Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1613 2022-06-20 09:27:45 |
2 format correction -27 word(s) 1586 2022-06-21 02:41:19 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Hess, M.;  Tenthoff, M.;  Wohlfarth, K.;  Wöhler, C. Digital Elevation Models. Encyclopedia. Available online: https://encyclopedia.pub/entry/24207 (accessed on 23 December 2024).
Hess M,  Tenthoff M,  Wohlfarth K,  Wöhler C. Digital Elevation Models. Encyclopedia. Available at: https://encyclopedia.pub/entry/24207. Accessed December 23, 2024.
Hess, Marcel, Moritz Tenthoff, Kay Wohlfarth, Christian Wöhler. "Digital Elevation Models" Encyclopedia, https://encyclopedia.pub/entry/24207 (accessed December 23, 2024).
Hess, M.,  Tenthoff, M.,  Wohlfarth, K., & Wöhler, C. (2022, June 20). Digital Elevation Models. In Encyclopedia. https://encyclopedia.pub/entry/24207
Hess, Marcel, et al. "Digital Elevation Models." Encyclopedia. Web. 20 June, 2022.
Digital Elevation Models
Edit

Digital Elevation Models (DEMs) of planet Mars are crucial for many remote sensing applications and for landing site characterization of rover missions. Shape from Shading (SfS) is known to work well as a complementary method to greatly enhance the quality of photogrammetrically obtained DEMs of planetary surfaces with respect to the effective resolution and the overall accuracy.

Mars shape from shading atmosphere

1. Introduction

The topography of planetary surfaces provides essential information for a wide field of applications. For example, geomorphologic analysis requires high-resolution Digital Elevation Models (DEMs), but the analysis of hyper-spectral data also benefits greatly from accurate DEMs. To correct hyper-spectral data for photometric effects and thermal emission, a detailed DEM and, in particular, accurate slopes are vital. Furthermore, the planning of rover missions relies on DEMs to assess landing sites and possible hazards associated with steep terrain. In recent years the interest in rover missions to Mars, in particular, has again increased significantly. In 2021, both the National Aeronautics and Space Agency’s (NASA’s) Perseverance Rover and the Chinese National Space Agency’s (CNSA’s) Zhurong rover successfully landed on the Martian surface. The Rosalind Franklin rover of the European Space Agency (ESA) was planned to be launched to Mars in 2022, but has been postponed to a later date. The Martian surface is covered by a thin and non-negligible atmosphere that increases the model complexity of intensity-based reconstruction methods.

2. DEM Generation for Planetary Surfaces

In general, there are three major methodological approaches that are used to generate DEMs of planetary surfaces, i.e., ranging techniques, photogrammetric approaches and shading-based methods. Laser-altimetry samples the surface with laser pulses and the time-of-flight of the photons is translated into range measurements. The resulting DEMs have a high vertical fidelity and an extensive coverage of the planet is achieved. However, the lateral resolution is limited due to a comparatively coarse sampling of the surface (e.g., LOLA: 59 m/pix [1], MOLA: 463 m/pix [2]). Photogrammetric approaches, or stereo vision, use two or more images taken from different perspectives to infer a DEM, usually based on bundle adjustment. These methods do not require any physical reflectance model and are known to yield a good absolute height estimate. The state-of-the-art frameworks commonly employed in the planetary community are the Ames Stereo Pipeline [3] and BAE Systems’ SOCET SET® [4]. Both rely on blockmatching to obtain tie-points for the bundle-adjustment procedure. Extensive regions of the planets are covered by regolith, which naturally appears textureless. The lack of texture may cause mismatching, which yields a variety of reconstruction artifacts such as spikes, holes where no matches could be generated and stair-like structures termed pixel-locking [5]. These stereo artifacts effectively lower the resolution of the DEM to several times below the pixel resolution.
Shading-based methods require a reflectance model to connect radiance measurements and surface gradients. They also need proper initialization to ensure convergence. This additional effort is justified by obtaining a DEM of pixel level resolution with a very accurate reconstruction of slopes and heights and the elimination of stereo artifacts, especially in textureless areas (e.g., [6]). In order to enhance the quality of DEMs, recent approaches have successfully combined low resolution DEMs from photogrammetry and laser-altimetry with SfS, among others, on either the Moon (e.g., [7][8][9][10]), Mercury (e.g., [11]) or on Mars (e.g., [12][13][14][15][16][17][18]). The rationale is that the low resolution DEM provides a good absolute height estimate and SfS is used to refine the surface such that the whole procedure combines the advantages of both approaches.
Recently, various works have explored machine-learning techniques to directly infer a relationship between measured image intensities and surface height (e.g., [19][20][21]). These approaches are purely data-driven and do not incorporate physical information. However, the training procedures implicitly learn the atmospheric conditions present in the training data, but the atmospheric influence has not been explicitly investigated in these works. Consequently, machine-learning approaches will also benefit from investigating the influence of the atmosphere on the reconstruction.

