Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2429 2022-09-19 13:59:42 |
2 layout Meta information modification 2429 2022-09-20 05:20:00 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Sochacki, M.;  Vogt, O. Description and Phytoconstituents of Sapindus mukorossi Gaertn.. Encyclopedia. Available online: https://encyclopedia.pub/entry/27308 (accessed on 12 August 2024).
Sochacki M,  Vogt O. Description and Phytoconstituents of Sapindus mukorossi Gaertn.. Encyclopedia. Available at: https://encyclopedia.pub/entry/27308. Accessed August 12, 2024.
Sochacki, Mateusz, Otmar Vogt. "Description and Phytoconstituents of Sapindus mukorossi Gaertn." Encyclopedia, https://encyclopedia.pub/entry/27308 (accessed August 12, 2024).
Sochacki, M., & Vogt, O. (2022, September 19). Description and Phytoconstituents of Sapindus mukorossi Gaertn.. In Encyclopedia. https://encyclopedia.pub/entry/27308
Sochacki, Mateusz and Otmar Vogt. "Description and Phytoconstituents of Sapindus mukorossi Gaertn.." Encyclopedia. Web. 19 September, 2022.
Description and Phytoconstituents of Sapindus mukorossi Gaertn.
Edit

Sapindus mukorossi Gaertn., also called the washnut, is a tropical tree of the Sapindaceae family. The plant owes its name to its cleaning and washing properties used by the local population as a natural detergent. The most important ingredients of the plant are triterpenoid saponins contained in many parts of the plant, inducing fruits, galls, or roots. The tree also contains other valuable, biologically active compounds that are obtained by extraction methods. Raw or purified extract and isolated saponins are valuable plant products that can be used in the food, pharmaceutical, cosmetic, and chemical industries.

Sapindus mukorossi washnut triterpenoid saponins natural surfactants

1. Introduction

Secondary plant metabolites are a rich source of many substances that manifest biological activity [1]. Contemporary economic development places particular emphasis on pro-ecological activities, including the preference for technological solutions based on natural, renewable material sources, especially using plant sources for this purpose [2][3][4]. Detergents are a key group of products of industrial importance, and they are intended for general use, with a strong impact on the environment [5]. Their surfactant application not only has to do with cleaning agents. Due to the amphiphilic nature of these compounds, which are responsible for adsorption, emulsion, washing, or foaming properties, they are also widely used in the industry [6][7]. Among other things, detergents are products or additives in the food, cosmetic, pharmaceutical, textile-leather, and metallurgical-petrochemical industries [8].
Saponins are natural, secondary plant metabolites with surfactant properties [9], synthesized by plants and some marine organisms [10]. In terms of chemical structure, they are classified as glycosides. The name saponins is derived from their soap-like properties [11], where the Latin word sapo means ‘soap’ [12]. In aqueous solutions, saponins reduce the surface tension of water and manifest foam-forming properties [13]. The detergent properties of saponins result from their amphiphilic structure [14], which consists of a hydrophobic skeleton known as aglycone (or genin) and hydrophilic sugar groups (glycone) [15][16]. The two glycoside-forming parts are the basis for the structural diversion of saponins in nature [11]. The glycone part consists of one or more sugar chains [17], which are then bonded with the aglycone via a glycosidic linkage [18]. The O-glycosidic bond separates the two structural parts of saponins [15], functioning as a border (Figure 1). Saponins are mainly classified on the basis of differences in aglycone structure or the number of sugar chains [19]. The basic classification based on the structure of the skeleton distinguishes two main groups: steroid and triterpenoid. Steroid glycoalkaloids are also sometimes included as saponins [10][11]. Steroidal aglycones typically consist of 27, while triterpenoid ones typically consist of 30 carbon units in the skeleton [20]. In addition to carbon variation, the structural diversity of the aglycone involves the different types and arrangements of substituents and further modifications in the backbone [21].
Figure 1. Chemical structure description of oleanolic acid saponin present in the pulp of S. mukorossi, isolated by Hu et al. [22].
Saponins are found among many families of vascular plants in the form of secondary metabolites [17]. This group also includes representatives of the Sapindaceae family, which synthesize triterpenoid-type saponins [23]. It consists of a number of species, including the Sapindus genus: Sapindus trifoliatusSapindus saponariaSapindus laurifoliaSapindus oahuensis, and Sapindus mukorossi [24].

