen Energy 2018, 43, 17520–17530.
  89. Brennecke, P.W. The Catalytic Combustion of Hydrogen. A Sol. Hydrog. Energy Syst. 1987, 287–295.
  90. Schefer, R.W.; Robben, F.; Cheng, R.K. Catalyzed combustion of H2/air mixtures in a flat-plate boundary layer: I. Experimental results. Combust. Flame 1980, 38, 51–63.
  91. Fumey, B.; Buetler, T.; Vogt, U.F. Ultra-low NOx emissions from catalytic hydrogen combustion. Appl. Energy 2018, 213, 334–342.
  92. GroŸmann, U. A non-stationary hydrogen cooker with portable hydride storage and catalytic hydrogen burner. Int. J. Hydrogen Energy 2000, 25, 87–90.
  93. Kozhukhova, A.E.; du Preez, S.P.; Bessarabov, D.G. Catalytic hydrogen combustion for domestic and safety applications: A critical review of catalyst materials and technologies. Energies 2021, 14, 4897.
  94. Kim, J.; Yu, J.; Lee, S.; Tahmasebi, A.; Jeon, C.H.; Lucas, J. Advances in catalytic hydrogen combustion research: Catalysts, mechanism, kinetics, and reactor designs. Int. J. Hydrogen Energy 2021, 46, 40073–40104.
  95. Appel, C.; Mantzaras, J.; Schaeren, R.; Bombach, R.; Kaeppeli, B.; Inauen, A. An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum. Proc. Combust. Inst. 2002, 29, 1031–1038.
  96. Fernandes, N.E.; Park, Y.K.; Vlachos, D.G. The autothermal behavior of platinum catalyzed hydrogen oxidation: Experiments and modeling. Combust. Flame 1999, 118, 164–178.
  97. Mantzaras, J.; Bombach, R.; Schaeren, R. Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar. Proc. Combust. Inst. 2009, 32, 1937–1945.
  98. Fernández, A.; Arzac, G.M.; Vogt, U.F.; Hosoglu, F.; Borgschulte, A.; Jiménez de Haro, M.C.; Montes, O.; Züttel, A. Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Appl. Catal. B Environ. 2016, 180, 336–343.
  99. Choi, W.; Kwon, S.; Dong Shin, H. Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor. Int. J. Hydrogen Energy 2008, 33, 2400–2408.
  100. Shinde, V.M.; Madras, G. Nanostructured Pd modified Ni/CeO2 catalyst for water gas shift and catalytic hydrogen combustion reaction. Appl. Catal. B Environ. 2013, 132–133, 28–38.
  101. Zhang, C.; Zhang, J.; Ma, J. Hydrogen catalytic combustion over a Pt/Ce 0.6Zr 0.4O 2/MgAl 2O 4 mesoporous coating monolithic catalyst. Int. J. Hydrogen Energy 2012, 37, 12941–12946.
  102. du Preez, S.P.; Jones, D.R.; Bessarabov, D.G.; Falch, A.; Mota das Neves Quaresma, C.; Dunnill, C.W. Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion. Int. J. Hydrogen Energy 2019, 44, 27094–27106.
  103. Zhou, J.; Wang, Y.; Yang, W.; Liu, J.; Wang, Z.; Cen, K. Combustion of hydrogen-air in catalytic micro-combustors made of different material. Int. J. Hydrogen Energy 2009, 34, 3535–3545.
  104. Kozhukhova, A.E.; du Preez, S.P.; Shuro, I.; Bessarabov, D.G. Development of a low purity aluminum alloy (Al6082) anodization process and its application as a platinum-based catalyst in catalytic hydrogen combustion. Surf. Coatings Technol. 2020, 404, 126483.
  105. Singh, S.A.; Vishwanath, K.; Madras, G. Role of Hydrogen and Oxygen Activation over Pt and Pd-Doped Composites for Catalytic Hydrogen Combustion. ACS Appl. Mater. Interfaces 2017, 9, 19380–19388.
  106. Park, J.; Kim, D.; Lee, Y. Experimental study on flameless combustion and NO emission with hydrogen-containing fuels. Int. J. Energy Res. 2022, 46, 2512–2528.
  107. Haruta, M.; Souma, Y.; Sano, H. Catalytic combustion of hydrogen-II. An experimental investigation of fundamental conditions for burner design. Int. J. Hydrogen Energy 1982, 7, 729–736.
  108. Arzac, G.M.; Montes, O.; Fernández, A. Pt-impregnated catalysts on powdery SiC and other commercial supports for the combustion of hydrogen under oxidant conditions. Appl. Catal. B Environ. 2017, 201, 391–399.
