Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2361 2022-03-30 15:23:25 |
2 format is correct -7 word(s) 2354 2022-03-31 05:32:46 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Badenes-Pérez, F.R. Benefits of Insect Pollination in Brassicaceae. Encyclopedia. Available online: https://encyclopedia.pub/entry/21179 (accessed on 21 December 2024).
Badenes-Pérez FR. Benefits of Insect Pollination in Brassicaceae. Encyclopedia. Available at: https://encyclopedia.pub/entry/21179. Accessed December 21, 2024.
Badenes-Pérez, Francisco Rubén. "Benefits of Insect Pollination in Brassicaceae" Encyclopedia, https://encyclopedia.pub/entry/21179 (accessed December 21, 2024).
Badenes-Pérez, F.R. (2022, March 30). Benefits of Insect Pollination in Brassicaceae. In Encyclopedia. https://encyclopedia.pub/entry/21179
Badenes-Pérez, Francisco Rubén. "Benefits of Insect Pollination in Brassicaceae." Encyclopedia. Web. 30 March, 2022.
Benefits of Insect Pollination in Brassicaceae
Edit

Cultivated Brassicaceae attract a wide variety of pollinators. In both self-compatible and self-incompatible crop species, meta-analysis indicates that seed yield (Y), silique set (SQS), number of siliquae/plant (NSQ), and the number of seeds/silique (NSSQ) increase when plants are insect-pollinated compared to when there is no insect pollination. The weight of seeds (WS), however, increased in self-incompatible species but not in self-compatible ones as a result of insect pollination. Overall, the percentage of studies showing a positive effect of insect pollination on yield parameters was higher in self-incompatible than in self-compatible species. It was shown that the ability of self-compatible species to reproduce does not fully compensate for the loss of yield benefits in the absence of insect pollination. 

breeding system insect pollination pollinators yield

1. Introduction

Pollinators are essential in food production and plant biodiversity conservation [1][2][3]. More than 78% of angiosperm species are pollinator-dependent [4]. This obligatory and facultative cross-pollination makes insect pollination essential, or at least a positive factor, in maximizing fertilization. Brassicaceae, as most angiosperms, are xenogamous and either require cross-pollination or can be facultatively cross-pollinated [5][6][7][8]. With a few exceptions, flowers in the family Brassicaceae have four sepals, four petals diagonally disposed as a cruciform corolla, two carpels, and six stamens arranged in a tetradynamous pattern (four longer inner ones and two shorter outer ones) [9][10][11]. Except for one species in the genus Lepidium [12], plants in the family Brassicaceae have hermaphrodite flowers [13].
Plants in the family Brassicaceae attract a broad diversity of pollinators, including honeybees such as Apis mellifera L. (Hymenoptera: Apidae), solitary bees, such as Andrena spp. (Hymenoptera: Andrenidae), and hoverflies, such as Eristalis tenax L. (Diptera: Syrphidae) [8][14][15]. The family Brassicaceae includes many economically important species, some of which are widely used as vegetables, oils, condiments, or ornamental plants [16][17]. For example, oilseed rape Brassica napus L. subsp. napus, which is one of the most cultivated oilseed Brassicaceae, has seen the price of its seeds rise by more than 30% in the last three years [18]. To increase crop yield and gross margins in B. napus, bee pollination can be more beneficial than pesticide applications [19]. The potential benefit of pollination is most important in cruciferous crops in which the harvest consists of seeds and fruits (i.e., siliquae). Among these are all oilseed Brassicaceae, the most important of which is rapeseed, also known as canola, B. napus [20]. Other cruciferous oilseed crops include field mustard Brassica rapa L. subsp. oleifera, synonymous with Brassica campestris; Indian mustard Brassica juncea (L.) Czern.; Ethiopian mustard Brassica carinata A. Braun; camelina Camelina sativa L. (Crantz); radish Raphanus sativus (L.) Domin; and white mustard Sinapis alba L. These oilseed crops can be used for oil, biofuel, and/or lubricant production [21][22][23][24][25][26][27][28]. The seeds of S. alba are used for mustard elaboration, and the siliquae of R. sativus can be used as a vegetable (Table 1). Yield parameters in the family Brassicacae are often measured by seed yield, but other yield parameters such as the number of siliquae/plant and seed oil content are also used [29][30][31].
Table 1. Most common use and breeding system in the cultivated crops of the family Brassicaceae included here. In self-compatible plants, both outcrossing and selfing occurs, while in self-incompatible ones, the main breeding system is outcrossing.
Plant Most Common Names Most Common Use Main Breeding System References on Breeding System
Brassica carinata A. Braun Ethiopian mustard Leaves, seeds for oil Outcrossing and selfing [32][33]
Brassica juncea (L.) Czern. Brown mustard, Indian mustard Leaves, seeds for oil Outcrossing and selfing [32][34]
Brassica napus L. Rapeseed, canola Seeds for oil Outcrossing and selfing [32][35]
Brassica oleracea L. Cabbage, broccoli, cauliflower Leaves, inflorescences Outcrossing, self-incompatible [33]
Brassica rapa L. Turnip, field mustard Leaves, root, seeds for oil Outcrossing, self-incompatible [32][34]
Camelina sativa L. (Crantz) Camelina, German sesame Seeds for oil, leaves Outcrossing and selfing [32][36]
Eruca sativa Mill. Arugula, rucola Leaves Outcrossing, self-incompatible [29]
Raphanus sativus (L.) Domin Radish Roots, seeds oil Outcrossing, self-incompatible [33]
Sinapis alba L. White mustard Seeds for table mustard, oil Outcrossing and selfing [32][34]
A recent meta-analysis conducted with B. napus, a self-compatible species, showed that pollinator abundance is consistently important in predicting yield in this crop [37]. To date, no meta-analyses have been conducted to examine the effect of insect pollination in yield parameters across the broad spectrum of cruciferous crops, nor have there been meta-analyses examining the effects of insect pollination on yield parameters separately for self-compatible and self-incompatible species. Self-incompatible Brassicaceae species typically have larger flowers than self-compatible ones in order to attract pollinators, with a significantly reduced seed set in the absence of pollinating agents [32][38]. Given the evolutionary advantage of selfing as a reproductive assurance when there is a paucity of pollinators [39], insect pollination is likely to have more marked positive effects on yield parameters in self-incompatible Brassicaceae species than in self-compatible ones.

