Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 + 1077 word(s) 1077 2020-12-08 06:46:39 |
2 Only minor grammatical errors have been corrected, the content remains the same + 1 word(s) 1078 2020-12-15 15:39:10 | |
3 Format correct -75 word(s) 1003 2020-12-16 03:14:01 | |
4 Format correct Meta information modification 1003 2020-12-16 03:16:21 | |
5 Format correct Meta information modification 1003 2020-12-16 03:16:53 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Huang, G.; Li, H.; Zhang, H. Mitochondrial Ribosomal Proteins. Encyclopedia. Available online: (accessed on 04 December 2023).
Huang G, Li H, Zhang H. Mitochondrial Ribosomal Proteins. Encyclopedia. Available at: Accessed December 04, 2023.
Huang, Guomin, Hongyan Li, Hong Zhang. "Mitochondrial Ribosomal Proteins" Encyclopedia, (accessed December 04, 2023).
Huang, G., Li, H., & Zhang, H.(2020, December 15). Mitochondrial Ribosomal Proteins. In Encyclopedia.
Huang, Guomin, et al. "Mitochondrial Ribosomal Proteins." Encyclopedia. Web. 15 December, 2020.
Mitochondrial Ribosomal Proteins

Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors.

Mitochondrial Ribosomal Proteins Mitochondrial Ribosome tumor

1. Introduction

Ribosome is the ribonucleoprotein particle, which is an organelle for protein synthesis in cells, and its function is to synthesize the polypeptide chain efficiently and accurately according to the information of mRNA. Ribosomes can be found in almost all cells and even the smallest and simplest mycoplasma cell contains hundreds of them. At present, only mammalian mature red blood cells have no ribosomes, therefore, ribosomes are an indispensable structure of most cells. Mitochondria and chloroplasts contain ribosomes that synthesize their own proteins, which may be related to the origin of mitochondria and chloroplasts. The accepted endosymbiotic origin theory holds that mitochondria and chloroplasts originated from symbiotic bacteria and cyanobacteria in primitive eukaryotic, respectively. Therefore, mitochondrial ribosomes are more similar to the bacterial ribosomes than to cytoplasmic ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes and synthesized by the cytoplasm 80S ribosomes, after specific targeting, sorting, transporting to mitochondria, and then assembling into mitochondrial ribosome small and large subunits with two rRNAs encoded by mitochondrial DNA (mt-DNA).

2. MRPs Associated with Diseases

With the research on MRPs, their names have changed [1], as shown in Table 1. The table also shows the changes of MRPs in tumor tissues reported in the past 5 years.

Table 1. Summary of the relationship between abnormal expression of mitochondrial ribosomal proteins and their encoding genes with diseases in recent 5 years.

Old Name New Name Cancer Other Diseases
Mitochondrial ribosomal large subunit (mt-LSU) genes and proteins.
MRPL1 uL1m Lung cancer [2]  
MRPL3 uL3m   Neurodegeneration and memory impairment [3], Hypertrophic cardiomyopathy [4][5], Prognosis [6], Acute mountain disease [7]
MRPL9 bL9m Breast cancer [8]  
MRPL10 uL10m   Early age-related macular degeneration [9]
MRPL11 uL11m   Mitochondrial encephalopathy [10]
MRPL12/L7 bL12m Breast cancer [11] ↑, Colorectal cancer [12]  
MRPL13 uL13m Liver cancer [13] ↓, Breast cancer [13][14][15]  
MRPL15 uL15m Breast cancer [16]  
MRPL16 uL16m   Septic cardiomyopathy [17]
MRPL17 bL17m Lung cancer [18]  
MRPL19 bL19m Endometrial cancer [19][20], Diffuse non-Hodgkin lymphoma [21], Melanoma [22]  
MRPL21 bL21m Acute myeloid leukemia [23]  
MRPL23 uL23m Oral squamous cell carcinoma [24] ↓, Glioblastoma multiforme [25]  