3. Shape from Shading in Planetary Remote Sensing

Galileo Galilei stated that surfaces that are tilted away from the sun appear darker and parts that face the sun appear brighter [22].This is probably the first time that surface shading was used to analyze the topography of a planetary body, and it has been used ever since. With the rise of more rigorous physical approaches and an increase in computational power, numerous approaches have been developed that use illumination geometry and shading to quantify the surface slope and topography, primarily of the Moon. In planetary science, these techniques are often termed photoclinometry, and the earliest approaches are given by Rindfleisch [23], Wildey [24], and Kirk [25]. A highly recognized technique from the computer vison community is the SfS method of Horn [26], which allows for the integrated recovery of slopes and heights. The surface reconstruction problem is encoded in terms of variational calculus and hence it is solved by minimizing a functional that penalizes the deviations between the shaded surface and the input image. To ensure integrability of the estimated surface, an additional regularization term is introduced. Further constraints were introduced by Shao et al. [27] to elastically tie the surface to a low frequency constraint surface, which improves the absolute vertical fidelity. Grumpe and Wöhler [7] generalized the variational approach and introduced a formalism to concurrently estimate the surface heights and the local reflectance properties in terms of the Hapke reflectance model, i.e., the albedo. Other recent approaches, which share many structural similarities, are, for example Wu et al. [9], Jiang et al. [18], and Alexandrov and Beyer [10]. Wu et al. [9] and Alexandrov and Beyer [10] use LRO-NAC images of the Moon and make use of the Lunar-Lambert model. The latter method additionally allows for multiple images. Jiang et al. [18] adopt the algorithm of Grumpe and Wöhler [7] and use the Mars-specific reflectance model and the Mars ReCo algorithm from Ceamanos et al. [28] to estimate the reflectance and atmospheric parameters.

4. Shape from Shading Applied to Mars

SfS has been applied to the Martian surface for forty years, and over time, different approaches of an increasing level of sophistication have been presented.
Previous approaches primarily differ in the reflectance model, the specific implementation of the SfS algorithm and the dataset that determines the actual resolution. Early works applied photoclinometry to Mariner 9 images [24] and SfS to Viking imagery [12][13]. Dorrer et al. [29] and Dorrer et al. [14] employ SfS to refine stereo DEMs, which are derived from the High-Resolution Stereo Camera (HRSC) onboard the Mars Express orbiter [30]. O’Hara and Barnes [16] propose the Large Deformation Optimization Shape from Shading (LDO-SfS) technique for recovering the surface shape without initialization. All approaches use simple reflectance models such as Lambert or Oren–Nayar [31], and mostly assume a constant albedo, if any, and do not model any atmospheric effects (e.g., [16]). Gehrke [15] is the first to address atmospheric effects on Mars in the context of surface reconstruction. The work combines facet stereo vision with SfS, applied to HRSC imagery. The Lunar-Lambert model is used for radiometric modeling, and the optical depth of the atmosphere is estimated from two HRSC images acquired under different observation angles.
Jiang et al. [18] were the first to propose a scheme for an integrated stereo and SfS approach on CTX images (up to 5 m/pix) with atmospheric compensation. They employ their previous reflectance model [28] to build a thorough physical reflectance and atmospheric model based on additional multi-angle CRISM measurements to estimate the model parameters. Compared to the photogrammetric reconstruction, the DEM results show improvement and are consistent with a sparse set of MOLA points. In a subsequent publication, Douté et al. [32] extend their approach to work with HiRISE imagery; due to the lack of validation data, the Isotropic Undecimated Wavelet Transform (IUWT) is employed for a consistency-check.
Despite the overall viability and adequate results of SfS on Mars, researchers identify two methodological challenges and one open question related to atmospheric compensation. First, all previous works, and most recently the approach of Jiang et al. [18], assume constant albedo throughout the scene. If a more sophisticated area with locally varying albedo is examined, Jiang et al. [18] perform clustering and divide the scene into multiple regions with constant albedo. Even though algorithms for SfS with locally varying albedo exist (e.g., Wu et al. [9] and Grumpe and Wöhler [7]), they have not yet been fully explored for Mars. Secondly, modeling the atmosphere remains challenging and largely unexplored. Many studies have simply neglected atmospheric effects and Gehrke [15] only estimated the optical depth. The approach of Jiang et al. [18] requires external data to estimate the parameters of the reflectance model and the atmospheric model. Significant additional processing is required for obtaining the image parameters. Due to the lack of such data, Jiang et al. [18] assume globally averaged parameters. In general, it would be beneficial to directly estimate the atmospheric parameters from the image data such that no external information is necessary. Thirdly, Jiang et al. [18] employed an atmospheric model for their SfS implementation, but did not provide any further analysis of the influence of atmospheric conditions on the reconstruction results. In fact, they utilized images acquired under extremely clear atmospheric conditions with an optical depth of τ0.16 (G20_025904_2209_XN_40N102W), τ0.08 (B20_017600_1538_XN_26S183W), and τ0.19 (B21_017786_1746_XN_05S222W), as can be retrieved from the maps of Montabone et al. [33]. Hess et al. [6] combined an atmospheric model with the SfS procedure from Grumpe and Wöhler [7] and Grumpe et al. [8]. They provided a short comparison with and without an atmospheric model for the first scene from Jiang et al. [18] (G20_025904_2209_XN_40N102W). Even the model without atmospheric compensation produced good results.

