You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Weierstrass's Elliptic Functions
Edit

In mathematics, Weierstrass's elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as p-functions and they are usually denoted by the symbol ℘. They play an important role in theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

elliptic functions elliptic curves ℘-function

1. Definition

Visualization of the -function with invariants g2=1+i and g3=23i in which white corresponds to a pole, black to a zero. https://handwiki.org/wiki/index.php?curid=1280544

Let ω1,ω2C be two complex numbers that are linear independent over R and let Λ:=Zω1+Zω2:={mω1+nω2:m,nZ} be the lattice generated by those numbers. Then the -function is defined as follows:

Undefined control sequence \weierp

This series converges locally uniformly absolutely in CΛ. Oftentimes instead of (z,ω1,ω2) only (z) is written.

The Weierstrass -function is constructed exactly in such a way that it has a pole of the order two at each lattice point.

Because the sum λΛ1(zλ)2 alone would not converge it is necessary to add the term 1λ2.[1]

It is common to use 1 and Undefined control sequence \operatorname as generators of the lattice. Multiplying by 1ω1 maps the lattice Zω1+Zω2 isomorphically onto the lattice Z+Zτ with τ=ω2ω1. By possibly substituting τ by τ it can be assumed that τH. One sets (z,τ):=(z,1,τ).

2. Motivation

A cubic of the form Cg2,g3C={(x,y)C2:y2=4x3g2x+g3}, where g2,g3C are complex numbers with g2327g320, can not be rationally parameterized.[2] Yet one still wants to find a way to parameterize it.

For the quadric K={(x,y)R2:x2+y2=1}, the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:

ψ:R/2πZK,t(sin(t),cos(t)).

Because of the periodicity of the sine and cosine R/2πZ is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization of Cg2,g3C by means of the doubly periodic -function (see in the section "Relation to ellitpic curves"). This parameterization has the domain C/Λ, which is topologically equivalent to a torus.[3]

There is another analogy to the trigonometric functions. Consider the integral function

a(x)=0xdy(1y2).

It can be simplified by substituting y=sin(t) and s=arcsin(x):

a(x)=0sdt=s=arcsin(x).

That means a1(x)=sin(x). So the sine function is an inverse function of an integral function.[4]

Elliptic functions are also inverse functions of integral functions, namely of elliptic integrals. In particular the -function is obtained in the following way:

Let

Undefined control sequence \infin.

Then u1 can be extended to the complex plane and this extension equals the -function.[5]

3. Properties

  • ℘ is an even function. That means (z)=(z) for all zCΛ, which can be seen in the following way:
Undefined control sequence \weierp

The second last equality holds because {λ:λΛ}=Λ. Since the sum converges absolutely this rearrangement does not change the limit.

  • ℘ is meromorphic and its derivative is[6]
(z)=2λΛ1(zλ)3.
  • and are doubly periodic with the periods ω1und ω2.[6] This means:
(z+ω1)=(z)=(z+ω2) and (z+ω1)=(z)=(z+ω2).

It follows that (z+λ)=(z) and (z+λ)=(z) for all λΛ. Functions which are meromorphic and doubly periodic are also called elliptic functions.

4. Laurent Expansion

Let r:=min{|λ|:0λΛ}. Then for 0<|z|<r the -function has the following Laurent expansion

Undefined control sequence \infin

where

Gn=0λΛλn for n3 are so called Eisenstein series.[6]

5. Differential Equation

Set g2=60G4 and g3=140G6. Then the -function satisfies the differential equation[6]

2(z)=43(z)g2(z)g3.

This relation can be verified by forming a linear combination of powers of and to eliminate the pole at z=0. This yields an entire elliptic function that has to be constant by Liouville's theorem .[6]

6. Invariants

The real part of the invariant g3 as a function of the nome q on the unit disk. https://handwiki.org/wiki/index.php?curid=1389931
The imaginary part of the invariant g3 as a function of the nome q on the unit disk. https://handwiki.org/wiki/index.php?curid=1178918

The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depent on the lattice Λ they can be viewed as functions in ω1and ω2.

The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7]

g2(λω1,λω2)=λ4g2(ω1,ω2)
g3(λω1,λω2)=λ6g3(ω1,ω2) for λ0.

If ω1and ω2 are chosen in such a way that Undefined control sequence \operatorname g2 and g3 can be interpreted as functions on the upper half-plane Undefined control sequence \operatorname.

Let τ=ω2ω1. One has:[8]

g2(1,τ)=ω14g2(ω1,ω2),
g3(1,τ)=ω16g3(ω1,ω2).

That means g2 and g3 are only scaled by doing this. Set

g2(τ):=g2(1,τ), g3(τ):=g3(1,τ).

As functions of τH g2,g3 are so called modular forms.

The Fourier series for g2 and g3 are given as follows:[9]

g2(τ)=43π4[1+240k=1σ3(k)q2k]
g3(τ)=827π6[1504k=1σ5(k)q2k]

where σa(k):=dkdα is the divisor function and q:=exp(iπτ).

7. Modular Discriminant

The real part of the discriminant as a function of the nome q on the unit disk.

The modular discriminant Δ is defined as the discriminant of the polynomial at right-hand side of the above differential equation:

Δ=g2327g32.

The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as

Δ(aτ+bcτ+d)=(cτ+d)12Δ(τ)

where a,b,d,cZ with ad − bc = 1.[10]

Note that Δ=(2π)12η24 where η is the Dedekind eta function.[11]

For the Fourier coefficients of Δ, see Ramanujan tau function.