MRPL24 uL24m   Cerebellar atrophy, intellectual disability [26]
MRPL28 bL28m Gastric cancer [27]  
MRPL33 bL33m Breast cancer [28] ↑, Lung cancer, colon cancer [29] ↑, Gastric cancer [30], Acute myeloid leukemia and neuroblastoma [31] ↑, Human papillomavirus associated oropharyngeal squamous cell carcinoma [32]  
MRPL34 bL34m   Cardiomyocyte hypertrophy [33]
MRPL35 bL35m Glioblastoma multiforme [34] ↑, Colorectal cancer [35]  
MRPL36 bL36m   Cri-du-chat syndrome [36]
MRPL37 mL37   Venous thromboembolism [37]
MRPL38 mL38 Liver cancer [38]  
MRPL39 mL39 Gastric cancer [39]  
MRPL40 mL40   Schizophrenia [40][41][42]
MRPL42 mL42 Glioma [43]  
MRPL43 mL43 Gastric cancer [44]  
MRPL44 mL44   Mitochondrial encephalopathy [10] ↓, Cardiomyopathy [45][46]. Hemiplegia migraine, pigmentary retinopathy, renal insufficiency, Leigh-like lesions on brain MRI [47], Asthma and allergy-related traits [48]
MRPL46 mL46 Ovarian cancer [49]  
MRPL47 mL47 Acute lymphoblastic leukemia [50]  
MRPL50 mL50   Cardiomyocyte hypertrophy [33]
MRPL51 mL51 Lung cancer [51]  
MRPL52 mL52 Colorectal cancer [52]  
MRPL54 mL54 Breast cancer [53]  
CRIF1 mL64 Hepatocellular carcinoma [54] ↓, T-cell leukemia [55] Acute radiation syndrome [56], Endothelial inflammation [57][58] ↓, Autoimmune arthritis [59]
MRPS18-A mL66 Liver cancer [60] ↑, Cholangiocarcinoma [61]  
Mitochondrial ribosomal small subunit (mt-SSU) genes and proteins
MRPS2 uS2m Glioblastoma multiforme [25] Cardiomyocyte hypertrophy [33]
MRPS5 uS5m   Noise-induced hearing loss and anxiety related behavior changes [62]
MRPS7 uS7m Osteosarcoma [63] Primary hypogonadism, primary adrenal failure [64]
MRPS11 uS11m Uveal melanoma [65]  
MRPS12 uS12m Glioblastoma multiforme [25]  
MRPS14 uS14m   Perinatal hypertrophic cardiomyopathy [66]
MRPS18-B mS40 Prostate cancer [67] ↑, Colorectal carcinoma [68] Tuberculosis [69]
MRPS18-C bS18m Breast cancer [70] Epileptic encephalopathy [71]
MRPS21 bS21m   Cardiomyocyte hypertrophy [33]
MRPS22 mS22   Epicanthus inversus syndrome [72], Hypertrophic cardiomyopathy and fallopian tube lesions [73] ↓, Primary ovarian insufficiency [74][75][76]
MRPS23 mS23 Hepatocellular carcinoma [77]  
MRPS34 mS34 Glioblastoma multiforme [25] Cardiomyocyte hypertrophy [33]
MRPS37 mS37 Acute lymphoblastic leukemia [23]  
MRPS39 mS39   Leigh syndrome [78]

Legend: Prefix “u”: Genes and proteins are present in all kingdoms of life (for universal); prefix “u”: Genes and proteins are bacterial in origin and do not have an eukaryotic (or archaeal) homolog; prefix “m”: Genes and proteins are mitochondrion-specific. “↑” Upregulation in that disease; “↓” downregulation in that disease. This table only lists the MRPs (mitochondrial ribosomal proteins) that appear in this article.


3. Conclusions and Perspectives

The development of a high-precision analysis technology of cryo-electron microscopy enables us to identify the structure of mitochondrial ribosomal proteins with a scale of 0.1 nm. Each of the 80 MRPs is essential for the mitochondrial ribosome composition, which plays an irreplaceable role in the assembly and translation of mitochondrial DNA. At present, studies of the relationship between MRPs and cell apoptosis are few. Although the apoptotic mechanisms of MRPS29, MRPL41 and MRPL65 have not been fully elucidated, they at least provide us with useful information to deeply study the apoptotic mechanisms of MRPs. We can further explore the changes of MRPs function or pathway-activating role in the process of inducing apoptosis, based on the analysis of the MRPs structure. Additionally, specific mechanisms can be clarified in the future.

