1000/1000

Hot
Most Recent

Submitted Successfully!

To reward your contribution, here is a gift for you: A free trial for our video production service.

Thank you for your contribution! You can also upload a video entry or images related to this topic.

Do you have a full video?

Are you sure to Delete?

Cite

If you have any further questions, please contact Encyclopedia Editorial Office.

HandWiki. Turn (Geometry). Encyclopedia. Available online: https://encyclopedia.pub/entry/35667 (accessed on 15 June 2024).

HandWiki. Turn (Geometry). Encyclopedia. Available at: https://encyclopedia.pub/entry/35667. Accessed June 15, 2024.

HandWiki. "Turn (Geometry)" *Encyclopedia*, https://encyclopedia.pub/entry/35667 (accessed June 15, 2024).

HandWiki. (2022, November 22). Turn (Geometry). In *Encyclopedia*. https://encyclopedia.pub/entry/35667

HandWiki. "Turn (Geometry)." *Encyclopedia*. Web. 22 November, 2022.

Copy Citation

A turn is a unit of plane angle measurement equal to 2π radians, 360 degrees or 400 gradians. A turn is also referred to as a cycle (abbreviated cyc), revolution (abbreviated rev), complete rotation (abbreviated rot) or full circle. Subdivisions of a turn include half turns, quarter turns, centiturns, milliturns, points, etc.

angle measurement
milliturns
revolution

A turn can be divided in 100 centiturns or 1000 milliturns, with each milliturn corresponding to an angle of 0.36°, which can also be written as 21′ 36″. A protractor divided in centiturns is normally called a percentage protractor.

Binary fractions of a turn are also used. Sailors have traditionally divided a turn into 32 compass points. The *binary degree*, also known as the *binary radian* (or *brad*), is ^{1}⁄_{256} turn.^{[1]} The binary degree is used in computing so that an angle can be represented to the maximum possible precision in a single byte. Other measures of angle used in computing may be based on dividing one whole turn into 2^{n} equal parts for other values of *n*.^{[2]}

The notion of turn is commonly used for planar rotations.

The word turn originates via Latin and French from the Greek word τόρνος (*tórnos* – a lathe).

In 1697, David Gregory used π/ρ (pi over rho) to denote the perimeter of a circle (i.e., the circumference) divided by its radius.^{[3]}^{[4]} However, earlier in 1647, William Oughtred had used δ/π (delta over pi) for the ratio of the diameter to perimeter. The first use of the symbol π on its own with its present meaning (of perimeter divided by diameter) was in 1706 by the Welsh mathematician William Jones.^{[5]} Euler adopted the symbol with that meaning in 1737, leading to its widespread use.

Percentage protractors have existed since 1922,^{[6]} but the terms centiturns and milliturns were introduced much later by Fred Hoyle.^{[7]}

The German standard DIN 1315 (1974-03) proposed the unit symbol *pla* (from Latin: *plenus angulus* "full angle") for turns.^{[8]}^{[9]} Since 2011, the HP 39gII and HP Prime support the unit symbol *tr* for turns. In 2016, support for turns was also added to newRPL for the HP 50g.^{[10]} In June 2017, for release 3.6, the Python programming language adopted the name *tau* to represent the number of radians in a turn.^{[11]}

The standard ISO 80000-3:2006 mentions that the unit name revolution with symbol r is used with rotating machines, as well as using the term *turn* to mean a full rotation. The standard IEEE 260.1:2004 also uses the unit name rotation and symbol *r*.

One turn is equal to 2π (≈ 6.283185307179586)^{[12]} radians.