2. Insect Pollination Effect on Yield Parameters in Cultivated Brassicaceae

Table 2 shows the crops for which the effect (increase, decrease, non-significant) of insect pollination on seed yield parameters was studied in the family Brassicaceae (reports from at least seven studies). 

Table 2. Publications were consulted for the main yield parameters (a total of seven or more studies found) which were: seed yield measured as seed weight/(plant, area, or open flower) (Y); weight of seeds (1, 100, or 1000 seeds) (WS); number of siliquae/(plant or area) (NSQ); number of seeds/(silique or open flower) (NSSQ); silique set (SQS); silique length (SQL); number of seeds/(area, plant, or branch) (NSP); seed germination (G); and oil content of seeds (O). An increase, decrease, or neutral effect of insect pollination on yield parameters is shown in red, blue, or green, respectively. Studies included in the meta-analysis for at least one yield parameter are marked with two asterisks (**) in the Note column.
Plant Species Yield Parameter References Note
  Y WS SQS NSQ NSSQ SQL NSP G O    
B. carinata                   [29] **
                  [40]  
B. juncea                   [29] **
                  [41] **
                  [42]  
                  [43]  
                  [44] **
                  [45]  
                  [46] **
                  [47]  
                  [48]  
                  [49]  
                  [50]  
B. napus                   [29] **
                  [51]  
                  [52] Male-fertile line
                  [52] Male-sterile line
                  [53]  
                  [54]  
                  [55]  
                  [56] **
                  [57] **
                  [58] **
                  [59]  
                  [31]  
                  [60]  
                  [61] **
                  [62] **
                  [63] Hybrid
                  [63] Non-hybrid
                  [64] **
* *               [65] **
        *         [66]  
                  [67]  
        *         [68] **
                  [69] Hybrid
                  [69] Non-hybrid
                  [70]  
                  [71]  
                  [72]  
                  [73] Hybrid
                  [73] Non-hybrid
                  [74]  
                  [75]  
                  [76] **
                  [77]  
                  [78]  
                  [79]  
                  [80]  
B. oleracea                   [81]  
                  [82]  
                  [29] **
                  [83]  
                  [84] Cabbage **
                  [84] Cauliflower **
                  [85]  
B. rapa                   [29] **
                  [86] **
                  [87] **
                  [88]  
                  [89]  
                  [90]  
                  [91]  
                  [92]  
                  [93]  
                  [94] **
                  [95] **
                  [96]  
C. sativa                   [36] **
E. sativa                   [29] **
R. sativus                   [29] **
                  [97] **
                  [98]  
                  [99] **
                  [100] **
                  [101]  
                  [102]  
S. alba                   [29]  
                  [103]  
* Most common response when several cultivars, planting dates, or experimental locations were used.

4. Insect Pollinators of Crops of the Family Brassicaceae

The main pollinators reported for these crops are shown in Table 3, with the top pollinators for all of them being honeybees (Apis spp.), such as A. mellifera, A. cerana., A. dorsata, and A. florea, and mining bees (Andrenidae). Additional pollinators often reported for these crops are other Apidae (other than Apis spp.), such as bumblebees (Bombus spp.), sweat bees (Halictidae), and hoverflies (Syrphidae) for B. juncea; other Apidae and Syrphidae for B. napus; Halictidae and Syrphidae for B. oleracea; Syrphidae, Halictidae, and other Apidae for B. rapa; Syrphidae and Halictidae for C. sativa; other Apidae and Syrphidae for E. sativa; and Halictidae and Syrphidae for R. sativus. In the case of B. napus, single visit pollen deposition has been shown to be the highest for Bombus spp., Andrenidae, and A. mellifera (with median pollen grain depositions of 341, 335, and 202, respectively) [104], while single visit efficiency in terms of the number of seeds/silique produced was highest for Halictus and Apis spp. [57]. In B. napus, there were no differences in honeybee and bumblebee visits between open-pollinated and hybrid varieties [105], but bee abundance was higher and pollination deficit was lower in conventional compared to genetically modified Roundup Ready plants [106]. In the case of B. rapa, efficiency, given by stigmatic pollen grain deposition by a single visit of an insect to a flower, was highest for Bombus terrestris L. [15][107]. In addition to efficiency, the abundance and number of insect visits makes some insects more effective pollinators than others. Because of this, A. mellifera, often the most common floral visitor, can be considered a more effective pollinator than more efficient pollinators that visit flowers less often [15]. However, one or two bee flower visits may be sufficient to achieve a full seed set in B. rapa flowers [108][109].
Table 3. Insect pollinators of crops of the family Brassicaceae. Abbreviations for pollinators are as follows: Apidae of the genus Apis (A), other Apidae different than Apis spp. (OA), Andrenidae (An), Bibionidae (B), Calliphoridae (C), Coccinellidae (Co), Colletidae (Col), Empididae (E), Formicidae (F), Halictidae (H), Megachillidae (M), Muscidae (Mu), Pieridae (P), Scarabaeidae (S), Sepsidae (Se), Stratiomyidae (St), Syrphidae (Sy), Tabanidae (T), and Vespidae (V). Abbreviations for countries are as follows: Australia (A), Bangladesh (B), Belgium (Be), Brazil (Br), China (C), France (F), Germany (G), India (I), Ireland (Ir), Nepal (N), New Zealand (NZ), Pakistan (P), Sweden (S), United Kingdom (UK), and United States of America (US).