2. Plant Description

Sapindus mukorossi Gaertn., also called the Chinese soapberry, soapnut, reetha, or washnut, is part of the Sapindaceae family [24]. The plant is a deciduous tree found in the tropical and sub-tropical regions of Asia [25], native to China, and cultivated in Japan, India, Bengal, and Pakistan [26]. The tree is a widely cultivated species due to its many applications [27].

2.1. Plant Morphology

The tree occupies the upper reaches of the Indo-Gangetic plains, Shivaliks, and sub-Himalayan areas at altitudes of 200–1500 m. In most cases, one can find a tree growing naturally in North India. The plant can reach from 12 to 15 m in height, occasionally reaching up to 20 m and 1.8 m in girth. The trunk is covered with bark of dark-pale yellow, fairly smooth, with numerous vertical line lenticels and fissures exfoliating in irregular wood scales. The tree is covered with leaves (30–50 cm in length), alternate and paripinnate, consisting of 5–10 pairs of leaflets of lanceolate shape, alternate and opposite. Each of the leaflets has a length of 2.5–5 cm. Leaves develop from March or April. At the end of December, they turn yellow and are shed for the period from December to January. For about 2 months (until March), the tree is leafless, then overgrows again. Inflorescences consist of terminal panicles about 30 cm long, with pubescent branches. Numerous greenish-white polygamous flowers, mostly bisexual with five sepals, reach 5 mm across. Flower panicles appear in April with white or purple color. The tree bears fruit in May and matures in June–July. In October and November, ripe fruits change color from yellow-orange to dark brown. The fruits have a spherical shape with one, rarely with two drupels, 1.8–2.5 cm across. Spherical, black seeds reach diameters of 0.8–1.3 cm and are present loosely in the dry fruit [24].

2.2. Traditional Plant Applications

Plants of the Sapindus genus were utilized by the indigenous people and are now perceived as valuable plant raw materials. Many plant parts of Sapindus species are regarded as therapeutic resources, including fruits, bark, roots, seeds, and leaves. These plants are also a source of natural detergents, which have been used to wash silk and wool. Indian jewelers used fruits as a cleaner for precious metal ornaments and to wash out the cardamom. Sapindus trees can also be used for phytoremediation, land reclamation, and afforestation [24]. As mentioned, fruits are a valuable resource for the washnut tree [28]. Traditionally in Japan, S. mukorossi pericarps are called enmei-hi, which means ‘life-prolonging pericarp’, and in China, wu-huan-zi, as ‘non-illness fruit’ [29]. In natural medicine, they are used to treat eczema, pimples, psoriasis, epilepsy, chlorosis, migraine, and due to the presence of saponin, also to remove lice from the scalp [27]. Moreover, ground seeds of the soapnut are used to treat problems with dentition, arthritis, colds, nausea, and constipation [26]. In Ayurvedic medicine, seeds were used to remove tan and skin wrinkles [30]. The leaves are used in baths to relieve joint pain and the roots for the treatment of gout and rheumatism [31]. Plants of the genus Sapindus are often used for similar purposes. The availability of the species S. trifoliatusS. Saponaria, and S. mukorossi has contributed to their wide medical use [24].