The abnormal expression of MRPs and their encoding genes is closely associated with a variety of cancer and mitochondrial related diseases. Multiple MRPs are important predictors of disease diagnosis. However, the specific mechanisms of inducing the development of diseases are little known.

In the future, on the one hand, it is very important to strengthen the research on the relationship between the abnormal expression of MRPs, lack of their encoding genes, and diseases. On the other hand, some MRPs such as MRPS22, MRPL44 and MRPL28 that have been clarified as key factors in the development of cancer, which can be as biological targets to deeply study their specific pathways of influence, in order to lay a theoretical foundation for a targeted diagnosis and therapy of cancer in our research.


  1. Ban, N.; Beckmann, R.; Cate, J.H.; Dinman, J.D.; Dragon, F.; Ellis, S.R.; Lafontaine, D.L.; Lindahl, L.; Liljas, A.; Lipton, J.M.; et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 2014, 24, 165–169.
  2. Maki-Nevala, S.; Sarhadi, V.K.; Knuuttila, A.; Scheinin, I.; Ellonen, P.; Lagstrom, S.; Ronty, M.; Kettunen, E.; Husgafvel-Pursiainen, K.; Wolff, H.; et al. Driver Gene and Novel Mutations in Asbestos-Exposed Lung Adenocarcinoma and Malignant Mesothelioma Detected by Exome Sequencing. Lung 2016, 194, 125–135.
  3. Cahill, L.S.; Cameron, J.M.; Winterburn, J.; Macos, P.; Hoggarth, J.; Dzamba, M.; Brudno, M.; Nutter, L.M.J.; Sproule, T.J.; Burgess, R.W.; et al. Structural Variant in Mitochondrial-Associated Gene (MRPL3) Induces Adult-Onset Neurodegeneration with Memory Impairment in the Mouse. J. Neurosci. 2020, 40, 4576–4585.
  4. Bursle, C.; Narendra, A.; Chuk, R.; Cardinal, J.; Justo, R.; Lewis, B.; Coman, D. COXPD9 an Evolving Multisystem Disease; Congenital Lactic Acidosis, Sensorineural Hearing Loss, Hypertrophic Cardiomyopathy, Cirrhosis and Interstitial Nephritis. JIMD Rep. 2017, 34, 105–109.
  5. Galmiche, L.; Serre, V.; Beinat, M.; Assouline, Z.; Lebre, A.S.; Chretien, D.; Nietschke, P.; Benes, V.; Boddaert, N.; Sidi, D.; et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum. Mutat. 2011, 32, 1225–1231.
  6. Chen, K.; He, Y.; Liu, Y.; Yang, X. Gene signature associated with neuro-endocrine activity predicting prognosis of pancreatic carcinoma. Mol. Genet. Genom. Med. 2019, 7, e00729.
  7. Chang, Y.; He, J.; Tang, J.; Chen, K.; Wang, Z.; Xia, Q.; Li, H. Investigation of the gene co-expression network and hub genes associated with acute mountain sickness. Hereditas 2020, 157.
  8. Morais-Rodrigues, F.; Silύerio-Machado, R.; Kato, R.B.; Rodrigues, D.L.N.; Valdez-Baez, J.; Fonseca, V.; San, E.J.; Gomes, L.G.R.; dos Santos, R.G.; Vinicius Canário Viana, M.; et al. Analysis of the microarray gene expression for breast cancer progression after the application modified logistic regression. Gene 2020, 726.
  9. Klein, R.; Li, X.; Kuo, J.Z.; Klein, B.E.; Cotch, M.F.; Wong, T.Y.; Taylor, K.D.; Rotter, J.I. Associations of candidate genes to age-related macular degeneration among racial/ethnic groups in the multi-ethnic study of atherosclerosis. Am. J. Ophthalmol. 2013, 156, 1010–1020.e1.
  10. Besse, A.; Brezavar, D.; Hanson, J.; Larson, A.; Bonnen, P.E. LONP1 de novo dominant mutation causes mitochondrial encephalopathy with loss of LONP1 chaperone activity and excessive LONP1 proteolytic activity. Mitochondrion 2020, 51, 68–78.