Plant   Number of studies reporting main pollinators in a given family   Countries References
A OA An B C Co Coll E F H M Mu P S Se St Sy T V    
B. carinata 3 - 2 - - - - - - - - - - - - - - - - I, US [29][33][40]
B. juncea 14 4 4 - - 1 - - 1 3 1 2 - - 1 - 3 - 1 B, I [29][33][43][45][47][49][110][111][112][113][114][115][116][117][118]
B. napus 12 8 4 - 1 - - 1 - 2 1 1 2 - - - 4 - - Be, Br, C, F, G, I, Ir, UK, P, S [60][29][31][33][57][58][119][120][121][122][123][124][125]
B. oleracea 8 1 2 - - - - - - 2 - - - - - - 2 - - I [29][83][85][126][127][128][129][130]
B. rapa 11 5 3 - - 1 2 - - 3 1 - - 2 - 1 7 1 - A, I, N, NZ, P [15][29][33][89][95][96][107][108][109][112][131][132][133][134]
C. sativa 2 - 1 - - - - - - 2 - - - - - - 2 - - Be, G, US [36][135][136][137][138]
E. sativa 3 1 2 - - - - - - - - - - - - - 1 - - I, P [29][33][133]
R. sativus 4 - 2 - - - - - - 1 - - - - - - 1 - - I, P [29][33][99][100]
S. alba 2 - 2 - - - - - - - - - - - - - - - - I [29][33]
Total 59 19 22 1 1 2 2 1 1 13 3 3 2 2 1 1 20 1 1    

4. Conclusions

Approximately 75% of crop species benefit from pollinators, contributing to an estimated 9.5% of the value of the world agriculture production devoted to human food [1][139]. Other studies conducting meta-analysis have also shown the benefits of insect pollination for plant reproduction and yield in crops in general [140][141][142], in the plant species of particular natural habitats [143], and in particular crops, such as fava bean [144], oilseed rape [37], and tomato [145]. It is shown that, overall, the yield parameters of crops in the family Brassicaceae benefit from insect pollination. Insect pollination has a positive effect on Y, SQS, NSQ, and NSSQ in both self-compatible and self-incompatible cruciferous crops. WS, however, increased as a result of insect pollination only in self-incompatible species. Even though the meta-analysis was conducted with crop species grouped into self-compatible and self-incompatible ones, it indicates that significant yield benefits of insect pollination also occur at the level of individual cruciferous crops.
Plants have evolved to have self-compatibility as a reproductive assurance that gives them a fitness advantage when ovules are outcross-pollen-limited [39]. However, it is shown that in self-compatible species, most yield parameters continue to benefit from insect pollination. Because of this, in some self-compatible crop species such as B. napus, the placement of honeybee colonies next to fields has been recommended [53][146]. Regarding the overall neutral effect of insect pollination on WS in self-compatible species, it is known that plants can compensate for variation among some yield parameters [53][54][77]. For example, WS is negatively correlated with NSP and NSSQ in B. napus [53][54][77]. This negative correlation indicates that B. napus can produce heavier seeds when the seed set is low [53][56][147]. For this reason, even if insect pollination does not increase WS, an increase in NSP can result in a positive effect on Y [53][78]. Another benefit of insect pollination shown for B. napus is the shortening of the flowering period and, therefore, of the growing season [79][148][149]. On the other hand, delayed maturity can also increase Y [150].
Both honeybees and wild bees are considered important pollinators of crops [140][151][152][153]. Among the variety of pollinators attracted to flowers of cultivated Brassicaceae, honeybees, A. mellifera and other Apis spp., seem to be the dominant reported species. However, other Apidae, such as bumblebees, mining bees (Andrenidae), sweat bees (Halictidae), and hoverflies (Syrphidae) are also commonly reported as pollinators of these crops. Since A. mellifera is often the most common floral visitor, the higher frequency of visits can make it a more effective pollinator than other more efficient pollinators that visit flowers less often [15][127][128][129]. Other pollinator families, such as Lepidoptera, were not among the most abundant pollinators found in the studies reviewed. However, lepidopterans such as Pieris spp. (Lepidoptera: Pieridae) were sometimes reported among less common pollinators [49][124][132]. Pollinator diversity can also enhance crop pollination and yield [37].
The importance of pollinators for yield in Brassicaceae crops makes it paramount to ensure that agricultural practices are compatible with pollinator conservation. Pest management and other agricultural practices can affect the effect of pollination on yield, and this has been shown for B. napus [67][71][77][154][155] and B. rapa [94][106]. In general, the application of pesticides, if unavoidable, should be performed following practices that minimize the risk of pollinator poisoning, such as using pesticides of low toxicity and not spraying when bees are foraging [14][93][156][157]. Unfortunately, some farmers growing cruciferous crops are unaware of the harmful effects that pesticide applications can have on pollinators and other beneficial insects [158][159]. Pollinator conservation practices, such as setting pollinator reservoirs [160][161][162], could also be implemented in the vicinity of Brassicaceae crops to ensure that pollinators can be sustained throughout the year. Pollinator reservoirs can also help in conservation biological control [163][164]. Some of the crops included here, such as B. rapa and S. alba, have also been used as insectary plants [165]. Proximity to natural habitats with natural vegetation and where wild bees can locate their nests can also enhance the abundance of wild bees [96][107][120]. The flowers of crucifer crops can also temporarily benefit wild bees because of the food resource boost [121].
In conclusion, it is shown that insect pollination has a positive effect on Y, SQS, NSQ, and NSSQ in both self-compatible and self-incompatible cruciferous crops. WS increased as a result of insect pollination only in self-incompatible species. Given the reproductive advantage of self-compatibility in the absence of pollinators, insect pollination could have more positive effects on yield parameters in self-incompatible species than in self-compatible ones. However, among the yield parameters investigated, WS was the only one that did not improve in self-compatible species as a result of insect pollination. In Brassicaceae crops, the insect families most reported as pollinators are Apidae, Andrenidae, Syrphidae, and Halictidae.

