Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1372 2022-04-01 13:18:12 |
2 format -294 word(s) 1078 2022-04-06 10:55:37 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Correia, D.; , .; Faria, M.; Oliveira, M. Chronic Effects of Fluoxetine on Danio rerio. Encyclopedia. Available online: https://encyclopedia.pub/entry/21279 (accessed on 07 December 2024).
Correia D,  , Faria M, Oliveira M. Chronic Effects of Fluoxetine on Danio rerio. Encyclopedia. Available at: https://encyclopedia.pub/entry/21279. Accessed December 07, 2024.
Correia, Daniela, , Melissa Faria, Miguel Oliveira. "Chronic Effects of Fluoxetine on Danio rerio" Encyclopedia, https://encyclopedia.pub/entry/21279 (accessed December 07, 2024).
Correia, D., , ., Faria, M., & Oliveira, M. (2022, April 01). Chronic Effects of Fluoxetine on Danio rerio. In Encyclopedia. https://encyclopedia.pub/entry/21279
Correia, Daniela, et al. "Chronic Effects of Fluoxetine on Danio rerio." Encyclopedia. Web. 01 April, 2022.
Chronic Effects of Fluoxetine on Danio rerio
Edit

Fluoxetine is an antidepressant widely used to treat depressive and anxiety states. Due to its mode of action in the central nervous system (selective serotonin reuptake inhibitor (SSRI)), it becomes toxic to non-target organisms, leading to alterations detrimental to its survival.

pharmaceuticals selective serotonin reuptake inhibitors chronic effects behavior biochemical biomarkers environmentally relevance

1. Introduction

Currently, mental health is a topic of concern, due to the increased stress levels of society. The COVID19 pandemic has increased the pressure on human health, with an increase in the occurrence of depression being reported [1]. Thus, an increase in the consumption of antidepressants is expected and will consequently lead to increased environmental levels and potential effects to biota present in an aquatic environment, the final destination of environmental pollutants. Fluoxetine, known to be a selective serotonin reuptake inhibitor (SSRI), is generally prescribed for the treatment of human depression, anxiety, compulsive behavior, and eating disorders [2][3][4][5][6][7]. This drug is known to act at the central nervous system, blocking the serotonin transport, leading to its accumulation in the synaptic cleft [4][5][8][9][10][11][12][13], allowing an attenuation of anxiety and depressive symptoms (anxiolytic effect) [12][14]. Serotonin (5-HT) is a neurotransmitter that has a fundamental role in regulating the development of the brain and spinal cord and, during this development, acts as an important neurotrophic factor in neuronal proliferation, differentiation, axonal growth, migration, and synaptogenesis [15][16]. Additionally, it has the ability to modulate parameters related to behavior such as locomotion, stress, appetite, reproduction, aggressiveness, and social interactions [2][7][13][16][17][18][19]. In the freshwater environment, concentrations of fluoxetine have been detected at levels ranging from 0.0004 to 3.645 µg/L in wastewater treatment plants (WWTP) [20][21][22][23][24][25][26][27][28][29][30][31], 0.0005 to 0.056 µg/L in surface waters and groundwaters [29][31][32][33][34][35][36][37] and, for drinking water, the levels vary between 0.0005 and 0.0008 µg/L [38][39]. Previous studies have demonstrated that fluoxetine can be toxic to fish, with exposure resulting in changes at different biological levels, from gene transcription, neurotransmission markers, enzymatic activities (e.g., oxidative stress, metabolism), hormone levels, reproductive processes, and accumulation in various tissues (e.g., brain and liver), resulting in a severe change in the histology of these organs [4][5][6][7][10][11][14][40][41][42][43][44][45][46][47][48]. In addition, this pharmaceutical can cause changes in behavior (e.g., locomotor activity, stress response, feeding, aggression, social and anti-predatory behavior) [4][5][6][7][8][9][11][15][16][45][49][50][51][52][53][54][55][56][57][58][59][60].

