1000/1000
Hot
Most Recent
In mathematics, Weierstrass's elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as p-functions and they are usually denoted by the symbol ℘. They play an important role in theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
Let [math]\displaystyle{ \omega_1,\omega_2\in\mathbb{C} }[/math] be two complex numbers that are linear independent over [math]\displaystyle{ \mathbb{R} }[/math] and let [math]\displaystyle{ \Lambda:=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2:=\{m\omega_1+n\omega_2: m,n\in\mathbb{Z}\} }[/math] be the lattice generated by those numbers. Then the [math]\displaystyle{ \wp }[/math]-function is defined as follows:
This series converges locally uniformly absolutely in [math]\displaystyle{ \mathbb{C}\setminus\Lambda }[/math]. Oftentimes instead of [math]\displaystyle{ \wp(z,\omega_1,\omega_2) }[/math] only [math]\displaystyle{ \wp(z) }[/math] is written.
The Weierstrass [math]\displaystyle{ \wp }[/math]-function is constructed exactly in such a way that it has a pole of the order two at each lattice point.
Because the sum [math]\displaystyle{ \sum_{\lambda\in\Lambda}\frac 1{(z-\lambda)^2} }[/math] alone would not converge it is necessary to add the term [math]\displaystyle{ -\frac 1 {\lambda^2} }[/math].[1]
It is common to use [math]\displaystyle{ 1 }[/math] and [math]\displaystyle{ \tau\in\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)\gt 0\} }[/math] as generators of the lattice. Multiplying by [math]\displaystyle{ \frac 1{\omega_1} }[/math] maps the lattice [math]\displaystyle{ \mathbb{Z}\omega_1+\mathbb{Z}\omega_2 }[/math] isomorphically onto the lattice [math]\displaystyle{ \mathbb{Z}+\mathbb{Z}\tau }[/math] with [math]\displaystyle{ \tau=\frac{\omega_2}{\omega_1} }[/math]. By possibly substituting [math]\displaystyle{ \tau }[/math] by [math]\displaystyle{ -\tau }[/math] it can be assumed that [math]\displaystyle{ \tau\in\mathbb{H} }[/math]. One sets [math]\displaystyle{ \wp(z,\tau) := \wp(z, 1,\tau) }[/math].
A cubic of the form [math]\displaystyle{ C_{g_2,g_3}^\mathbb{C}=\{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x+g_3\} }[/math], where [math]\displaystyle{ g_2,g_3\in\mathbb{C} }[/math] are complex numbers with [math]\displaystyle{ g_2^3-27g_3^2\neq0 }[/math], can not be rationally parameterized.[2] Yet one still wants to find a way to parameterize it.
For the quadric [math]\displaystyle{ K=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\} }[/math], the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:
Because of the periodicity of the sine and cosine [math]\displaystyle{ \mathbb{R}/2\pi\mathbb{Z} }[/math] is chosen to be the domain, so the function is bijective.
In a similar way one can get a parameterization of [math]\displaystyle{ C_{g_2,g_3}^\mathbb{C} }[/math] by means of the doubly periodic [math]\displaystyle{ \wp }[/math]-function (see in the section "Relation to ellitpic curves"). This parameterization has the domain [math]\displaystyle{ \mathbb{C}/\Lambda }[/math], which is topologically equivalent to a torus.[3]
There is another analogy to the trigonometric functions. Consider the integral function
It can be simplified by substituting [math]\displaystyle{ y=\sin(t) }[/math] and [math]\displaystyle{ s=\arcsin(x) }[/math]:
That means [math]\displaystyle{ a^{-1}(x)=\sin(x) }[/math]. So the sine function is an inverse function of an integral function.[4]
Elliptic functions are also inverse functions of integral functions, namely of elliptic integrals. In particular the [math]\displaystyle{ \wp }[/math]-function is obtained in the following way:
Let
Then [math]\displaystyle{ u^{-1} }[/math] can be extended to the complex plane and this extension equals the [math]\displaystyle{ \wp }[/math]-function.[5]
The second last equality holds because [math]\displaystyle{ \{-\lambda:\lambda \in \Lambda\}=\Lambda }[/math]. Since the sum converges absolutely this rearrangement does not change the limit.