3. Plant Phytoconstituents

The interest in the Sapindus species is due to the presence of different saponins in many parts of the plant. Sapindus plants also contain many different types of active substances [24][30]. It is assumed that this is due, as in the case of secondary metabolites, to the function they perform in the plant, including mainly ensuring its survival [32].
Considering the elements of the plant, various phytoactive compounds can be distinguished in the washnut tree. The methanolic extract of S. mukorossi leaves contains many bioactive compounds, including alkaloids, flavonoids, phenols, carbohydrates, terpenoids, and saponins [33]. The stems also include flavonoid, phenolic, and polysaccharide constituents [31][34]. A large amount of saponins, amounting to about 10.1–11.5% of the fruit, are present in the pericarp (Figure 2), where this value increases to 56.5% in the drupe [27]. The fruit also contains about 10% sugars, mucilage [35], and sesquiterpene oligoglycosides [36]. Kernel mass consists of 40% oil, which is a mixture of medium-chain monounsaturated and polyunsaturated fatty acids, mostly of oleic and linoleic acid, respectively [28], along with triglycerides [37]. Roots, flowers, and galls are also a source of triterpenoid saponins [38][39][40][41][42][43][44]. The plant is grown for its fruit, the pericarp of which is used as a natural soap. Other parts of the plant are also used for many other purposes [26]. Among the triterpenoid saponins that occur in the plant, three types are most common. Oleanane, dammarane, and tirucallane-type saponins occur in roots, flowers, fruits, pericarps, and galls [38][39][40][41][42][43][44][45][46][47][48], and the recently discovered lupane-type present in the pulp of the plant [22]. The aforementioned structural diversion of aglycone (Figure 3) and glycone part is present in S. mukorossi.
Figure 2. Commercially available, dry washnut pericarps.
Figure 3. Overview of saponin structures present in S. mukorossi. The structure extensions are shown in Table 1 with the corresponding numbers.
Table 1. Sapindus mukorossi saponins present in different parts of the plant.
No. Chemical Name Abbreviations Type Ref.
1 3β,7β,20(S),22-tetrahydroxydammar-24-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2 a-Rha b
R2: -CH3
R3: -OH
R4: -OH
R5: -H
Dammarane [41]
2 3β,7β,20(S),22,23-pentahydroxydammar-24-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -CH3
R3: -OH
R4: -OH
R5: -OH
3 3β,7β,20(S),22,25-pentahydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -OH
R3: -OH
Dammarane [41]
4 25-methoxy-3β,7β,20(S),22-tetrahydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -OH
R3: -OCH3
5 25-methoxy-3β,7β,20(R)-trihydroxydammar-23-ene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -H
R3: -OCH3
6 21β-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside R1: -Glc6-Rha
R2: β-OCH3
R3: β-H
Tirucallane [40]
7 21α-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside R1: -Glc6-Rha
R2: α-OCH3
R3: β-H
8 21α-methoxy-3β,21(R),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: α-OCH3
R3: β-H
9 21β-methoxy-3β,21(S),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnopyranosyl-(1→2,6)-β-d-glucopyranoside R1: -Glc2,6-Rha,Rha
R2: β-OCH3