Turns | Radians | Degrees | Gradians, or gons |
---|---|---|---|

0 | 0 | 0° | 0^{g} |

1/24 | π/12 | 15° | 16+2/3^{g} |

1/12 | π/6 | 30° | 33+1/3^{g} |

1/10 | π/5 | 36° | 40^{g} |

1/8 | π/4 | 45° | 50^{g} |

1/2π | 1 | c. 57.3° | c. 63.7^{g} |

1/6 | π/3 | 60° | 66+2/3^{g} |

1/5 | 2π/5 | 72° | 80^{g} |

1/4 | π/2 | 90° | 100^{g} |

1/3 | 2π/3 | 120° | 133+1/3^{g} |

2/5 | 4π/5 | 144° | 160^{g} |

1/2 | π | 180° | 200^{g} |

3/4 | 3π/2 | 270° | 300^{g} |

1 | 2π | 360° | 400^{g} |

In 2001, Robert Palais proposed using the number of radians in a turn as the fundamental circle constant instead of π, which amounts to the number of radians in half a turn, in order to make mathematics simpler and more intuitive. His proposal used a "pi with three legs" symbol to denote the constant ([math]\displaystyle{ \pi\!\;\!\!\!\pi }[/math] = 2π).^{[13]}

In 2010, Michael Hartl proposed to use tau to represent Palais' circle constant: Template:Tau = 2π. He offered two reasons. First, Template:Tau is the number of radians in *one turn*, which allows fractions of a turn to be expressed more directly: for instance, a 3/4 turn would be represented as 3/4Template:Tau rad instead of 3/2π rad. Second, Template:Tau visually resembles π, whose association with the circle constant is unavoidable.^{[14]} Hartl's *Tau Manifesto*^{[15]} gives many examples of formulas that are asserted to be clearer where tau is used instead of pi.^{[16]}^{[17]}^{[18]}

The proposal is implemented in the Google calculator and in several computer programs like Python^{[19]}, Perl^{[20]}, Processing^{[21]}, and Nim^{[22]}. It has also been used in at least one mathematical research article,^{[23]} authored by the Template:Tau-promoter P. Harremoës.^{[24]}

However, none of these proposals have received widespread acceptance by the mathematical and scientific communities.^{[25]}

- As an angular unit, the turn or revolution is particularly useful for large angles, such as in connection with electromagnetic coils and rotating objects. See also winding number.
- The angular speed of rotating machinery, such as automobile engines, is commonly measured in revolutions per minute or RPM.
- Turn is used in complex dynamics for measure of external and internal angles. The sum of external angles of a polygon equals one turn. Angle doubling map is used.
- Pie charts illustrate proportions of a whole as fractions of a turn. Each one percent is shown as an angle of one centiturn.

In kinematics, a **turn** is a rotation less than a full revolution. A turn may be represented in a mathematical model that uses expressions of complex numbers or quaternions. In the complex plane every non-zero number has a polar coordinate expression *z* = *r* cis(*a*) = *r* cos(*a*) + *r*i sin(*a*) where *r* > 0 and *a* is in [0, 2π). A turn of the complex plane arises from multiplying *z* = *x* + i*y* by an element *u* = e^{bi} that lies on the unit circle:

*z*↦*uz*.

Frank Morley consistently referred to elements of the unit circle as *turns* in the book *Inversive Geometry*, (1933) which he coauthored with his son Frank Vigor Morley.^{[26]}

The Latin term for *turn* is versor, which is a quaternion that can be visualized as an arc of a great circle. The product of two versors can be compared to a spherical triangle where two sides add to the third. For the kinematics of rotation in three dimensions, see quaternions and spatial rotation.