2. Chronic Effects of Fluoxetine on Danio rerio

Here evaluated different behavior endpoints associated with anxiety/stress response (locomotion, thigmotaxis, and exploratory behavior), sociability (social test), and biochemical changes associated with neurotransmission, biotransformation, and oxidative stress, after chronic exposure of juvenile zebrafish to the SSRI antidepressant fluoxetine. In general, the data showed that, in the low µg/L range, fluoxetine can cause mild biological alterations in the tested endpoints affecting fish locomotor activity which, in the long term, may compromise population fitness. The concentrations tested are considered environmentally relevant, and fluoxetine levels similar to those tested here, and even lower, have already been detected in the environment. For example, in Baiyangdian Lake, Pearl River, Songhua River, Yellow River, Huai River, Hai River, and Liao River, fluoxetine levels up to 0.101 µg/L were detected [61][62].
Alternating light and dark changes are often used to assess the stress response in zebrafish larvae, where, larvae respond to the shift from light to dark with a burst of activity [63][64]. However, this assessment is scarcely used in juvenile fish. After 12 days of exposure to fluoxetine, zebrafish juveniles altered swimming time during the dark period at the highest concentrations. Curiously, the total distance traveled during this period was unaffected by fluoxetine, which indicates a decrease in swimming velocity and, therefore, a lower effect on the stress reaction to this condition. After 21 days of exposure, the change in locomotor activity during the light period became more evident. In a study carried out by Zindler et al. (2020) [60], fluoxetine reduced the swimming distance of embryos in the dark and changed the maximum speed during light periods, after 96 h exposure. Thigmotaxis is seen as the tendency of an animal placed in a new environment, to remain close to the walls and avoid the center of the aquarium. In fish, the persistence of this activity in the outer zone can be considered a measure of anxiety [65][66][67]. Fluoxetine did not affect this behavior following 21 days of exposure.
Regarding the measurement of angles during the fish’s path, the high amplitude angles (class 1) showed no effects of fluoxetine exposure, after 12 and 21 days of exposure. High amplitude angles are indicators of erratic swimming behavior (stress behavior) and the decrease in its frequency manifests the anxiolytic effect of fluoxetine on the stress behavior of exposed juveniles.
The novel tank test aims to assess the exploratory behavior in zebrafish, focusing on measures of “vertical” behavior patterns. This test explores the tendency of a fish to dive and stay at the bottom of a new environment (geotaxis), before exploring the upper areas. This test is used extensively to assess the effects of a wide variety of compounds, including pharmacological chemicals [65][68]. Drugs with antidepressant and anxiolytic properties have the ability to modify this behavior, consequently leading the fish to explore the new space sooner and spend less time in the bottom [69][70][71]. There was no evidence of effects over fish geotaxis behavior. Similar to this study, Marcon et al. (2016) [72] also failed to observe any changes in fish behavior to a novel environment following 7 days of exposure to 10 µg/L of fluoxetine. On the other hand, other studies, using embryos and adult zebrafish, and adult Oryzias latipes (Medaka), have reported effects of fluoxetine over their locomotion parameters in concentrations ranging from 0.01 µg/L to 10,000 µg/L, and exposure periods ranging from 3 min to 30 days. These studies indicate that fluoxetine decreases stress levels and increases fish exploratory behavior, with longer swimming periods at the top of the tank. In addition, there is also a decrease in freezing, lower latency to enter the top area, and an increase in the number of entries into the top area [5][9][14][15][16][49][51][56][57][58][73]. All these parameters indicate that fluoxetine reduces anxiety and stress levels in the fish brain system, resulting in more relaxed behavior.
The zebrafish is a social fish, living in shoals in its natural habitat [51][71][74][75][76]. This social interaction minimizes the risk of predation and if an organism is isolated, it can trigger anxiety-like behavior [77], reducing serotonin levels in the nervous system [78]. The change in social behavior can impact the reproduction and survival of the species. Chronic fluoxetine exposure did not alter fish social behavior. However, other studies, for example, Giacomini et al. (2016) [51] found that a 15-min exposure to 50 µg/L fluoxetine decreased social interaction in adult zebrafish, with animals spending less time near the shoal.