References

  1. Barker, M.; Mazarico, E.; Neumann, G.; Zuber, M.; Haruyama, J.; Smith, D. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355.
  2. Neumann, G.A.; Rowlands, D.D.; Lemoine, F.G.; Smith, D.E.; Zuber, M.T. Crossover analysis of Mars orbiter laser altimeter data. J. Geophys. Res. Planets 2001, 106, 23753–23768.
  3. Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth Space Sci. 2018, 5, 537–548.
  4. Miller, S.; Walker, A. Further Developments of Leica Digital Photogrammetric Systems by Helava. In ACSM ASPRS ANNUAL CONVENTION; American Society of Photogrammetry & Remote Sensing: New Orleans, LA, USA, 1993; Volume 3, p. 256.
  5. Gehrig, S.; Franke, U. Stereovision for ADAS; Springer: Berlin/Heidelberg, Germany, 2016; pp. 495–524.
  6. Hess, M.; Wohlfarth, K.; Grumpe, A.; Wöhler, C.; Ruesch, O.; Wu, B. Atmospherically Compensated Shape From Shading on the Martian Surface: Towards the Perfect Digital Terrain Model of Mars. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1405–1411.
  7. Grumpe, A.; Wöhler, C. Recovery of elevation from estimated gradient fields constrained by digital elevation maps of lower lateral resolution. ISPRS J. Photogramm. Remote Sens. 2014, 94, 37–54.
  8. Grumpe, A.; Belkhir, F.; Wöhler, C. Construction of lunar DEMs based on reflectance modelling. Adv. Space Res. 2014, 53, 1735–1767.
  9. Wu, B.; Liu, W.C.; Grumpe, A.; Wöhler, C. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM. ISPRS J. Photogramm. Remote Sens. 2018, 140, 3–19.
  10. Alexandrov, O.; Beyer, R.A. Multiview Shape-From-Shading for Planetary Images. Earth Space Sci. 2018, 5, 652–666.
  11. Tenthoff, M.; Wohlfarth, K.; Wöler, C. High Resolution Digital Terrain Models of Mercury. Remote Sens. 2020, 12, 3989.
  12. Hartt, K.; Carlotto, M. A method for shape-from-shading using multiple images acquired under different viewing and lighting conditions. In Proceedings of the CVPR ’89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 4–8 June 1989; pp. 53–60.
  13. Dorrer, E.; Zhou, X. Towards optimal relief Representation from Mars Imagery by Combination of DEM and Shape-from-Shading. In Proceedings of the ISPRS Commission IV Symposium on GIS-Between Visions and Applications, Stuttgart, Germany, 7–10 September 1998; Volume 32, pp. 156–161.
  14. Dorrer, E.; Mayer, H.; Haase, Y.; Ostrovskiy, A.; Renter, J.; Rentsch, M.; Reznik, S.; Neukum, G.; HRSC CO-Investigator Team. Verbesserung räumlicher Daten durch Shape from Shading. Photogramm. Fernerkund. Geoinf. PFG 2005, 9, 403–408.
  15. Gehrke, S. Geometric and Radiometric Modelling of the Martian Surface based on Object Space Matching and Photoclinometry. In Proceedings of the ISPRS Commission IV/7: Extraterrestrial Mapping, Beijing, China, 3–11 July 2008.
  16. O’Hara, R.; Barnes, D. A new shape from shading technique with application to Mars Express HRSC images. ISPRS J. Photogramm. Remote Sens. 2012, 67, 27–34.
  17. Gupta, S.; Paar, G.; Muller, J.P.; Tao, Y.; Tyler, L.; Traxler, C.; Hesina, G.; Huber, B.; Nauschnegg, B. Fusion and Visualization of HiRISE Super-Resolution, Shape-from-Shading DTM with MER Stereo 3D Reconstructions. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 January 2014; p. P41D-3955.