R3: β-H
10 21α-methoxy-3β,21(R),23(R)-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnonopyranosyl-(1→2,6)-β-d-glucopyranoside R1: -Glc2,6-Rha,Rha
R2: α-OCH3
R3: β-H
11 Hederagenin-3-O-(3-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara3 c-OAc
R2: -CH2OH
R3: -H
Oleanane [38]
12 Hederagenin-3-O-(4-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara4-OAc
R2: -CH2OH
R3: -H
13 Hederagenin-3-O-(2,3-O-diacetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl2,3 d-OAc,OAc
R2: -CH2OH
R3: -H
14 Hederagenin-3-O-(2,4-O-diacetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl2,4-OAc,OAc
R2: -CH2OH
R3: -H
15 3,7,20(S)-trihydroxydammar-24-ene-3-O-α-l-rhamnopyrnosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -OH
R3: -CH3
R4: -H
R5: -H
Dammarane [38]
16 3,7,20(R)-trihydroxydammar-24-ene-3-O-α-l-rhamnopyrnosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: -CH3
R3: -OH
R4: -H
R5: -H
17 21α-methoxy- 3β,21(R),23(S)-epoxytirucall-7,24-diene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Glc
R2: α-OCH3
R3: β-H
Tirucallane [39]
18 21α-methoxy-3β,21(R),23(S)-epoxytirucall-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Glc6-Rha
R2: α-OCH3
R3: β-H
19 Hederagenin-3-O-(3,4-O-di-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl3,4-OAc,OAc
R2: -CH2OH
R3: -H
Oleanane [38]
20 Hederagenin-3-O-(2-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl2-OAc
R2: -CH2OH
R3: -H
21 Hederagenin-3-O-(3-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl3-OAc
R2: -CH2OH
R3: -H
22 Hederagenin-3-O-(4-O-acetyl-β-d-xylopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl4-OAc
R2: -CH2OH
R3: -H
23 Hederagenin-3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara
R2: -CH2OH
R3: -H
24 21β-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside R1: -Glc6-Rha
R2: β-OCH3
R3: α-H
Tirucallane [42]
25 21β-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-dirhamnopyranosyl-(1→2,6)-β-d-glucopyranoside R1: -Glc2,6-Rha,Rha
R2: β-OCH3
R3: α-H
26 21α-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranoside R1: -Glc2,3-Rha,Ara
R2: α-OCH3
R3: α-H
27 21α-methoxy-3β,23α-epoxytirucalla-7,24-diene-3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranoside R1: -Glc2-Rha
R2: α-OCH3
R3: α-H
28 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucall-7,24R-diene-3β,21-diol R1: -Glc2,3-Rha,Ara
R2: -OH
Tirucallane [44]
29 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-21,23R-epoxyl tirucall-7,24R-diene-3β,21-diol R1: -Glc6-Rha
R2: -OH
30 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl (21,23R)-epoxyl tirucalla-7,24-diene-(21S)-ethoxyl-3β-ol R1: -Glc2,3-Rha,Ara
R2: -OCH2CH3
Tirucallane [45]
31 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl (21,23R)-epoxyl tirucall-7,24-diene-(21S)-methoxyl-3β-ol R1: -Glc2,3-Rha,Ara
R2: -OCH3
32 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol R1: -Glc2,3-(Rha3-Ara),Ara
R2: -OCH2CH3
Tirucallane [43]
33 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[β-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol R1: -Glc2,3-(Rha3-Xyl),Ara
R2: -OCH2CH3
34 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-methoxy-3β-ol R1: -Glc2,3-(Rha3-Xyl),Ara
R2: -OCH3
35 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l- rhamnopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxy-3β-ol R1: -Glc2,3-(Rha3-Ara),Rha
R2: -OCH2CH3
36 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-methoxy-3β-ol R1: -Glc2,3-(Rha3-Ara),Rha
R2: -OCH3
37 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-21,23R-epoxyl tirucalla-7,24-diene-21β-ethoxyl-3β-ol R1: -Glc6-Rha
R2: -OCH2CH3
38 Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester R1: -Ara2-Rha3-Xyl
R2: -CH2OH
R3: -Glc2-Glc
Oleanane [47]