  11. Zhang, Q.; Liang, Z.; Gao, Y.; Teng, M.; Niu, L. Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies. Gene 2017, 596, 45–52.
  12. Yu, Y.; Guo, M.; Wei, Y.; Yu, S.; Li, H.; Wang, Y.; Xu, X.; Cui, Y.; Tian, J.; Liang, L.; et al. FoxO3a confers cetuximab resistance in RAS wild-type metastatic colorectal cancer through c-Myc. Oncotarget 2016, 7, 80888–80900.
  13. Lee, Y.-K.; Lim, J.J.; Jeoun, U.-w.; Min, S.; Lee, E.-b.; Kwon, S.M.; Lee, C.; Yoon, G. Lactate-mediated mitoribosomal defects impair mitochondrial oxidative phosphorylation and promote hepatoma cell invasiveness. J. Biol. Chem. 2017, 292, 20208–20217.
  14. Wang, K.; Li, L.; Fu, L.; Yuan, Y.; Dai, H.; Zhu, T.; Zhou, Y.; Yuan, F. Integrated Bioinformatics Analysis the Function of RNA Binding Proteins (RBPs) and Their Prognostic Value in Breast Cancer. Front. Pharmacol. 2019, 10, 140.
  15. Xu, Y.H.; Deng, J.L.; Wang, L.P.; Zhang, H.B.; Tang, L.; Huang, Y.; Tang, J.; Wang, S.M.; Wang, G. Identification of Candidate Genes Associated with Breast Cancer Prognosis. DNA Cell Biol. 2020, 39, 1205–1227.
  16. Sotgia, F.; Fiorillo, M.; Lisanti, M.P. Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget 2017, 8, 68730–68745.
  17. Kang, K.; Li, J.; Li, R.; Xu, X.; Liu, J.; Qin, L.; Huang, T.; Wu, J.; Jiao, M.; Wei, M.; et al. Potentially Critical Roles of NDUFB5, TIMMDC1, and VDAC3 in the Progression of Septic Cardiomyopathy Through Integrated Bioinformatics Analysis. DNA Cell Biol. 2020, 39, 105–117.
  18. Zhang, L.; Huang, Y.; Ling, J.; Xiang, Y.; Zhuo, W. Screening of key genes and prediction of therapeutic agents in Arsenic-induced lung carcinoma. Cancer Biomark. 2019, 25, 351–360.
  19. Ayakannu, T.; Taylor, A.H.; Konje, J.C. Selection of Endogenous Control Reference Genes for Studies on Type 1 or Type 2 Endometrial Cancer. Sci. Rep. 2020, 10, 8468.
  20. Ayakannu, T.; Taylor, A.H.; Willets, J.M.; Brown, L.; Lambert, D.G.; McDonald, J.; Davies, Q.; Moss, E.L.; Konje, J.C. Validation of endogenous control reference genes for normalizing gene expression studies in endometrial carcinoma. Mol. Hum. Reprod. 2015, 21, 723–735.
  21. Wu, D.; Zhao, J.; Ma, H.; Wang, M.C. Integrating transcriptome-wide association study and copy number variation study identifies candidate genes and pathways for diffuse non-Hodgkin‘s lymphoma. Cancer Genet 2020, 243, 7–10.
  22. Christensen, J.N.; Schmidt, H.; Steiniche, T.; Madsen, M. Identification of robust reference genes for studies of gene expression in FFPE melanoma samples and melanoma cell lines. Melanoma Res. 2020, 30, 26–38.
  23. Aasebø, E.; Berven, F.S.; Hovland, R.; Døskeland, S.O.; Bruserud, Ø.; Selheim, F.; Hernandez-Valladares, M. The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers 2020, 12, 1466.
  24. Yuan, Z.; Yu, Y.; Zhang, B.; Miao, L.; Wang, L.; Zhao, K.; Ji, Y.; Wang, R.; Ma, H.; Chen, N.; et al. Genetic variants in lncRNA H19 are associated with the risk of oral squamous cell carcinoma in a Chinese population. Oncotarget 2018, 9, 23915–23922.