References

  1. Mohammadkhanizadeh, A.; Nikbakht, F. Investigating the potential mechanisms of depression induced-by COVID-19 infection in patients. J. Clin. Neurosci. 2021, 91, 283–287.
  2. Al Shuraiqi, A.; Al-Habsi, A.; Barry, M.J. Time-, dose- and transgenerational effects of fluoxetine on the behavioural responses of zebrafish to a conspecific alarm substance. Environ. Pollut. 2021, 270, 116164.
  3. De Castro-Català, N.; Muñoz, I.; Riera, J.L.; Ford, A.T. Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex. Environ. Pollut. 2017, 231, 406–414.
  4. de Farias, N.O.; Oliveira, R.; Sousa-Moura, D.; de Oliveira, R.C.S.; Rodrigues, M.A.C.; Andrade, T.S.; Domingues, I.; Camargo, N.S.; Muehlmann, L.A.; Grisolia, C.K.; et al. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 215, 1–8.
  5. deFarias, N.O.; Oliveira, R.; Moretti, P.N.S.; e Pinto, J.M.; Oliveira, A.C.; Santos, V.L.; Rocha, P.S.; Andrade, T.S.; Grisolia, C.K.; de Farias, N.O.; et al. Fluoxetine chronic exposure affects growth, behavior and tissue structure of zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108836.
  6. Parolini, M.; Ghilardi, A.; De Felice, B.; Del Giacco, L. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). Environ. Sci. Pollut. Res. 2019, 26, 34943–34952.
  7. Theodoridi, A.; Tsalafouta, A.; Pavlidis, M. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation. Front. Neurosci. 2017, 11, 223.
  8. Abreu, M.S.; Giacomini, A.C.V.; Gusso, D.; Rosa, J.G.S.; Koakoski, G.; Kalichak, F.; Idalêncio, R.; Oliveira, T.A.; Barcellos, H.H.A.; Bonan, C.D.; et al. Acute exposure to waterborne psychoactive drugs attract zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 179, 37–43.
  9. Ansai, S.; Hosokawa, H.; Maegawa, S.; Kinoshita, M. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes. Behav. Brain Res. 2016, 303, 126–136.
  10. Cunha, V.; Rodrigues, P.; Santos, M.M.; Moradas-Ferreira, P.; Ferreira, M. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos. Chemosphere 2018, 191, 954–961.
  11. Dorelle, L.S.; Da Cuña, R.H.; Sganga, D.E.; Rey Vázquez, G.; López Greco, L.; Lo Nostro, F.L. Fluoxetine exposure disrupts food intake and energy storage in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes). Chemosphere 2020, 238, 1242609.
  12. Ford, A.T.; Fong, P.P. The effects of antidepressants appear to be rapid and at environmentally relevant concentrations. Environ. Toxicol. Chem. 2016, 35, 794–798.
  13. McDonald, M.D. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 197, 19–31.
  14. Wong, R.Y.; Oxendine, S.E.; Godwin, J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics 2013, 14, 348.
  15. Vera-Chang, M.N.; St-Jacques, A.D.; Lu, C.; Moon, T.W.; Trudeau, V.L. Fluoxetine Exposure During Sexual Development Disrupts the Stress Axis and Results in Sex- and Time- Dependent Effects on the Exploratory Behavior in Adult Zebrafish Danio rerio. Front. Neurosci. 2019, 13, 1015.
  16. Vera-Chang, M.N.; St-Jacques, A.D.; Gagné, R.; Martyniuk, C.J.; Yauk, C.L.; Moon, T.W.; Trudeau, V.L. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc. Natl. Acad. Sci. USA 2018, 115, E12435–E12442.
  17. Barry, M.J. Effects of fluoxetine on the swimming and behavioural responses of the Arabian killifish. Ecotoxicology 2013, 22, 425–432.
  18. Tierney, A.J.; Hanzlik, K.N.; Hathaway, R.M.; Powers, C.; Roy, M. Effects of fluoxetine on growth and behavior in the crayfish Orconectes rusticus. Mar. Freshw. Behav. Physiol. 2015, 49, 133–145.