8. The Constants e1, e2 and e3

e1, e2 and e3 are usually used to denote the values of the -function at the half-periods.

e1(ω12)
e2(ω22)
e3(ω1+ω22)

They are pairwise distinct and only depend on the lattice Λ and not on its generators.[12]

e1, e2 and e3 are the roots of the cubic polynomial 4(z)3g2(z)g3 and are related by the equation:

e1+e2+e3=0.

Because those roots are distinct the discriminant Δ does not vanish on the upper half plane.[13] Now we can rewrite the differential equation:

2(z)=4((z)e1)((z)e2)((z)e3).

That means the half-periods are zeros of .

The invariants g2 and g3 can be expressed in terms of these constants in the following way:[14]

g2=4(e1e2+e1e3+e2e3)
g3=4e1e2e3

9. Relation to Elliptic Curves

Consider the projective cubic curve

Undefined control sequence \infin.

For this cubic, also called Weierstrass cubic, there exists no rational parameterization, if Δ0.[2] In this case it is also called an elliptic curve. Nevertheless there is a parameterization that uses the -function and its derivative :[15]

Unknown environment 'cases'

Now the map φ is bijective and parameterizes the elliptic curve C¯g2,g3C.

C/Λ is an abelian group and a topological space, equipped with the quotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair g2,g3C with Δ=g2327g320 there exists a lattice Zω1+Zω2, such that

g2=g2(ω1,ω2) and g3=g3(ω1,ω2).[16]

The statement that elliptic curves over Q can be parameterized over Q, is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.

10. Addition Theorems

Let z,wC, so that z,w,z+w,zwΛ. Then one has:[17]

(z+w)=14[(z)(w)(z)(w)]2(z)(w).

As well as the duplication formula:[17]

(2z)=14[(z)(z)]22(z).

These formulas also have a geometric interpretation, if one looks at the elliptic curve C¯g2,g3C together with the mapping φ:C/ΛC¯g2,g3C as in the previous section.

The group structure of (C/Λ,+) translates to the curve C¯g2,g3Cand can be geometrically interpreted there:

The sum of three pairwise different points a,b,cC¯g2,g3Cis zero if and only if they lie on the same line in PC2.[18]

This is equivalent to:

det(1(u+v)(u+v)1(v)(v)1(u)(u))=0,

where (u)=a, (v)=b and u,vΛ.[19]

11. Relation to Jacobi's Elliptic Functions

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.

The basic relations are:[20]

Undefined control sequence \operatorname

where e1,e2and e3 are the three roots described above and where the modulus k of the Jacobi functions equals

k=e2e3e1e3

and their argument w equals

w=ze1e3.

12. Typography

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘.[21]

In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is U+2118SCRIPT CAPITAL P (HTML &#8472; · &weierp;), with the more correct alias weierstrass elliptic function.[22] In HTML, it can be escaped as &weierp;.

Character information
Preview Template:Charmap/showcharTemplate:Charmap/showcharTemplate:Charmap/showcharTemplate:Charmap/showchar
Unicode name SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION
Encodings decimal hex
Unicode 8472 0 0 0 U+2118
UTF-8 226 132 152 0 0 0 E2 84 98 00 00 00
Numeric character reference &#8472;&#0;&#0;&#0; &#x2118;&#x00;&#x00;&#x00;
Named character reference &weierp;

References

  1. Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. pp. 9. ISBN 0-387-90185-X. OCLC 2121639. https://www.worldcat.org/oclc/2121639. ;
  2. Hulek, Klaus. (2012) (in German), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9 
  3. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6 
  4. Jeremy Gray (2015) (in German), Real and the complex : a history of analysis in the 19th century, Cham, p. 71, ISBN 978-3-319-23715-2 
  5. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6 
  6. Apostol, Tom M. (1976) (in German), Modular functions and Dirichlet series in number theory, New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X 
  7. Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. pp. 14. ISBN 0-387-90185-X. OCLC 2121639. https://www.worldcat.org/oclc/2121639. ;
  8. Apostol, Tom M. (1976) (in German), Modular functions and Dirichlet series in number theory, New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X 
  9. Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. pp. 20. ISBN 0-387-97127-0. OCLC 20262861. https://www.worldcat.org/oclc/20262861. ;
  10. Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. pp. 50. ISBN 0-387-90185-X. OCLC 2121639. https://www.worldcat.org/oclc/2121639. ;
  11. Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. pp. 122. ISBN 0-387-15295-4. OCLC 12053023. https://www.worldcat.org/oclc/12053023. ;
  12. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6 
  13. Tom M. Apostol (1976) (in German), Modular functions and Dirichlet series in number theory, New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X 
  14. K. Chandrasekharan (1985) (in German), Elliptic functions, Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4 
  15. Hulek, Klaus. (2012) (in German), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9 
  16. Hulek, Klaus. (2012) (in German), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9 
  17. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6 
  18. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 287, ISBN 978-3-540-32058-6 
  19. Rolf Busam (2006) (in German), Funktionentheorie 1 (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 288, ISBN 978-3-540-32058-6 
  20. Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. pp. 721. 
  21. This symbol was used already at least in 1890. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[21]
  22. The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 ? MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[22][23]
More
Information
Subjects: Others
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.3K
Entry Collection: HandWiki
Revision: 1 time (View History)
Update Date: 01 Dec 2022
Academic Video Service