39 Hederagenin-3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester R1: -Ara2-Rha3-Ara
R2: -CH2OH
R3: -Glc2-Glc
40 Hederagenin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl ester R1: -Ara2-Rha
R2: -CH2OH
R3: -Glc2-Glc
41 Hederagenin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha
R2: -CH2OH
R3: -H
Oleanane [49]
42 Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl
R2: -CH2OH
R3: -H
43 Hederagenin-3-O-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl4-Glc
R2: -CH2OH
R3: -H
Oleanane [50]
44 Hederagenin-3-O-β-d-glucopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl4-Glc2,6-Glc,Rha
R2: -CH2OH
R3: -H
Oleanane [51]
45 Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-28-O-β-d-glucopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosy-(1→2)-α-l-arabinopyranosyl ester R1: -Ara2-Rha3-Xyl
R2: -CH2OH
R3: -Ara2-Rha3-Xyl4-Glc2,6-Glc,Rha
Oleanane [52]
46 Hederagenin-3-O-β-d-glucopyranosyl-(1→3)-β-d-xylopyranosyl-(1→3)- β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl3-Xyl3-Glc
R2: -CH2OH
R3: -H
Oleanane [53]
47 Hederagenin-3-O-(3,4-O-diacetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara3,4-OAc,OAc
R2: -CH2OH
R3: -H
48 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl-(1→3)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl oleanolic acid R1: -Ara2-Rha3-Xyl3-Glc6-Xyl2-Rha
R2: -CH3
R3: -H
Oleanane [46]
49 Hederagenin 3-O-(2,4-O-di-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara2,4-OAc,OAc
R2: -CH2OH
R3: -H
Oleanane [54]
50 Hederagenin 3-O-α-l-arabinopyranoside R1: -Ara
R2: -CH2OH
R3: -H
51 Hederagenin-3-O-β-d-xylopyranosyl-(2→1)-[3-O-acetyl-α-l-arabinopyranosyl]-28-O-α-l-rhamnopyranosylester R1: -Xyl2-Ara3-OAc
R2: -CH2OH
R3: -Rha
Oleanane [48]
52 Hederagenin 3-O-α-l-rhamnopyranosyl (3→1)-[2,4-O-diacetyl-α-l-arabinopyranosyl]-28-O-β-d-glucopyranosyl-(2→1) [3-O-acetyl-β-d-glucopyranosyl] ester R1: -Rha3-Ara2,4-OAc,OAc
R2: -CH2OH
R3: -Glc2-Glc3-OAc
Oleanane [55]
53 Oleanolic acid 3-O-α-l-arabinofuranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara e
R2: -CH3
R3: -H
Oleanane [22]
54 Hederagenin 3-O-5‴-O-acetyl-α-l-arabinofuranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara5 e-OAc
R2: -CH2OH
R3: -H
55 23-O-acetyl-hederagenin 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl
R2: -CH2OAc
R3: -H
56 Gypsogenin 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara
R2: -CH2O
R3: -H
57 Betulinic acid 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl Lupane [22]
58 Hederagenin-3-O-β-d-glucopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Glc
R2: -CH2OH
R2: -H
Oleanane [36]
59 Hederagenin-3-O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Rha
R2: -CH2OH
R3: -H
Oleanane [36]
60 Hederagenin-3-O-β-d-xylopyranosyl-(1→3)-α-l-arabinopyranoside R1: -Ara2-Xyl
R2: -CH2OH
R3: -H
61 Hederagenin-3-O-(4-O-acetyl-β-d-glucopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Glc4-OAc
R2: -CH2OH
R3: -H
62 3-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl oleanolic acid R1: -Glc2-Rha3-Rha2-Glc
R2: -CH3
R3: -H
63 3-O-β-d-xylopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl oleanolic acid R1: -Glc2-Rha3-Rha2-Xyl
R2: -CH3
R3: -H
64 Oleanolic acid 3-O-(4-O-acetyl-α-l-arabinopyranosyl)-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara4-OAc
R2: -CH3
R3: -H
65 Gypsogenin 3-O-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Rha
R2: -CHO
R3: -H
66 Oleanolic acid 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Xyl
R2: -CH3
R3: -H
Oleanane [22]
67 Oleanolic acid 3-O-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside R1: -Ara2-Rha3-Ara
R2: -CH3
R3: -H
a β-d-Glucopyranosyl, b α-l-Rhamnopyranosyl, c α-l-Arabinopyranosyl, d β-d-Xylopyranosyl, e α-l-Arabinofuranosyl.