  19. Mennigen, J.A.; Stroud, P.; Zamora, J.M.; Moon, T.W.; Trudeau, V.L. Pharmaceuticals as Neuroendocrine Disruptors: Lessons Learned from Fish on Prozac. J. Toxicol. Environ. Health Part B Crit. Rev. 2011, 14, 387–412.
  20. Batt, A.L.; Kostich, M.S.; Lazorchak, J.M. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal. Chem. 2008, 80, 5021–5030.
  21. Vasskog, T.; Anderssen, T.; Pedersen-Bjergaard, S.; Kallenborn, R.; Jensen, E. Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters at Spitsbergen and in Norway. J. Chromatogr. A 2008, 1185, 194–205.
  22. Vasskog, T.; Berger, U.; Samuelsen, P.J.; Kallenborn, R.; Jensen, E. Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromsø, Norway. J. Chromatogr. A 2006, 1115, 187–195.
  23. Sousa, M.A.; Gonçalves, C.; Cunha, E.; Hajšlová, J.; Alpendurada, M.F. Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPE-LC-MS/MS. Anal. Bioanal. Chem. 2011, 399, 807–822.
  24. Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010, 29, 79–89.
  25. Metcalfe, C.D.; Miao, X.S.; Koenig, B.G.; Struger, J. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ. Toxicol. Chem. 2003, 22, 2881–2889.
  26. MacLeod, S.L.; Sudhir, P.; Wong, C.S. Stereoisomer analysis of wastewater-derived β-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1170, 23–33.
  27. Lajeunesse, A.; Gagnon, C.; Sauvé, S. Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chem. 2008, 80, 5325–5333.
  28. Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021.
  29. Gros, M.; Petrović, M.; Barceló, D. Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Anal. Chem. 2009, 81, 898–912.
  30. Martínez Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R.; Bueno, M.J.M.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; et al. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal. Chem. 2007, 79, 9372–9384.
  31. Salgado, R.; Marques, R.; Noronha, J.; Mexia, J.; Carvalho, G.; Oehmen, A. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludg plant. Environ. Pollut 2011, 159, 2359–2367.
  32. Alonso, S.G.; Catalá, M.; Maroto, R.R.; Gil, J.L.R.; de Miguel, Á.G.; Valcárcel, Y. Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ. Int. 2010, 36, 195–201.
  33. Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211.
  34. Schultz, M.M.; Furlong, E.T. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal. Chem. 2008, 80, 1756–1762.
  35. Barnes, K.; Kolpin, D.; Furlong, E.; Zaugg, S.; Meyer, M.; Barber, L. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci. Total Environ. 2008, 402, 192–200.
  36. Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue. Environ. Sci. Technol. 2010, 44, 1918–1925.
  37. Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: An ecopharmacovigilance approach. Sci. Total Environ. 2012, 437, 185–195.
  38. Snyder, S.A. Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Sci. Eng. 2008, 30, 65–69.
  39. Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 2009, 43, 597–603.
  40. Pan, C.; Yang, M.; Xu, H.; Xu, B.; Jiang, L.; Wu, M. Tissue bioconcentration and effects of fluoxetine in zebrafish (Danio rerio) and red crucian cap (Carassius auratus) after short-term and long-term exposure. Chemosphere 2018, 205, 8–14.
  41. Dorelle, L.S.; Da Cuña, R.H.; Rey Vázquez, G.; Höcht, C.; Shimizu, A.; Genovese, G.; Lo Nostro, F.L. The SSRI fluoxetine exhibits mild effects on the reproductive axis in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes). Chemosphere 2017, 171, 370–378.
  42. Yan, Z.; Zhang, X.; Bao, X.; Ling, X.; Yang, H.; Liu, J.; Lu, G.; Ji, Y. Influence of dissolved organic matter on the accumulation, metabolite production and multi-biological effects of environmentally relevant fluoxetine in crucian carp (Carassius auratus). Aquat. Toxicol. 2020, 226, 105581.
  43. Cunha, V.; Rodrigues, P.; Santos, M.M.; Moradas-Ferreira, P.; Ferreira, M. Danio rerio embryos on Prozac—Effects on the detoxification mechanism and embryo development. Aquat. Toxicol. 2016, 178, 182–189.