  109. Vogt, U.F.; Fumey, B.; Bielmann, M.; Siong, V. Catalytic Hydrogen Combustion on Porous SiC Ceramics. In Proceedings of the European Fuel Cell Forum, Lucerne, Switzerland, 17 June 2011; pp. 45–54.
  110. Zheng, X.; Mantzaras, J.; Bombach, R. Kinetic interactions between hydrogen and carbon monoxide oxidation over platinum. Combust. Flame 2014, 161, 332–346.
  111. Kramer, J.F.; Reihani, S.A.S.; Jackson, G.S. Low-temperature combustion of hydrogen on supported Pd catalysts. Proc. Combust. Inst. 2002, 29, 989–996.
  112. Sandeep, K.C.; Bhattacharyya, R.; Warghat, C.; Bhanja, K.; Mohan, S. Experimental investigation on the kinetics of catalytic recombination of hydrogen with oxygen in air. Int. J. Hydrogen Energy 2014, 39, 17906–17912.
  113. Morfin, F.; Sabroux, J.C.; Renouprez, A. Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant: Study of catalysts poisoning in a representative atmosphere. Appl. Catal. B Environ. 2004, 47, 47–58.
  114. Kaneko, S.; Arakawa, T.; Ohshima, M.; Kurokawa, H.; Miura, H. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts. Appl. Catal. A Gen. 2009, 356, 80–87.
  115. Laassiri, S.; Bion, N.; Duprez, D.; Royer, S.; Alamdari, H. Clear microstructure-performance relationships in Mn-containing perovskite and hexaaluminate compounds prepared by activated reactive synthesis. Phys. Chem. Chem. Phys. 2014, 16, 4050–4060.
  116. Fumey, B.; Stoller, S.; Fricker, R.; Weber, R.; Dorer, V.; Vogt, U.F. Development of a novel cooking stove based on catalytic hydrogen combustion. Int. J. Hydrogen Energy 2016, 41, 7494–7499.
  117. LaPotin, A.; Schulte, K.L.; Steiner, M.A.; Buznitsky, K.; Kelsall, C.C.; Friedman, D.J.; Tervo, E.J.; France, R.M.; Young, M.R.; Rohskopf, A.; et al. Thermophotovoltaic efficiency of 40%. Nature 2022, 604, 287–291.
  118. Barbieri, E.S.; Spina, P.R.; Venturini, M. Analysis of innovative micro-CHP systems to meet household energy demands. Appl. Energy 2012, 97, 723–733.
  119. Brandoni, C.; Renzi, M. Optimal sizing of hybrid solar micro-CHP systems for the household sector. Appl. Therm. Eng. 2015, 75, 896–907.
  120. Bazooyar, B.; Gohari Darabkhani, H. Design, manufacture and test of a micro-turbine renewable energy combustor. Energy Convers. Manag. 2020, 213, 112782.
  121. Visser, W.P.J.; Shakariyants, S.A.; Oostveen, M. Development of a 3 kW microturbine for CHP applications. J. Eng. Gas Turbines Power 2011, 133, 042301.
  122. Parente, A.; Galletti, C.; Riccardi, J.; Schiavetti, M.; Tognotti, L. Experimental and numerical investigation of a micro-CHP flameless unit. Appl. Energy 2012, 89, 203–214.
  123. Leibowitz, H.; Smith, I.K.; Stosic, N. Cost Effective Small Scale ORC Systems for Power Recovery From Low Grade Heat Sources. In Proceedings of the Advanced Energy Systems; ASMEDC: Houston, TX, USA, 2006; pp. 521–527.
  124. Mei, B.; Barnoon, P.; Toghraie, D.; Su, C.H.; Nguyen, H.C.; Khan, A. Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels. Renew. Sustain. Energy Rev. 2022, 157, 112021.
  125. Di Marcoberardino, G.; Manzolini, G. Investigation of a 5 kW micro-CHP PEM fuel cell based system integrated with membrane reactor under diverse EU natural gas quality. Int. J. Hydrogen Energy 2017, 42, 13988–14002.
  126. Wallmark, C.; Alvfors, P. Technical design and economic evaluation of a stand-alone PEFC system for buildings in Sweden. J. Power Sources 2003, 118, 358–366.
  127. Chang, H.; Xu, X.; Shen, J.; Shu, S.; Tu, Z. Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China. Int. J. Hydrogen Energy 2019, 44, 24965–24976.
  128. Chahartaghi, M.; Kharkeshi, B.A. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover. Appl. Therm. Eng. 2018, 128, 805–817.