References

  1. Adetunji, C.O.; Palai, S.; Ekwuabu, C.P.; Egbuna, C.; Adetunji, J.B.; Ehis-Eriakha, C.B.; Kesh, S.S.; Mtewa, A.G. General principle of primary and secondary plant metabolites: Biogenesis, metabolism, and extraction. In Preparation of Phytopharmaceuticals for the Management of Disorders; Egbuna, C., Mishra, A.P., Goyal, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–23.
  2. Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J. 2018, 26, 739–753.
  3. Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378.
  4. Hojnik, J.; Ruzzier, M.; Konečnik Ruzzier, M. Transition towards sustainability: Adoption of eco-products among consumers. Sustainability 2019, 11, 4308.
  5. Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104.
  6. Chenier, P.J. Surfactants, soaps, and detergents. In Survey of Industrial Chemistry; Springer: Boston, MA, USA, 2002; pp. 461–474.
  7. Nakama, Y. Surfactants. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 231–244. ISBN 9780128020548.
  8. Myers, D. Surfactant Science and Technology, 4th ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–19, 149–151. ISBN 9781119465850.
  9. Góral, I.; Wojciechowski, K. Surface activity and foaming properties of saponin-rich plants extracts. Adv. Colloid Interface Sci. 2020, 279, 102145.
  10. Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462.
  11. Mugford, S.T.; Osbourn, A. Saponin synthesis and function. In Isoprenoid Synthesis in Plants and Microorganisms; Bach, T.J., Rohmer, M., Eds.; Springer: New York, NY, USA, 2012; pp. 405–424. ISBN 978-1-4614-4062-8.
  12. Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants. In Application and Characterization of Surfactants; Najjar, R., Ed.; IntechOpen: London, UK, 2017; pp. 184–205.
  13. Lorent, J.H.; Quetin-Leclercq, J.; Mingeot-Leclercq, M.-P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem. 2014, 12, 8803–8822.
  14. Pradhan, A.; Bhattacharyya, A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. J. Clean. Prod. 2017, 150, 127–134.
  15. Bartnik, M.; Facey, P.C. Glycosides. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 101–161. ISBN 9780128020999.
  16. Kunatsa, Y.; Katerere, D.R. Checklist of african soapy saponin—Rich plants for possible use in communities’ response to global pandemics. Plants 2021, 10, 842.
  17. Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-derived saponins: A review of their surfactant properties and applications. Sci 2021, 3, 44.
  18. Savarino, P.; Demeyer, M.; Decroo, C.; Colson, E.; Gerbaux, P. Mass spectrometry analysis of saponins. Mass Spectrom. Rev. 2021, 1–30.
  19. Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113.
  20. El Aziz, M.M.A.; Ashour, A.S.; Melad, A.S.G. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 7, 282–288.
  21. Vincken, J.-P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297.
  22. Hu, Q.; Chen, Y.-Y.; Jiao, Q.-Y.; Khan, A.; Li, F.; Han, D.-F.; Cao, G.-D.; Lou, H.-X. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry 2018, 147, 1–8.
  23. Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243.
  24. Singh, R.; Sharma, B. Biotechnological Advances, Phytochemical Analysis and Ethnomedical Implications of Sapindus Species, 1st ed.; Springer: Singapore, 2019; pp. 6–8, 14, 21, 57–63. ISBN 978-981-32-9188-1.