  44. Ding, J.; Lu, G.; Li, Y. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere 2016, 148, 21–31.
  45. Duarte, I.A.; Pais, M.P.; Reis-Santos, P.; Cabral, H.N.; Fonseca, V.F. Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine. Mar. Environ. Res. 2019, 147, 24–31.
  46. Duarte, I.A.; Reis-Santos, P.; Novais, S.C.; Rato, L.D.; Lemos, M.F.L.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Cabral, H.N.; Fonseca, V.F. Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. Sci. Total Environ. 2020, 712, 136564.
  47. Chen, H.; Zeng, X.; Mu, L.; Hou, L.; Yang, B.; Zhao, J.; Schlenk, D.; Dong, W.; Xie, L.; Zhang, Q. Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva. Ecotoxicol. Environ. Saf. 2018, 160, 104–113.
  48. Mishra, P.; Gong, Z.; Kelly, B.C. Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics. Chemosphere 2017, 188, 157–167.
  49. Abreu, M.S.; Giacomini, A.C.V.V.; Kalueff, A.V.; Barcellos, L.J.G. The smell of “anxiety”: Behavioral modulation by experimental anosmia in zebrafish. Physiol. Behav. 2016, 157, 67–71.
  50. Dzieweczynski, T.L.; Campbell, B.A.; Kane, J.L. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish. J. Exp. Biol. 2016, 219, 797–804.
  51. Giacomini, A.C.V.V.; Abreu, M.S.; Giacomini, L.V.; Siebel, A.M.; Zimerman, F.F.; Rambo, C.L.; Mocelin, R.; Bonan, C.D.; Piato, A.L.; Barcellos, L.J.G. Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav. Brain Res. 2016, 296, 301–310.
  52. Greaney, N.E.; Mannion, K.L.; Dzieweczynski, T.L. Signaling on Prozac: Altered audience effects on male-male interactions after fluoxetine exposure in Siamese fighting fish. Behav. Ecol. Sociobiol. 2015, 69, 1925–1932.
  53. Martin, J.M.; Bertram, M.G.; Saaristo, M.; Ecker, T.E.; Hannington, S.L.; Tanner, J.L.; Michelangeli, M.; O’Bryan, M.K.; Wong, B.B.M. Impact of the widespread pharmaceutical pollutant fluoxetine on behaviour and sperm traits in a freshwater fish. Sci. Total Environ. 2019, 650, 1771–1778.
  54. McCallum, E.S.; Bose, A.P.H.; Warriner, T.R.; Balshine, S. An evaluation of behavioural endpoints: The pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus). Chemosphere 2017, 175, 401–410.
  55. Meijide, F.J.; Da Cuña, R.H.; Prieto, J.P.; Dorelle, L.S.; Babay, P.A.; Lo Nostro, F.L. Effects of waterborne exposure to the antidepressant fluoxetine on swimming, shoaling and anxiety behaviours of the mosquitofish Gambusia holbrooki. Ecotoxicol. Environ. Saf. 2018, 163, 646–655.
  56. Pelli, M.; Connaughton, V.P. Chronic exposure to environmentally-relevant concentrations of fluoxetine (Prozac) decreases survival, increases abnormal behaviors, and delays predator escape responses in guppies. Chemosphere 2015, 139, 202–209.
  57. Pittman, J.; Hylton, A. Behavioral, endocrine, and neuronal alterations in zebrafish (Danio rerio) following sub-chronic coadministration of fluoxetine and ketamine. Pharmacol. Biochem. Behav. 2015, 139, 158–162.
  58. Singer, M.L.; Oreschak, K.; Rhinehart, Z.; Robison, B.D. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ 2016, 4, e2352.
  59. Weinberger, J.; Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 2014, 151, 77–83.
  60. Zindler, F.; Stoll, S.; Baumann, L.; Knoll, S.; Huhn, C.; Braunbeck, T. Do environmentally relevant concentrations of fluoxetine and citalopram impair stress-related behavior in zebrafish (Danio rerio) embryos? Chemosphere 2020, 261, 127753.