  25. Tang, N.Y.; Chueh, F.S.; Yu, C.C.; Liao, C.L.; Lin, J.J.; Hsia, T.C.; Wu, K.C.; Liu, H.C.; Lu, K.W.; Chung, J.G. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells. Oncol. Rep. 2016, 35, 2089–2096.
  26. Di Nottia, M.; Marchese, M.; Verrigni, D.; Mutti, C.D.; Torraco, A.; Oliva, R.; Fernandez-Vizarra, E.; Morani, F.; Trani, G.; Rizza, T.; et al. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly. Neurobiol. Dis. 2020, 141.
  27. Sotgia, F.; Lisanti, M.P. Mitochondrial biomarkers predict tumor progression and poor overall survival in gastric cancers: Companion diagnostics for personalized medicine. Oncotarget 2017, 8, 67117–67128.
  28. Qiu, R.; Shi, H.; Wang, S.; Leng, S.; Liu, R.; Zheng, Y.; Huang, W.; Zeng, Y.; Gao, J.; Zhang, K.; et al. BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am. J. Cancer Res. 2018, 8, 2030–2045.
  29. Liu, L.; Luo, C.; Luo, Y.; Chen, L.; Liu, Y.; Wang, Y.; Han, J.; Zhang, Y.; Wei, N.; Xie, Z.; et al. MRPL33 and its splicing regulator hnRNPK are required for mitochondria function and implicated in tumor progression. Oncogene 2018, 37, 86–94.
  30. Li, J.; Feng, D.; Gao, C.; Zhang, Y.; Xu, J.; Wu, M.; Zhan, X. Isoforms S and L of MRPL33 from alternative splicing have isoform-specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway. Int. J. Oncol. 2019.
  31. Lebedev, T.D.; Vagapova, E.R.; Popenko, V.I.; Leonova, O.G.; Spirin, P.V.; Prassolov, V.S. Two Receptors, Two Isoforms, Two Cancers: Comprehensive Analysis of KIT and TrkA Expression in Neuroblastoma and Acute Myeloid Leukemia. Front. Oncol. 2019, 9, 1046.
  32. Guo, T.; Zambo, K.D.A.; Zamuner, F.T.; Ou, T.; Hopkins, C.; Kelley, D.Z.; Wulf, H.A.; Winkler, E.; Erbe, R.; Danilova, L.; et al. Chromatin structure regulates cancer-specific alternative splicing events in primary HPV-related oropharyngeal squamous cell carcinoma. Epigenetics 2020, 1–13.
  33. Meng, Z.; Chen, C.; Cao, H.; Wang, J.; Shen, E. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. J. Cell. Biochem. 2019, 120, 1018–1027.
  34. Alshabi, A.M.; Vastrad, B.; Shaikh, I.A.; Vastrad, C. Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis. Biomolecules 2019, 9, 201.
  35. Zhang, L.; Lu, P.; Yan, L.; Yang, L.; Wang, Y.; Chen, J.; Dai, J.; Li, Y.; Kang, Z.; Bai, T.; et al. MRPL35 Is Up-Regulated in Colorectal Cancer and Regulates Colorectal Cancer Cell Growth and Apoptosis. Am. J. Pathol. 2019, 189, 1105–1120.
  36. Corrêa, T.; Feltes, B.C.; Riegel, M. Integrated analysis of the critical region 5p15.3–p15.2 associated with cri-du-chat syndrome. Genet. Mol. Biol. 2019, 42 (Suppl. 1), 186–196.
  37. Sundquist, K.; Ahmad, A.; Svensson, P.J.; Zoller, B.; Sundquist, J.; Memon, A.A. Polymorphisms in PARK2 and MRPL37 are associated with higher risk of recurrent venous thromboembolism in a sex-specific manner. J. Thromb. Thrombolysis 2018, 46, 154–165.
  38. Sultana, N.; Rahman, M.; Myti, S.; Islam, J.; Mustafa, M.G.; Nag, K. A novel knowledge-derived data potentizing method revealed unique liver cancer-associated genetic variants. Hum. Genom. 2019, 13.
  39. Yu, M.J.; Zhao, N.; Shen, H.; Wang, H. Long Noncoding RNA MRPL39 Inhibits Gastric Cancer Proliferation and Progression by Directly Targeting miR-130. Genet. Test. Mol. Biomark. 2018, 22, 656–663.