It follows that [math]\displaystyle{ \wp(z+\lambda)=\wp(z) }[/math] and [math]\displaystyle{ \wp'(z+\lambda)=\wp'(z) }[/math] for all [math]\displaystyle{ \lambda \in \Lambda }[/math]. Functions which are meromorphic and doubly periodic are also called elliptic functions.
Let [math]\displaystyle{ r:=\min\{{|\lambda}|:0\neq\lambda\in\Lambda\} }[/math]. Then for [math]\displaystyle{ 0\lt |z|\lt r }[/math] the [math]\displaystyle{ \wp }[/math]-function has the following Laurent expansion
where
Set [math]\displaystyle{ g_2=60G_4 }[/math] and [math]\displaystyle{ g_3=140G_6 }[/math]. Then the [math]\displaystyle{ \wp }[/math]-function satisfies the differential equation[6]
This relation can be verified by forming a linear combination of powers of [math]\displaystyle{ \wp }[/math] and [math]\displaystyle{ \wp' }[/math] to eliminate the pole at [math]\displaystyle{ z=0 }[/math]. This yields an entire elliptic function that has to be constant by Liouville's theorem .[6]
The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depent on the lattice [math]\displaystyle{ \Lambda }[/math] they can be viewed as functions in [math]\displaystyle{ \omega_1 }[/math]and [math]\displaystyle{ \omega_2 }[/math].
The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7]
If [math]\displaystyle{ \omega_1 }[/math]and [math]\displaystyle{ \omega_2 }[/math] are chosen in such a way that [math]\displaystyle{ \operatorname{Im}\left( \frac{\omega_2}{\omega_1} \right)\gt 0 }[/math] g2 and g3 can be interpreted as functions on the upper half-plane [math]\displaystyle{ \mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)\gt 0\} }[/math].
Let [math]\displaystyle{ \tau=\frac{\omega_2}{\omega_1} }[/math]. One has:[8]
That means g2 and g3 are only scaled by doing this. Set
[math]\displaystyle{ g_2(\tau):=g_2(1,\tau) }[/math], [math]\displaystyle{ g_3(\tau):=g_3(1,\tau) }[/math].
As functions of [math]\displaystyle{ \tau\in\mathbb{H} }[/math] [math]\displaystyle{ g_2,g_3 }[/math] are so called modular forms.
The Fourier series for [math]\displaystyle{ g_2 }[/math] and [math]\displaystyle{ g_3 }[/math] are given as follows:[9]
where [math]\displaystyle{ \sigma_a(k):=\sum_{d\mid{k}}d^\alpha }[/math] is the divisor function and [math]\displaystyle{ q:=\exp(i\pi\tau) }[/math].
The modular discriminant Δ is defined as the discriminant of the polynomial at right-hand side of the above differential equation:
The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as
where [math]\displaystyle{ a,b,d,c\in\mathbb{Z} }[/math] with ad − bc = 1.[10]
Note that [math]\displaystyle{ \Delta=(2\pi)^{12}\eta^{24} }[/math] where [math]\displaystyle{ \eta }[/math] is the Dedekind eta function.[11]
For the Fourier coefficients of [math]\displaystyle{ \Delta }[/math], see Ramanujan tau function.
[math]\displaystyle{ e_1 }[/math], [math]\displaystyle{ e_2 }[/math] and [math]\displaystyle{ e_3 }[/math] are usually used to denote the values of the [math]\displaystyle{ \wp }[/math]-function at the half-periods.
They are pairwise distinct and only depend on the lattice [math]\displaystyle{ \Lambda }[/math] and not on its generators.[12]
[math]\displaystyle{ e_1 }[/math], [math]\displaystyle{ e_2 }[/math] and [math]\displaystyle{ e_3 }[/math] are the roots of the cubic polynomial [math]\displaystyle{ 4\wp(z)^3-g_2\wp(z)-g_3 }[/math] and are related by the equation:
Because those roots are distinct the discriminant [math]\displaystyle{ \Delta }[/math] does not vanish on the upper half plane.[13] Now we can rewrite the differential equation:
That means the half-periods are zeros of [math]\displaystyle{ \wp' }[/math].