  18. Jiang, C.; Douté, S.; Luo, B.; Zhang, L. Fusion of photogrammetric and photoclinometric information for high-resolution DEMs from Mars in-orbit imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 418–430.
  19. Chen, Z.; Wu, B.; Liu, W.C. Mars3DNet: CNN-Based High-Resolution 3D Reconstruction of the Martian Surface from Single Images. Remote Sens. 2021, 13, 839.
  20. Tao, Y.; Doute, S.; Muller, J.P.; Conway, S.J.; Thomas, N.; Cremonese, G. Ultra-High-Resolution 1 m/pixel CaSSIS DTM Using Super-Resolution Restoration and Shape-from-Shading: Demonstration over Oxia Planum on Mars. Remote Sens. 2021, 13, 2185.
  21. Tao, Y.; Muller, J.P.; Xiong, S.; Conway, S.J. MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning. Remote Sens. 2021, 13, 4220.
  22. Galilei, G.; Van Helden, A. Sidereus Nuncius, Or the Sidereal Messenger; University of Chicago Press: Chicago, IL, USA, 1989.
  23. Rindfleisch, T. Photometric Method for Lunar Topography. Photogramm. Eng. 1966, 32, 262–277.
  24. Wildey, R.L. Generalized photoclinometry for Mariner 9. Icarus 1975, 25, 613–626.
  25. Kirk, R.E.I. Thermal Evolution of a Differentiated Ganymede and Implications for Surface Features. II Hydromagnetic Constraints on Deep Zonal Flows in the Giant Planets. III A Fast Finite Element Algorithm for Two-Dimensional Photoclinometry. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, USA, 1987.
  26. Horn, B.K.P. Height and gradient from shading. Int. J. Comput. Vis. 1990, 5, 37–75.
  27. Shao, M.; Chellappa, R.; Simchony, T. Reconstructing a 3-D depth map from one or more images. CVGIP Image Underst. 1991, 53, 219–226.
  28. Ceamanos, X.; Douté, S.; Fernando, J.; Schmidt, F.; Pinet, P.; Lyapustin, A. Surface reflectance of Mars observed by CRISM/MRO: 1. Multi-angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS-ReCO). J. Geophys. Res. Planets 2013, 118, 514–533.
  29. Dorrer, E.; Mayer, H.; Ostrovskiy, A.; Reznik, S.; Neukum, G.; HRSC Co-Investigator Team. De-and re-shading of Mars Express HRSC image data for homogenization of map relief shading. Int. Arch. Photogramm. Remote Sens. 2004, 35, 1299–1303.
  30. Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. 2016, 126, 93–138.
  31. Oren, M.; Nayar, S.K. Generalization of Lambert’s Reflectance Model. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, Orlando, FL, USA, 24–29 July 1994; ACM: New York, NY, USA, 1994; pp. 239–246.
  32. Douté, S.; Conway, S.; Massé, M. Small Scale Topographical Characterization of Jezero Crater Region, Mars. In Proceedings of the 50th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 2132.
  33. Montabone, L.; Forget, F.; Millour, E.; Wilson, R.; Lewis, S.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M.; Smith, M.; et al. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 251, 65–95.
More
Information
Subjects: Remote Sensing
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 721
Entry Collection: Remote Sensing Data Fusion
Revisions: 2 times (View History)
Update Date: 21 Jun 2022
1000/1000
Video Production Service