References

  1. Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313.
  2. Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008, 18, 1572–1575.
  3. Senapathi, D.; Biesmeijer, J.C.; Breeze, T.D.; Kleijn, D.; Potts, S.G.; Carvalheiro, L.G. Pollinator Conservation—the Difference between Managing for Pollination Services and Preserving Pollinator Diversity. Curr. Opin. Insect Sci. 2015, 12, 93–101.
  4. Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326.
  5. Crepet, W.L. Advanced (Constant) Insect Pollination Mechanisms: Pattern of Evolution and Implications Vis-a-Vis Angiosperm Diversity. Ann. Mo. Bot. Gard. 1984, 71, 607–630.
  6. Preston, R.E. Pollen-Ovule Ratios in the Cruciferae. Am. J. Bot. 1986, 73, 1732–1740.
  7. Goodwillie, C.; Kalisz, S.; Eckert, C.G. The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 47–79.
  8. Abrol, D.P. Pollination Biology: Biodiversity Conservation and Agricultural Production; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1941-5.
  9. Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae Based on Chloroplast Sequence Data. Am. J. Bot. 2002, 89, 1826–1842.
  10. Méndez, M.; Gómez, J.M. Phenotypic Gender in Hormathophylla Spinosa (Brassicaceae), a Perfect Hermaphrodite with Tetradynamous Flowers, Is Variable. Plant Syst. Evol. 2006, 262, 225–237.
  11. Matsuhashi, S.; Sakai, S.; Kudoh, H. Temperature-Dependent Fluctuation of Stamen Number in Cardamine Hirsuta (Brassicaceae). Int. J. Plant Sci. 2012, 173, 391–398.
  12. Soza, V.L.; Le Huynh, V.; Di Stilio, V.S. Pattern and Process in the Evolution of the Sole Dioecious Member of Brassicaceae. Evodevo 2014, 5, 42.
  13. Rea, A.C.; Nasrallah, J.B. Self-Incompatibility Systems: Barriers to Self-Fertilization in Flowering Plants. Int. J. Dev. Biol. 2008, 52, 627–636.
  14. Badenes-Pérez, F.R.; Bhardwaj, T.; Thakur, R.K. Integrated Pest Management and Pollination Services in Brassica Oilseed Crops. In Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; Reddy, G.V.P., Ed.; CABI: Wallingford, UK, 2017; pp. 341–349. ISBN 978-1-78064-820-0.
  15. Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Newstrom-Lloyd, L.E.; Walker, M.K.; Teulon, D.A.J.; Edwards, W. Alternative Pollinator Taxa Are Equally Efficient but Not as Effective as the Honeybee in a Mass Flowering Crop. J. Appl. Ecol. 2009, 46, 1080–1087.
  16. Al-Shehbaz, I.A. Brassicaceae (Mustard Family). In eLS; Wiley: Hoboken, NJ, USA, 2011; pp. 482–486.
  17. Warwick, S.I. Brassicaceae in Agriculture. In Genetics and Genomics of the Brassicaceae; Schmidt, R., Bancroft, I., Eds.; Springer: New York, NY, USA, 2011; pp. 33–65. ISBN 978-1-4419-7118-0.
  18. Wilson, C.; Golden, D.; Hubbs, T. Oil Crops Outlook: March 2021. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/j098zb08p/t722j539s/g445d881s/OCS21e.pdf (accessed on 1 March 2022).
  19. Catarino, R.; Bretagnolle, V.; Perrot, T.; Vialloux, F.; Gaba, S. Bee Pollination Outperforms Pesticides for Oilseed Crop Production and Profitability. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191550.
  20. Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and Perspectives of Breeding for Enhanced Yield and Quality of Oilseed Crops for Europe. Euphytica 2009, 170, 131.
  21. Moser, B.R.; Winkler-Moser, J.K.; Shah, S.N.; Vaughn, S.F. Composition and Physical Properties of Arugula, Shepherd’s Purse, and Upland Cress Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 734–740.
  22. Shonnard, D.R.; Williams, L.; Kalnes, T.N. Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels. Environ. Prog. Sustain. Energy 2010, 29, 382–392.
  23. Chammoun, N.; Geller, D.P.; Das, K.C. Fuel Properties, Performance Testing and Economic Feasibility of Raphanus Sativus (Oilseed Radish) Biodiesel. Ind. Crops Prod. 2013, 45, 155–159.
  24. Del Gatto, A.; Melilli, M.G.; Raccuia, S.A.; Pieri, S.; Mangoni, L.; Pacifico, D.; Signor, M.; Duca, D.; Pedretti, E.F.; Mengarelli, C. A Comparative Study of Oilseed Crops (Brassica Napus L. Subsp. Oleifera and Brassica Carinata A. Braun) in the Biodiesel Production Chain and Their Adaptability to Different Italian Areas. Ind. Crops Prod. 2015, 75, 98–107.
  25. McVetty, P.B.E.; Duncan, R.W. Canola, Rapeseed, and Mustard: For Biofuels and Bioproducts. In Industrial Crops: Breeding for BioEnergy and Bioproducts; Cruz, V.M.V., Dierig, D.A., Eds.; Springer: New York, NY, USA, 2015; pp. 133–156. ISBN 978-1-4939-1447-0.
  26. Hossain, Z.; Johnson, E.N.; Wang, L.; Blackshaw, R.E.; Gan, Y. Comparative Analysis of Oil and Protein Content and Seed Yield of Five Brassicaceae Oilseeds on the Canadian Prairie. Ind. Crops Prod. 2019, 136, 77–86.