  40. Napoli, E.; Tassone, F.; Wong, S.; Angkustsiri, K.; Simon, T.J.; Song, G.; Giulivi, C. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome. J. Biol. Chem. 2015, 290, 23240–23253.
  41. Li, J.; Ryan, S.K.; Deboer, E.; Cook, K.; Fitzgerald, S.; Lachman, H.M.; Wallace, D.C.; Goldberg, E.M.; Anderson, S.A. Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia. Transl. Psychiatry 2019, 9, 302.
  42. Devaraju, P.; Yu, J.; Eddins, D.; Mellado-Lagarde, M.M.; Earls, L.R.; Westmoreland, J.J.; Quarato, G.; Green, D.R.; Zakharenko, S.S. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol. Psychiatry 2016, 22, 1313–1326.
  43. Hao, C.; Duan, H.; Li, H.; Wang, H.; Liu, Y.; Fan, Y.; Zhang, C. Knockdown of MRPL42 suppresses glioma cell proliferation by inducing cell cycle arrest and apoptosis. Biosci. Rep. 2018, 38.
  44. Wu, S.; Yuan, W.; Shen, Y.; Lu, X.; Li, Y.; Tian, T.; Jiang, L.; Zhuang, X.; Wu, J.; Chu, M. The miR-608 rs4919510 polymorphism may modify cancer susceptibility based on type. Tumour Biol. 2017, 39.
  45. Vasilescu, C.; Ojala, T.H.; Brilhante, V.; Ojanen, S.; Hinterding, H.M.; Palin, E.; Alastalo, T.P.; Koskenvuo, J.; Hiippala, A.; Jokinen, E.; et al. Genetic Basis of Severe Childhood-Onset Cardiomyopathies. J. Am. Coll. Cardiol. 2018, 72, 2324–2338.
  46. Yeo, J.H.; Skinner, J.P.; Bird, M.J.; Formosa, L.E.; Zhang, J.G.; Kluck, R.M.; Belz, G.T.; Chong, M.M. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS ONE 2015, 10, e0134326.
  47. Distelmaier, F.; Haack, T.B.; Catarino, C.B.; Gallenmüller, C.; Rodenburg, R.J.; Strom, T.M.; Baertling, F.; Meitinger, T.; Mayatepek, E.; Prokisch, H.; et al. MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy. Neurogenetics 2015, 16, 319–323.
  48. Morin, A.; Madore, A.M.; Kwan, T.; Ban, M.; Partanen, J.; Rönnblom, L.; Syvänen, A.C.; Sawcer, S.; Stunnenberg, H.; Lathrop, M.; et al. Exploring rare and low-frequency variants in the Saguenay-Lac-Saint-Jean population identified genes associated with asthma and allergy traits. Eur. J. Hum. Genet. EJHG 2019, 27, 90–101.
  49. Antony, F.; Deantonio, C.; Cotella, D.; Soluri, M.F.; Tarasiuk, O.; Raspagliesi, F.; Adorni, F.; Piazza, S.; Ciani, Y.; Santoro, C.; et al. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids. OncoImmunology 2019, 8.
  50. Abaji, R.; Ceppi, F.; Patel, S.; Gagné, V.; Xu, C.J.; Spinella, J.F.; Colombini, A.; Parasole, R.; Buldini, B.; Basso, G.; et al. Genetic risk factors for VIPN in childhood acute lymphoblastic leukemia patients identified using whole-exome sequencing. Pharmacogenomics 2018, 19, 1181–1193.
  51. Maiuthed, A.; Prakhongcheep, O.; Chanvorachote, P. Microarray-based Analysis of Genes, Transcription Factors, and Epigenetic Modifications in Lung Cancer Exposed to Nitric Oxide. Cancer Genom. Proteom. 2020, 17, 401–415.
  52. Abdul Aziz, N.A.; Mokhtar, N.M.; Harun, R.; Mollah, M.M.; Mohamed Rose, I.; Sagap, I.; Mohd Tamil, A.; Wan Ngah, W.Z.; Jamal, R. A 19-Gene expression signature as a predictor of survival in colorectal cancer. BMC Med. Genom. 2016, 9, 58.