  25. Yang, C.-H.; Huang, Y.-C.; Chen, Y.-F.; Chang, M.-H. Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. J. Food Drug Anal. 2010, 18, 155–160.
  26. Bhatta, S.; Joshi, L.R.; Khakurel, D.; Bussmann, R.W. Sapindus mukorossi Gaertn. Sapindaceae. In Ethnobotany of the Himalayas; Kunwar, R.M., Sher, H., Bussmann, R.W., Eds.; Springer: Cham, Switzerland, 2021; pp. 1775–1783. ISBN 9783030455972.
  27. Upadhyay, A.; Singh, D.K. Pharmacological effects of Sapindus mukorossi. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 273–280.
  28. Zhao, G.; Gao, Y.; Gao, S.; Xu, Y.; Liu, J.; Sun, C.; Gao, Y.; Liu, S.; Chen, Z.; Jia, L. The phenological growth stages of Sapindus mukorossi according to BBCH scale. Forests 2019, 10, 462.
  29. Tamura, Y.; Miyakoshi, M.; Yamamoto, M. Application of saponin-containing plants in foods and cosmetics. In Alternative Medicine; Sakagami, H., Ed.; IntechOpen: London, UK, 2012; pp. 86–101.
  30. Goyal, S.; Dileep, K.; Gopal, M.; Shivali, S. Medicinal plants of the genus Sapindus (Sapindaceae)—A review of their botany, phytochemistry, biological activity and traditional uses. J. Drug Deliv. Ther. 2014, 4, 7–20.
  31. Shah, M.; Parveen, Z.; Khan, M.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complement. Altern. Med. 2017, 17, 526.
  32. Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52.
  33. Pooja, R.; Varsha, S.L.; Aliya, M.S.; Chetana Kumar, T.; Damini, B.M.; Divya, H.K. Phytochemical screening, GCMS, UV-VIS and FTIR analysis of leaf methanolic extract of Sapindus mukorossi L. Int. J. Progress. Res. Sci. Eng. 2022, 3, 97–104.
  34. Liu, M.; Chen, Y.-L.; Kuo, Y.-H.; Lu, M.-K.; Liao, C.-C. Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property in vivo. Sci. Rep. 2018, 8, 4831.
  35. Ibrahim, M.; Khan, A.A.; Tiwari, S.K.; Habeeb, M.A.; Khaja, M.; Habibullah, C. Antimicrobial activity of Sapindus mukorossi and Rheum emodi extracts against H Pylori: In vitro and in vivo studies. World J. Gastroenterol. 2006, 12, 7136–7142.
  36. Ling, Y.; Zhang, Q.; Zhong, W.; Chen, M.; Gong, H.; He, S.; Liang, R.; Lv, J.; Song, L. Rapid identification and analysis of the major chemical constituents from the fruits of Sapindus mukorossi by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Res. 2020, 34, 2144–2150.
  37. Chen, C.-C.; Nien, C.-J.; Chen, L.-G.; Huang, K.-Y.; Chang, W.-J.; Huang, H.-M. Effects of Sapindus mukorossi seed oil on skin wound healing: In vivo and in vitro testing. Int. J. Mol. Sci. 2019, 20, 2579.
  38. Huang, H.-C.; Wu, M.-D.; Tsai, W.-J.; Liao, S.-C.; Liaw, C.-C.; Hsu, L.-C.; Wu, Y.-C.; Kuo, Y.-H. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochemistry 2008, 69, 1609–1616.
  39. Huang, H.-C.; Tsai, W.-J.; Liaw, C.-C.; Wu, S.-H.; Wu, Y.-C.; Kuo, Y.-H. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi. Chem. Pharm. Bull. 2007, 55, 1412–1415.
  40. Huang, H.-C.; Tsai, W.-J.; Morris-Natschke, S.L.; Tokuda, H.; Lee, K.-H.; Wu, Y.-C.; Kuo, Y.-H. Sapinmusaponins F−J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. J. Nat. Prod. 2006, 69, 763–767.