  129. Chen, X.; Gong, G.; Wan, Z.; Luo, L.; Wan, J. Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller. Int. J. Hydrogen Energy 2015, 40, 10647–10657.
  130. Baldinelli, A.; Barelli, L.; Bidini, G.; Cinti, G. Micro-cogeneration based on solid oxide fuel cells: Market opportunities in the agriculture/livestock sector. Int. J. Hydrogen Energy 2021, 46, 10036–10048.
  131. Sorace, M.; Gandiglio, M.; Santarelli, M. Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump. Energy 2017, 120, 262–275.
  132. Hawkes, A.D.; Aguiar, P.; Croxford, B.; Leach, M.A.; Adjiman, C.S.; Brandon, N.P. Solid oxide fuel cell micro combined heat and power system operating strategy: Options for provision of residential space and water heating. J. Power Sources 2007, 164, 260–271.
  133. Hawkes, A.; Staffell, I.; Brett, D.; Brandon, N. Fuel cells for micro-combined heat and power generation. Energy Environ. Sci. 2009, 2, 729–744.
  134. Xie, D.; Wang, Z.; Jin, L.; Zhang, Y. Energy and exergy analysis of a fuel cell based micro combined heat and power cogeneration system. Energy Build. 2012, 50, 266–272.
  135. Ramanathan, R.; Ganesh, L.S. Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP. Socioecon. Plann. Sci. 1995, 29, 197–218.
  136. Zhen, H.S.; Leung, C.W.; Wong, T.T. Improvement of domestic cooking flames by utilizing swirling flows. Fuel 2014, 119, 153–156.
  137. Hou, S.S.; Ko, Y.C. Effects of heating height on flame appearance, temperature field and efficiency of an impinging laminar jet flame used in domestic gas stoves. Energy Convers. Manag. 2004, 45, 1583–1595.
  138. Perros, T.; Büttner, P.; Leary, J.; Parikh, P. Pay-as-you-go LPG: A mixed-methods pilot study in urban Rwanda. Energy Sustain. Dev. 2021, 65, 117–129.
  139. Bruce, N.; de Cuevas, R.A.; Cooper, J.; Enonchong, B.; Ronzi, S.; Puzzolo, E.; MBatchou, B.; Pope, D. The Government-led initiative for LPG scale-up in Cameroon: Programme development and initial evaluation. Energy Sustain. Dev. 2018, 46, 103–110.
  140. Harmim, A.; Merzouk, M.; Boukar, M.; Amar, M. Design and experimental testing of an innovative building-integrated box type solar cooker. Sol. Energy 2013, 98, 422–433.
  141. El Moussaoui, N.; Talbi, S.; Atmane, I.; Kassmi, K.; Schwarzer, K.; Chayeb, H.; Bachiri, N. Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC). Sol. Energy 2020, 201, 866–871.
  142. Altouni, A.; Gorjian, S.; Banakar, A. Development and performance evaluation of a photovoltaic-powered induction cooker (PV-IC): An approach for promoting clean production in rural areas. Clean. Eng. Technol. 2022, 6, 100373.
  143. GOV.UK (Department for Business Energy and Industrial Strategy). Annual Domestic Energy Bills. 2021. Available online: https://www.gov.uk/government/statistical-data-sets/annual-domestic-energy-price-statistics (accessed on 2 January 2022).
  144. Peter, L.M.; Upul Wijayantha, K.G. Photoelectrochemical water splitting at semiconductor electrodes: Fundamental problems and new perspectives. ChemPhysChem 2014, 15, 1983–1995.
  145. Cummings, C.Y.; Marken, F.; Peter, L.M.; Tahir, A.A.; Wijayantha, K.G.U. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3electrodes. Chem. Commun. 2012, 48, 2027–2029.
  146. Wu, X.; Ng, Y.H.; Saputera, W.H.; Wen, X.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. The Dependence of Bi2MoO6 Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. ChemPhotoChem 2019, 3, 1246–1253.
  147. Wu, H.; Tan, H.L.; Toe, C.Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y.H. Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Adv. Mater. 2020, 32, 1904717.
  148. Samanta, B.; Morales-García, Á.; Illas, F.; Goga, N.; Anta, J.A.; Calero, S.; Bieberle-Hütter, A.; Libisch, F.; Muñoz-García, A.B.; Pavone, M.; et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 2022, 51, 3794–3818.
  149. Nandy, S.; Savant, S.A.; Haussener, S. Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing. Chem. Sci. 2021, 12, 9866–9884.