  53. López-Cortés, A.; Cabrera-Andrade, A.; Vázquez-Naya, J.M.; Pazos, A.; Gonzáles-Díaz, H.; Paz, Y.M.C.; Guerrero, S.; Pérez-Castillo, Y.; Tejera, E.; Munteanu, C.R. Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks. Sci. Rep. 2020, 10, 8515.
  54. Zhuang, R.; Lu, D.; Zhuo, J.; Zhang, X.; Wang, K.; Wei, X.; Wei, Q.; Wang, W.; Xie, H.; Zhou, L.; et al. CR6-interacting factor 1 inhibits invasiveness by suppressing TGF-β-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2017, 8, 94759–94768.
  55. Vahedi, S.; Chueh, F.Y.; Chandran, B.; Yu, C.L. Lymphocyte-specific protein tyrosine kinase (Lck) interacts with CR6-interacting factor 1 (CRIF1) in mitochondria to repress oxidative phosphorylation. BMC Cancer 2015, 15, 551.
  56. Chen, L.; Ran, Q.; Xiang, Y.; Xiang, L.; Chen, L.; Li, F.; Wu, J.; Wu, C.; Li, Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017, 7, 2634–2648.
  57. Ramchandran, R.; Piao, S.; Lee, J.W.; Nagar, H.; Jung, S.-b.; Choi, S.; Kim, S.; Lee, I.; Kim, S.-m.; Shin, N.; et al. CR6 interacting factor 1 deficiency promotes endothelial inflammation by SIRT1 downregulation. PLoS ONE 2018, 13, e192693.
  58. Nagar, H.; Jung, S.B.; Ryu, M.J.; Choi, S.J.; Piao, S.; Song, H.J.; Kang, S.K.; Shin, N.; Kim, D.W.; Jin, S.A.; et al. CR6-Interacting Factor 1 Deficiency Impairs Vascular Function by Inhibiting the Sirt1-Endothelial Nitric Oxide Synthase Pathway. Antioxid. Redox Signal. 2017, 27, 234–249.
  59. Park, J.S.; Choi, S.Y.; Hwang, S.H.; Kim, S.M.; Choi, J.; Jung, K.A.; Kwon, J.Y.; Kong, Y.Y.; Cho, M.L.; Park, S.H. CR6-interacting factor 1 controls autoimmune arthritis by regulation of signal transducer and activator of transcription 3 pathway and T helper type 17 cells. Immunology 2019, 156, 413–421.
  60. Zhou, C.; Chen, Z.; Peng, C.; Chen, C.; Li, H. Long Noncoding RNA TRIM52-AS1 Sponges miR-514a-5p to Facilitate Hepatocellular Carcinoma Progression Through Increasing MRPS18A. Cancer Biother. Radiopharm. 2020.
  61. Tian, A.; Pu, K.; Li, B.; Li, M.; Liu, X.; Gao, L.; Mao, X. Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. Hepatol. Res. 2019, 49, 1195–1206.
  62. Akbergenov, R.; Duscha, S.; Fritz, A.K.; Juskeviciene, R.; Oishi, N.; Schmitt, K.; Shcherbakov, D.; Teo, Y.; Boukari, H.; Freihofer, P.; et al. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep. 2018, 19.
  63. Liu, J.; Wu, S.; Xie, X.; Wang, Z.; Lei, Q. Identification of potential crucial genes and key pathways in osteosarcoma. Hereditas 2020, 157.
  64. Menezes, M.J.; Guo, Y.; Zhang, J.; Riley, L.G.; Cooper, S.T.; Thorburn, D.R.; Li, J.; Dong, D.; Li, Z.; Glessner, J.; et al. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Hum. Mol. Genet. 2015, 24, 2297–2307.
  65. Zhao, D.D.; Zhao, X.; Li, W.T. Identification of differentially expressed metastatic genes and their signatures to predict the overall survival of uveal melanoma patients by bioinformatics analysis. Int. J. Ophthalmol. 2020, 13, 1046–1053.