- "ooPIC Programmer's Guide". www.oopic.com. Archived from the original on 2008-06-28. https://web.archive.org/web/20080628051746/http://www.oopic.com/pgchap15.htm.
- "Angles, integers, and modulo arithmetic". blogs.msdn.com. http://blogs.msdn.com/shawnhar/archive/2010/01/04/angles-integers-and-modulo-arithmetic.aspx.
- A History of Pi. Barnes & Noble Publishing. 1989.
- The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English. The Mathematical Association of America. 1994. p. 165.
- "Pi through the ages". http://www.veling.nl/anne/templars/Pi_through_the_ages.html.
- "A Percentage Protractor". Journal of the American Statistical Association 18: 108–109. 1922. doi:10.1080/01621459.1922.10502455. https://dx.doi.org/10.1080%2F01621459.1922.10502455
- Astronomy. London: Macdonald. 1962.
- (in German) Handbuch SI-Einheiten: Definition, Realisierung, Bewahrung und Weitergabe der SI-Einheiten, Grundlagen der Präzisionsmeßtechnik (1 ed.). Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, reprint: Springer-Verlag. 2013-03-13. 978-3-528-08441-7, 9783322836069. ISBN 3322836061. https://books.google.com/books?id=63qcBgAAQBAJ&pg=PA421. Retrieved 2015-08-14.
- (in German) Das Vieweg Einheiten-Lexikon: Formeln und Begriffe aus Physik, Chemie und Technik (1 ed.). Vieweg, reprint: Springer-Verlag. 2013-03-09. doi:10.1007/978-3-322-92920-4. 978-3-322-92921-1. ISBN 3322929205. https://books.google.com/books?id=2zecBgAAQBAJ. Retrieved 2015-08-14.
- http://www.hpmuseum.org/forum/thread-4783-post-55836.html#pid55836
- https://www.python.org/dev/peps/pep-0628/
- Sequence OEIS: A019692
- "Pi is Wrong". The Mathematical Intelligencer (New York, USA: Springer-Verlag) 23 (3): 7–8. 2001. doi:10.1007/bf03026846. http://www.math.utah.edu/%7Epalais/pi.pdf.
- "The Tau Manifesto". 2013-03-14. http://tauday.com/tau-manifesto.
- https://hexnet.org/files/documents/tau-manifesto.pdf
- "Interview: Michael Hartl: It's time to kill off pi". New Scientist 209 (2794): 23. 2011-01-08. doi:10.1016/S0262-4079(11)60036-5. Bibcode: 2011NewSc.209...23A. https://dx.doi.org/10.1016%2FS0262-4079%2811%2960036-5
- "On Pi Day, is 'pi' under attack?". cnn.com. 2011-03-14. http://edition.cnn.com/2011/TECH/innovation/03/14/pi.tau.math/index.html.
- "Why Tau Trumps Pi". Scientific American. 2014-06-25. http://www.scientificamerican.com/article/let-s-use-tau-it-s-easier-than-pi/.
- "Python 3.7.0 documentation". https://docs.python.org/3/library/math.html.
- "Perl 6". https://docs.perl6.org/language/terms.
- "Processing". https://processing.org/reference/TAU.html.
- "Nim". https://nim-lang.org/docs/math.html.
- Harremoës, Peter. "Bounds on tail probabilities for negative binomial distributions". Kybernetika 52 (6): 943-966. doi:10.14736/kyb-2016-6-0943. https://dx.doi.org/10.14736%2Fkyb-2016-6-0943
- Harremoës, Peter. "Al-Kashi's constant τ". http://www.harremoes.dk/Peter/Undervis/Turnpage/Turnpage1.pdf. Retrieved 20 September 2018.
- "Life of pi in no danger – Experts cold-shoulder campaign to replace with tau". Telegraph India. 2011-06-30. Archived from the original on 13 July 2013. https://web.archive.org/web/20130713084345/http://www.telegraphindia.com/1110630/jsp/nation/story_14178997.jsp.
- Inversive Geometry. Boston, USA; New York, USA: Ginn and Company, reprint: Courier Corporation, Dover Publications. 2014. 0-486-49339-3. ISBN 978-0-486-49339-8. https://books.google.com/books?id=gu8WAgAAQBAJ. Retrieved 2015-10-17.

More

Information

Subjects:
Others

Contributor
MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register
:

View Times:
1.5K

Entry Collection:
HandWiki

Update Date:
22 Nov 2022