  27. Gesch, R.W.; Long, D.S.; Palmquist, D.; Allen, B.L.; Archer, D.W.; Brown, J.; Davis, J.B.; Hatfield, J.L.; Jabro, J.D.; Kiniry, J.R.; et al. Agronomic Performance of Brassicaceae Oilseeds in Multiple Environments across the Western USA. Bioenerg. Res. 2019, 12, 509–523.
  28. Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.M.; Veljković, V.B. White Mustard (Sinapis Alba L.) Oil in Biodiesel Production: A Review. Front. Plant Sci. 2020, 11, 299.
  29. Sihag, R.C. Insect Pollination Increases Seed Production in Cruciferous and Umbelliferous Crops. J. Apic. Res. 1986, 25, 121–126.
  30. Abrol, D.P. Honeybees and Rapeseed: A Pollinator–Plant Interaction. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2007; Volume 45, pp. 337–367. ISBN 0065-2296.
  31. Bommarco, R.; Marini, L.; Vaissière, B.E. Insect Pollination Enhances Seed Yield, Quality, and Market Value in Oilseed Rape. Oecologia 2012, 169, 1025–1032.
  32. Salisbury, P.A.; Fripp, Y.J.; Gurung, A.M.; Williams, W.M. Is Floral Structure a Reliable Indicator of Breeding System in the Brassicaceae? PLoS ONE 2017, 12, e0174176.
  33. Sihag, R.C. Characterization of the Pollinators of Cultivated Cruciferous and Leguminous Crops of Sub-Tropical Hissar, India. Bee World 1988, 69, 153–158.
  34. Snell, R.; Aarssen, L.W. Life History Traits in Selfing versus Outcrossing Annuals: Exploring the “time-Limitation” Hypothesis for the Fitness Benefit of Self-Pollination. BMC Ecol. 2005, 5, 2.
  35. Williams, I.H.; Martin, A.P.; White, R.P. The Pollination Requirements of Oil-Seed Rape (Brassica Napus L.). J. Agric. Sci. 1986, 106, 27–30.
  36. Groeneveld, J.H.; Klein, A.-M. Pollination of Two Oil-Producing Plant Species: Camelina (Camelina Sativa L. Crantz) and Pennycress (Thlaspi Arvense L.) Double-Cropping in Germany. GCB Bioenergy 2014, 6, 242–251.
  37. Woodcock, B.A.; Garratt, M.P.D.; Powney, G.D.; Shaw, R.F.; Osborne, J.L.; Soroka, J.; Lindström, S.A.M.; Stanley, D.; Ouvrard, P.; Edwards, M.E.; et al. Meta-Analysis Reveals That Pollinator Functional Diversity and Abundance Enhance Crop Pollination and Yield. Nat. Commun. 2019, 10, 1481.
  38. Bateman, A.J. Self-Incompatibility Systems in Angiosperms. 3. Cruciferae. Heredity 1955, 9, 53–68.
  39. Holsinger, K.E.; Steinbachs, J.E. Mating Systems and Evolution in Flowering Plants. In Evolution and Diversification of Land Plants; Iwatsuki, K., Raven, P.H., Eds.; Springer: Tokyo, Japan, 1997; pp. 223–248. ISBN 978-4-431-65918-1.
  40. Stiles, S.; Lundgren, J.G.; Fenster, C.B.; Nottebrock, H. Maximizing Ecosystem Services to the Oil Crop Brassica Carinata through Landscape Heterogeneity and Arthropod Diversity. Ecosphere 2021, 12, e03624.
  41. Prasad, D.; Hameed, S.F.; Singh, R.; Yazdani, S.S.; Singh, B. Effect of Bee Pollination on the Quantity and Quality of Rai Crop (Brassica Juncea Coss). Indian Bee J. 1989, 51, 45–47.
  42. Chand, H.; Singh, B. Effect of Pollination by Apis Cerana Fabr. on Yield of Mustard, Brassica Juncea. Indian Bee J. 1995, 57, 173–174.
  43. Mahindru, N.; Singh, G.; Grewal, G.S. Comparative Abundance and Foraging Behaviour of Insect Pollinators of Raya, Brassica Juncea L. and Role of Apis Mellifera L. in Crop Pollination. J. Insect Sci. 1998, 11, 34–37.
  44. Goswami, V.; Khan, M.S. Impacto of Honey Bee Pollination on Pod Set of Mustard (Brassica Juncea L.: Cruciferae) at Pantnagar. Bioscan 2014, 9, 75–78.
  45. Maity, A.; Chakrabarty, S.K.; Yadav, J.B. Foraging Behaviour of Honeybees (Apis Spp.) (Hymenoptera: Apidae) in Hybrid Seed Production of Indian Mustard (Brassica Juncea). Indian J. Agric. Sci. 2014, 84, 1389–1394.
  46. Nagpal, K.; Yadav, S.; Kumar, Y.; Singh, R. Effect of Pollination Modes on Yield Components in Indian Mustard (Brassica Juncea L.). J. Oilseed Brassica 2017, 8, 187–194.
  47. Devi, M.; Sharma, H.; Thakur, R.K.; Bhardwaj, S.; Rana, K.; Thakur, M.; Ram, B. Diversity of Insect Pollinators in Reference to Seed Set of Mustard (Brassica Juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2131–2144.
  48. Devi, M.; Sharma, H.K. Effect of Different Modes of Pollination on Seed Set of Mustard (Brassica Juncea L.) Sown on Different Sowing Dates. J. Entomol. Zool. Stud. 2018, 6, 1889–1893.
  49. Mandal, E.; Amin, M.R.; Rahman, H.; Akanda, A.M. Abundance and Foraging Behavior of Native Insect Pollinators and Their Effect on Mustard (Brassica Juncea L.). Bangladesh J. Zool. 2018, 46, 117–123.