  61. Zhang, P.; Zhou, H.; Li, K.; Zhao, X.; Liu, Q.; Li, D.; Zhao, G. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China. Environ. Geochem. Health 2018, 40, 1525–1539.
  62. Li, Y.; Ding, J.; Zhang, L.; Liu, X.; Wang, G. Occurrence and ranking of pharmaceuticals in the major rivers of China. Sci. Total Environ. 2019, 696, 133991.
  63. Burgess, H.A.; Granato, M. Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol. 2007, 210, 2526–2539.
  64. Andrade, T.S.; Henriques, J.F.; Rita, A.; Luísa, A.; Koba, O.; Thai, P.; Soares, A.M.V.M.; Domingues, I. Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat. Toxicol. 2016, 170, 390–399.
  65. Champagne, D.L.; Hoefnagels, C.C.M.; de Kloet, R.E.; Richardson, M.K. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behav. Brain Res. 2010, 214, 332–342.
  66. Blaser, R.; Gerlai, R. Behavioral phenotyping in zebrafish: Comparison of three behavioral quantification methods. Behav. Res. Methods 2006, 38, 456–469.
  67. Best, C.; Kurrasch, D.M.; Vijayan, M.M. Maternal cortisol stimulates neurogenesis and affects larval behaviour in zebrafish. Sci. Rep. 2017, 7, 40905.
  68. Maximino, C.; de Brito, T.M.; da Silva Batista, A.W.; Herculano, A.M.; Morato, S.; Gouveia, A. Measuring anxiety in zebrafish: A critical review. Behav. Brain Res. 2010, 214, 157–171.
  69. Levin, E.D.; Bencan, Z.; Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 2007, 90, 54–58.
  70. Bencan, Z.; Sledge, D.; Levin, E.D. Buspirone, Chlordiazepoxide and Diazepam Effects in a Zebrafish Model of Anxiety. Pharmacol. Biochem. Behav. 2009, 94, 75–80.
  71. Egan, R.J.; Bergner, C.L.; Hart, P.C.; Cachat, J.M.; Canavello, P.R.; Elegante, M.F.; Elkhayat, S.I.; Bartels, B.K.; Tien, A.K.; Tien, D.H.; et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 2009, 205, 38–44.
  72. Marcon, M.; Herrmann, A.P.; Mocelin, R.; Rambo, C.L.; Koakoski, G.; Abreu, M.S.; Conterato, G.M.M.; Kist, L.W.; Bogo, M.R.; Zanatta, L.; et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology 2016, 233, 3815–3824.
  73. Pittman, J.T.; Ichikawa, K.M. IPhone® applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 2013, 106, 137–142.
  74. Snekser, J.L.; Mcrobert, S.P.; Murphy, C.E.; Clotfelter, E.D. Aggregation Behavior in Wildtype and Transgenic Zebrafish. Ethology 2006, 112, 181–187.
  75. Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The Behaviour and Ecology of the Zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. Available online: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18093234%5Cnhttp://onlinelibrary.wiley.com/store/10.1111/j.1469-185X.2007.00030.x/asset/j.1469-185X.2007.00030.x.pdf?v=1&t=gzie1u8h&s=0a780dc45692a9a4e938b3d2c662 (accessed on 16 November 2021).
  76. Lachowicz, J.; Niedziałek, K.; Rostkowska, E.; Szopa, A.; Swiader, K.; Szponar, J.; Serefko, A. Zebrafish as an Animal Model for Testing Agents with Antidepressant Potential. Life 2021, 11, 792.
  77. Collymore, C.; Tolwani, R.J.; Rasmussen, S. The behavioral effects of single housing and environmental enrichment on adult zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 280–285.
  78. Shams, S.; Chatterjee, D.; Gerlai, R. Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behav. Brain Res. 2015, 292, 283–287.
More
Information
Subjects: Biology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 620
Entry Collection: Environmental Sciences
Revisions: 2 times (View History)
Update Date: 06 Apr 2022
1000/1000
ScholarVision Creations