  150. Gutierrez, R.R.; Haussener, S. Modeling and design guidelines of high-temperature photoelectrochemical devices. Sustain. Energy Fuels 2021, 5, 2169–2180.
  151. Tahir, A.A.; Peiris, T.A.N.; Wijayantha, K.G.U. Enhancement of photoelectrochemical performance of AACVD-produced TiO2 electrodes by microwave irradiation while preserving the nanostructure. Chem. Vap. Depos. 2012, 18, 107–111.
  152. Tahir, A.A.; Mat-Teridi, M.A.; Wijayantha, K.G.U. Photoelectrochemical properties of texture-controlled nanostructured α-Fe2O3 thin films prepared by AACVD. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 976–981.
  153. Peter, L.M.; Wijayantha, K.G.U.; Tahir, A.A. Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss. 2012, 155, 309–322.
  154. McInnes, A.; Plant, S.R.; Ornelas, I.M.; Palmer, R.E.; Wijayantha, K.G.U. Enhanced photoelectrochemical water splitting using oxidized mass-selected Ti nanoclusters on metal oxide photoelectrodes. Sustain. Energy Fuels 2017, 1, 336–344.
  155. Brack, P.; Chillman, M.; Wijayantha, K.G.U.; Adcock, P.; Foster, S.; Dann, S.E. Activation of silicon towards hydrogen generation by pelletisation. J. Alloys Compd. 2017, 704, 146–151.
  156. Brack, P.; Dann, S.E.; Upul Wijayantha, K.G. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng. 2015, 3, 174–188.
  157. Joy, J.; Mathew, J.; George, S.C. Nanomaterials for photoelectrochemical water splitting—Review. Int. J. Hydrogen Energy 2018, 43, 4804–4817.
  158. Minggu, L.J.; Wan Daud, W.R.; Kassim, M.B. An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2010, 35, 5233–5244.
  159. Mukelabai, M.D.; Wijayantha, U.K.G.; Blanchard, R.E. Renewable hydrogen economy outlook in Africa. Renew. Sustain. Energy Rev. 2022, 167, 112705.
  160. Statisa. Natural Gas Reserves in Africa as of 2021, by Main Countries. 2022. Available online: https://www.statista.com/statistics/1197585/natural-gas-reserves-in-africa-by-main-countries/ (accessed on 21 March 2022).
  161. Jessop, S.; Sterling, T. Exclusive Dutch Bank ING Ends Financing for New Oil and Gas Projects. 2022. Available online: https://www.reuters.com/business/sustainable-business/exclusive-dutch-bank-ing-ends-financing-new-oil-gas-projects-2022-03-23/ (accessed on 24 March 2022).
  162. Eash-Gates, P.; Klemun, M.M.; Kavlak, G.; McNerney, J.; Buongiorno, J.; Trancik, J.E. Sources of Cost Overrun in Nuclear Power Plant Construction Call for a New Approach to Engineering Design. Joule 2020, 4, 2348–2373.
  163. Carelli, M.D.; Garrone, P.; Locatelli, G.; Mancini, M.; Mycoff, C.; Trucco, P.; Ricotti, M.E. Economic features of integral, modular, small-to-medium size reactors. Prog. Nucl. Energy 2010, 52, 403–414.
  164. Stewart, W.R.; Shirvan, K. Capital cost estimation for advanced nuclear power plants. Renew. Sustain. Energy Rev. 2022, 155, 111880.
  165. Gao, R.; Nam, H.O.; Jang, H.; Ko, W. Il The economic competitiveness of promising nuclear energy system: A closer look at the input uncertainties in LCOE analysis. Int. J. Energy Res. 2019, 43, 3928–3958.
  166. Roth, M.B.; Jaramillo, P. Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy. Energy 2017, 131, 67–77.
  167. BBC News. Sizewell C: What Is It and Where Is It Planned to Be? 2022. Available online: https://www.bbc.co.uk/news/uk-england-suffolk-62035444 (accessed on 13 December 2022).
  168. Zambia Institute for Policy Analysis and Research (ZIPAR) and United Nations Zambia. Analysis of The 2023 National Budget: Reinforcing The Foundation For Inclusive Growth And Development; ZIPAR and United Nations Zambia: Lusaka, Zambia, 2022.
  169. Mukelabai, M.D.; Wijayantha, U.; Blanchard, R.E. Hydrogen technology adoption analysis in Africa using a Doughnut-PESTLE hydrogen model. Int. J. Hydrogen Energy 2022, 47, 31521–31540.
More
Information
Subjects: Energy & Fuels
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 4.1K
Revisions: 2 times (View History)
Update Date: 12 Jan 2023
1000/1000