  50. Mahadik, P.B.; Kulkarni, S.R.; Manchare, R.R. Impact of Honey Bees as a Pollinators on Seed Production of Mustard (Brassica Juncea L.). J. Entomol. Zool. Stud. 2019, 7, 1380–1383.
  51. Mussury, R.M.; Fernandes, W.D. Studies of the Floral Biology and Reproductive System of Brassica Napus L. (Cruciferae). Braz. Arch. Biol. Technol. 2000, 43, 111–117.
  52. Steffan-Dewenter, I. Seed Set of Male-Sterile and Male-Fertile Oilseed Rape (Brassica Napus) in Relation to Pollinator Density. Apidologie 2003, 34, 227–235.
  53. Manning, R.; Wallis, I.R. Seed Yields in Canola (Brassica Napus Cv. Karoo) Depend on the Distance of Plants from Honeybee Apiaries. Aust. J. Exp. Agric. 2005, 45, 1307–1313.
  54. Sabbahi, R.; De Oliveira, D.; Marceau, J. Influence of Honey Bee (Hymenoptera: Apidae) Density on the Production of Canola (Crucifera: Brassicacae). J. Econ. Entomol. 2005, 98, 367–372.
  55. Jauker, F.; Wolters, V. Hover Flies Are Efficient Pollinators of Oilseed Rape. Oecologia 2008, 156, 819–823.
  56. Araneda Durán, X.; Breve Ulloa, R.; Aguilera Carrillo, J.; Lavín Contreras, J.; Toneatti Bastidas, M. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis Mellifera L.) Rapeseed Canola (Brassica Napus L.). Chil. J. Agric. Res. 2010, 70, 309–314.
  57. Ali, M.; Saeed, S.; Sajjad, A.; Whittington, A. In Search of the Best Pollinators for Canola (Brassica Napus L.) Production in Pakistan. Appl. Entomol. Zool. 2011, 46, 353–361.
  58. De Souza Rosa, A.; Blochtein, B.; Lima, D.K. Honey Bee Contribution to Canola Pollination in Southern Brazil. Sci. Agric. 2011, 68, 255–259.
  59. Jauker, F.; Bondarenko, B.; Becker, H.C.; Steffan-Dewenter, I. Pollination Efficiency of Wild Bees and Hoverflies Provided to Oilseed Rape. Agric. For. Entomol. 2012, 14, 81–87.
  60. Stanley, D.; Gunning, D.; Stout, J. Pollinators and Pollination of Oilseed Rape Crops (Brassica Napus L.) in Ireland: Ecological and Economic Incentives for Pollinator Conservation. J. Insect. Conserv. 2013, 17, 1181–1189.
  61. Shakeel, M.; Inayatullah, M. Impact of Insect Pollinators on the Yield of Canola (Brassica Napus) in Peshawar, Pakistan. J. Agric. Urban Entomol. 2013, 29, 1–5.
  62. Nedić, N.; Mačukanović-Jocić, M.; Rančić, D.; Rørslett, B.; Šoštarić, I.; Stevanović, Z.D.; Mladenović, M. Melliferous Potential of Brassica Napus L. Subsp. Napus (Cruciferae). Arthropod-Plant Interact. 2013, 7, 323–333.
  63. Hudewenz, A.; Pufal, G.; Bogeholz, A.L.; Klein, A.M. Cross-Pollination Benefits Differ among Oilseed Rape Varieties. J. Agric. Sci. 2014, 152, 770–778.
  64. Garratt, M.P.D.; Coston, D.J.; Truslove, C.L.; Lappage, M.G.; Polce, C.; Dean, R.; Biesmeijer, J.C.; Potts, S.G. The Identity of Crop Pollinators Helps Target Conservation for Improved Ecosystem Services. Biol. Conserv. 2014, 169, 128–135.
  65. Chambó, E.D.; De Oliveira, N.T.E.; Garcia, R.C.; Duarte-Júnior, J.B.; Ruvolo-Takasusuki, M.C.C.; Toledo, V.A. Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates. An. Da Acad. Bras. De Cienc. 2014, 86, 2087–2100.
  66. Blochtein, B.; Nunes-Silva, P.; Halinski, R.; Lopes, L.; Witter, S. Comparative Study of the Floral Biology and of the Response of Productivity to Insect Visitation in Two Rapeseed Cultivars (Brassica Napus L.) in Rio Grande Do Sul. Braz. J. Biol. 2014, 74, 787–794.
  67. Bartomeus, I.; Gagic, V.; Bommarco, R. Pollinators, Pests and Soil Properties Interactively Shape Oilseed Rape Yield. Basic Appl. Ecol. 2015, 16, 737–745.
  68. Witter, S.; Nunes-Silva, P.; Lisboa, B.B.; Tirelli, F.P.; Sattler, A.; Hilgert-Moreira, S.B.; Blochtein, B. Stingless Bees as Alternative Pollinators of Canola. J. Econ. Entomol. 2015, 108, 880–886.
  69. Marini, L.; Tamburini, G.; Petrucco-Toffolo, E.; Lindström, S.A.M.; Zanetti, F.; Mosca, G.; Bommarco, R. Crop Management Modifies the Benefits of Insect Pollination in Oilseed Rape. Agric. Ecosyst. Environ. 2015, 207, 61–66.
  70. Kamel, S.M.; Mahfouz, H.M.; Blal, A.E.-F.H.; Said, M.; Mahmoud, M.F. Diversity of Insect Pollinators with Reference to Their Impact on Yield Production of Canola (Brassica Napus L.) in Ismailia, Egypt. Pestic. I Fitomedicina 2015, 30, 161–168.
  71. Sutter, L.; Albrecht, M. Synergistic Interactions of Ecosystem Services: Florivorous Pest Control Boosts Crop Yield Increase through Insect Pollination. Proc. R. Soc. B Biol. Sci. 2016, 283, 1–8.