  66. Jackson, C.B.; Huemer, M.; Bolognini, R.; Martin, F.; Szinnai, G.; Donner, B.C.; Richter, U.; Battersby, B.J.; Nuoffer, J.M.; Suomalainen, A.; et al. A variant in MRPS14 (uS14m) causes perinatal hypertrophic cardiomyopathy with neonatal lactic acidosis, growth retardation, dysmorphic features and neurological involvement. Hum. Mol. Genet. 2019, 28, 639–649.
  67. Mushtaq, M.; Jensen, L.; Davidsson, S.; Grygoruk, O.V.; Andrén, O.; Kashuba, V.; Kashuba, E. The MRPS18-2 protein levels correlate with prostate tumor progression and it induces CXCR4-dependent migration of cancer cells. Sci. Rep. 2018, 8, 2268.
  68. Mushtaq, M.; Ali, R.H.; Kashuba, V.; Klein, G.; Kashuba, E. S18 family of mitochondrial ribosomal proteins: Evolutionary history and Gly132 polymorphism in colon carcinoma. Oncotarget 2016, 7, 55649–55662.
  69. Chen, Y.C.; Hsiao, C.C.; Chen, T.W.; Wu, C.C.; Chao, T.Y.; Leung, S.Y.; Eng, H.L.; Lee, C.P.; Wang, T.Y.; Lin, M.C. Whole Genome DNA Methylation Analysis of Active Pulmonary Tuberculosis Disease Identifies Novel Epigenotypes: PARP9/miR-505/RASGRP4/GNG12 Gene Methylation and Clinical Phenotypes. Int. J. Mol. Sci. 2020, 21, 3180.
  70. Hamdi, Y.; Soucy, P.; Adoue, V.; Michailidou, K.; Canisius, S.; Lemaçon, A.; Droit, A.; Andrulis, I.L.; Anton-Culver, H.; Arndt, V.; et al. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget 2016, 7, 80140–80163.
  71. Rodríguez-García, M.E.; Cotrina-Vinagre, F.J.; Carnicero-Rodríguez, P.; Martínez-Azorín, F. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G > A mutation in MT-ND1 gene. Hum. Genet. 2017, 136, 885–896.
  72. Bertini, V.; Valetto, A.; Baldinotti, F.; Azzara, A.; Cambi, F.; Toschi, B.; Giacomina, A.; Gatti, G.L.; Gana, S.; Caligo, M.A.; et al. Blepharophimosis, Ptosis, Epicanthus Inversus Syndrome: New Report with a 197-kb Deletion Upstream of FOXL2 and Review of the Literature. Mol. Syndromol. 2019, 10, 147–153.
  73. Baertling, F.; Haack, T.B.; Rodenburg, R.J.; Schaper, J.; Seibt, A.; Strom, T.M.; Meitinger, T.; Mayatepek, E.; Hadzik, B.; Selcan, G.; et al. MRPS22 mutation causes fatal neonatal lactic acidosis with brain and heart abnormalities. Neurogenetics 2015, 16, 237–240.
  74. Chen, A.; Tiosano, D.; Guran, T.; Baris, H.N.; Bayram, Y.; Mory, A.; Shapiro-Kulnane, L.; Hodges, C.A.; Akdemir, Z.C.; Turan, S.; et al. Mutations in the mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency. Hum. Mol. Genet. 2018, 27, 1913–1926.
  75. Franca, M.M.; Mendonca, B.B. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J. Endocr. Soc. 2020, 4, bvz037.
  76. Tiosano, D.; Mears, J.A.; Buchner, D.A. Mitochondrial Dysfunction in Primary Ovarian Insufficiency. Endocrinology 2019, 160, 2353–2366.
  77. Pu, M.; Wang, J.; Huang, Q.; Zhao, G.; Xia, C.; Shang, R.; Zhang, Z.; Bian, Z.; Yang, X.; Tao, K. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumour Biol. 2017, 39.
  78. Borna, N.N.; Kishita, Y.; Kohda, M.; Lim, S.C.; Shimura, M.; Wu, Y.; Mogushi, K.; Yatsuka, Y.; Harashima, H.; Hisatomi, Y.; et al. Mitochondrial ribosomal protein PTCD3 mutations cause oxidative phosphorylation defects with Leigh syndrome. Neurogenetics 2019, 20, 9–25.
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , ,
View Times: 321
Revisions: 5 times (View History)
Update Date: 16 Dec 2020