The invariants [math]\displaystyle{ g_2 }[/math] and [math]\displaystyle{ g_3 }[/math] can be expressed in terms of these constants in the following way:[14]
Consider the projective cubic curve
For this cubic, also called Weierstrass cubic, there exists no rational parameterization, if [math]\displaystyle{ \Delta\neq0 }[/math].[2] In this case it is also called an elliptic curve. Nevertheless there is a parameterization that uses the [math]\displaystyle{ \wp }[/math]-function and its derivative [math]\displaystyle{ \wp' }[/math]:[15]
[math]\displaystyle{ \varphi: \mathbb{C}/\Lambda\to\bar C_{g_2,g_3}^\mathbb{C}, \quad \bar{z}\mapsto \begin{cases} (\wp(z),\wp'(z),1) & \bar{z}\neq0\\ \infin \quad &\bar{z}=0 \end{cases} }[/math]
Now the map [math]\displaystyle{ \varphi }[/math] is bijective and parameterizes the elliptic curve [math]\displaystyle{ \bar C_{g_2,g_3}^\mathbb{C} }[/math].
[math]\displaystyle{ \mathbb{C}/\Lambda }[/math] is an abelian group and a topological space, equipped with the quotient topology.
It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair [math]\displaystyle{ g_2,g_3\in\mathbb{C} }[/math] with [math]\displaystyle{ \Delta=g_2^3-27g_3^2\neq0 }[/math] there exists a lattice [math]\displaystyle{ \mathbb{Z}\omega_1+\mathbb{Z}\omega_2 }[/math], such that
[math]\displaystyle{ g_2=g_2(\omega_1,\omega_2) }[/math] and [math]\displaystyle{ g_3=g_3(\omega_1,\omega_2) }[/math].[16]
The statement that elliptic curves over [math]\displaystyle{ \mathbb{Q} }[/math] can be parameterized over [math]\displaystyle{ \mathbb{Q} }[/math], is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.
Let [math]\displaystyle{ z,w\in\mathbb{C} }[/math], so that [math]\displaystyle{ z,w,z+w,z-w\notin\Lambda }[/math]. Then one has:[17]
As well as the duplication formula:[17]
These formulas also have a geometric interpretation, if one looks at the elliptic curve [math]\displaystyle{ \bar C_{g_2,g_3}^\mathbb{C} }[/math] together with the mapping [math]\displaystyle{ {\varphi}:\mathbb{C}/\Lambda\to\bar C_{g_2,g_3}^\mathbb{C} }[/math] as in the previous section.
The group structure of [math]\displaystyle{ (\mathbb{C}/\Lambda,+) }[/math] translates to the curve [math]\displaystyle{ \bar C_{g_2,g_3}^\mathbb{C} }[/math]and can be geometrically interpreted there:
The sum of three pairwise different points [math]\displaystyle{ a,b,c\in\bar C_{g_2,g_3}^\mathbb{C} }[/math]is zero if and only if they lie on the same line in [math]\displaystyle{ \mathbb{P}_\mathbb{C}^2 }[/math].[18]
This is equivalent to:
where [math]\displaystyle{ \wp(u)=a }[/math], [math]\displaystyle{ \wp(v)=b }[/math] and [math]\displaystyle{ u,v\notin\Lambda }[/math].[19]
For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.
The basic relations are:[20]
where [math]\displaystyle{ e_1,e_2 }[/math]and [math]\displaystyle{ e_3 }[/math] are the three roots described above and where the modulus k of the Jacobi functions equals
and their argument w equals
The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘.[21]
In computing, the letter ℘ is available as \wp
in TeX. In Unicode the code point is U+2118 ℘ SCRIPT CAPITAL P (HTML ℘
· ℘
), with the more correct alias weierstrass elliptic function.[22] In HTML, it can be escaped as ℘
.
Preview | Template:Charmap/showcharTemplate:Charmap/showcharTemplate:Charmap/showcharTemplate:Charmap/showchar | |
---|---|---|
Unicode name | SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION | |
Encodings | decimal | hex |
Unicode | 8472 0 0 0 | U+2118 |
UTF-8 | 226 132 152 0 0 0 | E2 84 98 00 00 00 |
Numeric character reference | ℘ |
℘ |
Named character reference | ℘ |