  72. Samnegård, U.; Hambäck, P.A.; Lemessa, D.; Nemomissa, S.; Hylander, K. A Heterogeneous Landscape Does Not Guarantee High Crop Pollination. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161472.
  73. Lindström, S.A.M.; Herbertsson, L.; Rundlöf, M.; Smith, H.G.; Bommarco, R. Large-Scale Pollination Experiment Demonstrates the Importance of Insect Pollination in Winter Oilseed Rape. Oecologia 2016, 180, 759–769.
  74. van Gils, S.; van der Putten, W.H.; Kleijn, D. Can Above-Ground Ecosystem Services Compensate for Reduced Fertilizer Input and Soil Organic Matter in Annual Crops? J. Appl. Ecol. 2016, 53, 1186–1194.
  75. Zou, Y.; Xiao, H.; Bianchi, F.J.J.A.; Jauker, F.; Luo, S.; van der Werf, W. Wild Pollinators Enhance Oilseed Rape Yield in Small-Holder Farming Systems in China. BMC Ecol. 2017, 17, 6.
  76. Fuzaro, L.; Xavier, N.L.; Carvalho, F.J.; Silva, F.A.N.; Carvalho, S.M.; Andaló, V. Influence of Pollination on Canola Seed Production in the Cerrado of Uberlândia, Minas Gerais State, Brazil. Acta Scientiarum. Agron. 2018, 40, e39315.
  77. Garratt, M.P.D.; Bishop, J.; Degani, E.; Potts, S.G.; Shaw, R.F.; Shi, A.; Roy, S. Insect Pollination as an Agronomic Input: Strategies for Oilseed Rape Production. J. Appl. Ecol. 2018, 55, 2834–2842.
  78. Perrot, T.; Gaba, S.; Roncoroni, M.; Gautier, J.-L.; Bretagnolle, V. Bees Increase Oilseed Rape Yield under Real Field Conditions. Agric. Ecosyst. Environ. 2018, 266, 39–48.
  79. Adamidis, G.C.; Cartar, R.V.; Melathopoulos, A.P.; Pernal, S.F.; Hoover, S.E. Pollinators Enhance Crop Yield and Shorten the Growing Season by Modulating Plant Functional Characteristics: A Comparison of 23 Canola Varieties. Sci. Rep. 2019, 9, 14208.
  80. Mazzilli, S.R.; Abbate, S.; Silva, H.; Mendoza, Y. Apis Mellifera Visitation Enhances Productivity in Rapeseed. J. Apic. Res. 2020, 1–9.
  81. Varma, S.K.; Joshi, N.K. Studies on the Role of Honey Bees in the Pollination of Cauliflower (Brassica Oleracea Var. Botrytis). Indian Bee J. 1983, 45, 52–53.
  82. Tewari, G.N.; Singh, K. Studies on Insect Pollinators in Relation to Seed Production in Cauliflower (Brassica Oleracea Var. Botrytis L.). Indian Bee J. 1983, 54–55.
  83. Kumar, J.; Gupta, J.K.; Mishra, R.C.; Dogra, G.S. Pollination Studies in Some Cultivars of Cauliflower (Brassica Oleracea Var. Botrytis L.). Indian Bee J. 1988, 50, 93–95.
  84. Verma, L.R.; Partap, U. Foraging Behaviour of Apis Cerana on Cauliflower and Cabbage and Its Impact on Seed Production. J. Apic. Res. 1994, 33, 231–236.
  85. Sharma, D.; Abrol, D.P.; Kumar, M.; Singh, S.K.; Singh, P.K. Pollinator Diversity and Its Impact on Cauliflower (Brassica Campestris Var. Botrytis) Pollination. Ann. Agri Bio Res. 2013, 18, 383–385.
  86. Mishra, R.C.; Kumar, J.; Gupta, J.K. The Effect of Mode of Pollination on Yield and Oil Potential of Brassica Campestris L. Var. Sarson with Observations on Insect Pollinators. J. Apic. Res. 1988, 27, 186–189.
  87. Singh, R.P.; Singh, P.N. Impact of Bee Pollination on Seed Yield, Carbohydrate Composition and Lipid Composition of Mustard Seed. J. Apic. Res. 1992, 31, 128–133.
  88. Khan, B.M.; Chaudhry, M.I. Comparative Assessment of Honeybees and Other Insects with Self-Pollination of Sarson (Brassica Campestris) in Peshawar. In The Asiatic Hive Bee: Apiculture, Biology and Role in Sustainable Development in Tropical and Subtropical Asia; Kevan, P.G., Ed.; Enviroquest Ltd.: Dresden, ON, Canada, 1995; pp. 147–150.
  89. Atmowidi, T.; Buchori, D.; Manuwoto, S.; Suryobroto, B.; Hidayat, P. Diversity of Pollinator Insects in Relation to Seed Set of Mustard (Brassica Rapa L.: Cruciferae). HAYATI J. Biosci. 2007, 14, 155–161.
  90. Tara, J.S.; Sharma, P. Role of Honeybees and Other Insects in Enhancing the Yield of Brassica Campestris Var. Sarson. Halteres 2010, 1, 35–37.
  91. Pudasaini, R.; Thapa, R.; Poudel, P. Effect of Pollination on Qualitative Characteristics of Rapeseed (Brassica Campestris L. Var. Toria) Seed in Chitwan, Nepal. Int. J. Biol. Food Vet. Agric. Eng. 2014, 8, 1278–1281.
  92. Pudasaini, R.; Thapa, R.B. Effect of Pollination on Rapeseed (Brassica Campestris L. Var. Toria) Production in Chitwan, Nepal. J. Agric. Environ. 2014, 15, 41–45.
  93. Sharma, D.; Abrol, D.P. Effect of Insecticides on Foraging Behaviour and Pollination Role of Apis Mellifera L. (Hymenoptera: Apidae) on Toria (Brassica Campestris Var. Toria) Crop. Egypt. J. Biol. 2014, 16, 79–86.