  41. Kuo, Y.-H.; Huang, H.-C.; Yang Kuo, L.-M.; Hsu, Y.-W.; Lee, K.-H.; Chang, F.-R.; Wu, Y.-C. New dammarane-type saponins from the galls of Sapindus mukorossi. J. Agric. Food Chem. 2005, 53, 4722–4727.
  42. Wang, Y.; Cao, X.; Qin, B.; Wang, Y.; Xiang, L.; Qi, J. Four new tirucallane-type triterpenoids from Sapindus mukorossi Gaertn. flowers induced neurite outgrowth in PC12 cells related to insulin-like growth factor 1 receptor/phosphoinositide 3-kinase/extracellular regulated protein kinase signaling pathway. Phytochem. Lett. 2019, 34, 5–12.
  43. Ni, W.; Hua, Y.; Liu, H.Y.; Teng, R.W.; Kong, Y.C.; Hu, X.Y.; Chen, C.X. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi. Chem. Pharm. Bull. 2006, 54, 1443–1446.
  44. Rong-Wei, T.; Wei, N.; Yan, H.; Chang-Xiang, C. Two new tirucallane-type triterpenoid saponins from Sapindus mukorossi. Acta Bot. Sin. 2003, 45, 369–372.
  45. Ni, W.; Hua, Y.; Teng, R.-W.; Kong, Y.-C.; Chen, C.-X. New tirucallane-type triterpenoid saponins from Sapindus mukorossi Gaertn. J. Asian Nat. Prod. Res. 2004, 6, 205–209.
  46. Zhang, X.-M.; Yang, D.-P.; Xie, Z.-Y.; Li, Q.; Zhu, L.-P.; Zhao, Z.-M. Two new glycosides isolated from Sapindus mukorossi fruits: Effects on cell apoptosis and caspase-3 activation in human lung carcinoma cells. Nat. Prod. Res. 2016, 30, 1459–1463.
  47. Nakayama, K.; Fujino, H.; Kasai, R.; Mitoma, Y.; Yata, N.; Tanaka, O. Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chem. Pharm. Bull. 1986, 34, 3279–3283.
  48. Sharma, A.; Sati, S.C.; Sati, O.P.; Sati, M.D.; Kothiyal, S.K.; Semwal, D.K.; Mehta, A. A new triterpenoid saponin and antimicrobial activity of ethanolic extract from Sapindus mukorossi Gaertn. J. Chem. 2013, 2013, 218510.
  49. Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A.; Krivenchuk, P.E.; Zykova, N.Y. Triterpene glycosides of Sapindus mukorossi. II. The structure of aapindosides A and B. Chem. Nat. Compd. 1970, 6, 218–221.
  50. Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A. Triterpene glycosides of Sapindus mukorossi. III. Structure of sapindoside C. Chem. Nat. Compd. 1970, 6, 374–375.
  51. Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A.; Zolotarev, B.M. Triterpene glycosides of Sapindus mukorossi. V. The structure of sapindoside D. Chem. Nat. Compd. 1970, 6, 316–319.
  52. Chirva, V.Y.; Kintya, P.K.; Sosnovskii, V.A. Triterpene glycosides of Sapindus mukorossi. V. Structure of sapindoside E. Chem. Nat. Compd. 1970, 6, 431–434.
  53. Zhang, X.-M.; Yang, D.-P.; Xie, Z.-Y.; Xue, X.; Zhu, L.-P.; Wang, D.-M.; Zhao, Z.-M. A new triterpenoid saponin and an oligosaccharide isolated from the fruits of Sapindus mukorossi. Nat. Prod. Res. 2014, 28, 1058–1064.
  54. Huang, H.-C.; Liao, S.-C.; Chang, F.-R.; Kuo, Y.-H.; Wu, Y.-C. Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. J. Agric. Food Chem. 2003, 51, 4916–4919.
  55. Sharma, A.; Sati, S.C.; Sati, O.P.; Sati, M.D.; Kothiyal, S.K. Triterpenoid saponins from the pericarps of Sapindus mukorossi. J. Chem. 2013, 2013, 613190.
More
Information
Subjects: Plant Sciences
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : ,
View Times: 1.0K
Revisions: 2 times (View History)
Update Date: 20 Sep 2022
1000/1000
Video Production Service