  94. Toivonen, M.; Herzon, I.; Rajanen, H.; Toikkanen, J.; Kuussaari, M. Late Flowering Time Enhances Insect Pollination of Turnip Rape. J. Appl. Ecol. 2019, 56, 1164–1175.
  95. Subedi, N.; Subedi, I.P. Pollinator Insects and Their Impact on Crop Yield of Mustard in Kusma, Parbat, Nepal. J. Inst. Sci. Technol. 2019, 24, 68–75.
  96. Devkota, K.; dos Santos, C.F.; Blochtein, B. Higher Richness and Abundance of Flower-Visiting Insects Close to Natural Vegetation Provide Contrasting Effects on Mustard Yields. J. Insect. Conserv. 2021, 25, 1–11.
  97. Partap, U.; Verma, L.R. Pollination of Radish by Apis Cerana. J. Apic. Res. 1994, 33, 237–241.
  98. Verma, S.K.; Phogat, K.P.S. Impact of Pollination by Honeybee (Apis Cerana Indica) on the Yield Gain of Radish under Valley Conditions of Himalayan Hills of U. P. (India). Indian Bee J. 1994, 56, 183–186.
  99. Priti; Mishra, R.C.; Sihag, R.C. Role of Insect Pollination in Seed Production of Radish (Raphanus Sativus L.). Seed Res. 2001, 29, 231–234.
  100. Kapila, R.K.; Singh, H.B.; Sharma, J.K.; Lata, S.; Thakur, S.P. Effect of Insect Pollinators on Seed Yield and Its Quality in Radish (Raphanus Sativus L.). Seed Res. 2002, 30, 142–145.
  101. Chandrashekhar, G.S.; Sattigi, H.N. Influence of Bee Attractants on Bee Pollination on Seed Quality and Yield in Radish. Karnataka J. Agric. Sci. 2009, 22, 777–780.
  102. Jakhar, P.; Kumar, Y.; Ombir; Janu, A.; Kaushik, P. Effect of Different Modes of Pollination on Quantitative and Qualitative Parameters of Radish Seed Crop. Trends Biosci. 2014, 7, 4041–4044.
  103. Gibson-Forty, E.V.J.; Tielbörger, K.; Seifan, M. Equivocal Evidence for a Change in Balance between Selfing and Pollinator-Mediated Reproduction in Annual Brassicaceae Growing along a Rainfall Gradient. J. Syst. Evol. 2022, 60, 196–207.
  104. Phillips, B.B.; Williams, A.; Osborne, J.L.; Shaw, R.F. Shared Traits Make Flies and Bees Effective Pollinators of Oilseed Rape (Brassica Napus L.). Basic Appl. Ecol. 2018, 32, 66–76.
  105. Kazda, J.; Bokšová, A.; Stejskalová, M.; Šubrt, T.; Bartoška, J.; Vlažný, P. The Factors Influencing the Pollinators Visitation of the Oilseed Rape Cultivars. Plant Soil Environ. 2019, 65, 574–580.
  106. Morandin, L.A.; Winston, M.L. Wild Bee Abundance and Seed Production in Conventional, Organic, and Genetically Modified Canola. Ecol. Appl. 2005, 15, 871–881.
  107. Chatterjee, A.; Chatterjee, S.; Smith, B.; Cresswell, J.E.; Basu, P. Predicted Thresholds for Natural Vegetation Cover to Safeguard Pollinator Services in Agricultural Landscapes. Agric. Ecosyst. Environ. 2020, 290, 106785.
  108. Stanley, J.; Sah, K.; Subbanna, A.R.N.S. How Efficient Is the Asian Honey Bee, Apis Cerana in Pollinating Mustard, Brassica Campestris Var. Toria? Pollination Behavior, Pollinator Efficiency, Pollinator Requirements and Impact of Pollination. J. Apic. Res. 2017, 56, 439–451.
  109. Sihag, R.C. Some Unresolved Issues of Measuring the Efficiency of Pollinators: Experimental Testing and Assessing the Predictive Power of Different Methods. Int. J. Ecol. 2018, 2018, 3904973.
  110. Prasad, D.; Hameed, S.P.; Singh, R.; Singh, B. Foraging Behaviour of Insect Pollinators on Brown Mustard, Brassica Juncea in Bihar, India. Indian Bee J. 1989, 51, 131–133.
  111. Chand, H.; Singh, R.; Hameed, S.F. Population Dynamics of Honeybees and Insect Pollinators on Indian Mustard, Brassica Juncea L. J. Entomol. Res. 1994, 18, 233–239.
  112. Chaudhary, O.P. Abundance of Wild Pollinators on Rapeseed and Mustard. Insect Environ. 2001, 7, 141–142.
  113. Bhowmik, K.B.; Mitra, B.; Bhadra, K. Diversity of Insect Pollinators and Their Effect on the Crop Yield of Brassica Juncea L., NPJ-93, from Southern West Bengal. Int. J. Recent Sci. Res. 2014, 5, 1207–1213.
  114. Goswami, V.; Khan, M.S.; Srivastava, P. Association of Different Insect Pollinators and Their Relative Abundance on Blossoms of Mustard (Brassica Juncea L.). Environ. Ecol. 2014, 32, 368–371.
  115. Kunjwal, N.; Kumar, Y.; Khan, M.S. Flower-Visiting Insect Pollinators of Brown Mustard, Brassica Juncea (L.) Czern and Coss and Their Foraging Behaviour under Caged and Open Pollination. Afr. J. Agric. Res. 2014, 9, 1278–1286.
  116. Kumari, S.; Chhuneja, P.K.; Singh, J.; Choudhary, A. Relative Abundance and Diversity of Insects on Brassica Juncea L. Czern under North-Western Plains of India. J. Exp. Zool. India 2015, 18, 165–171.
  117. Das, R.; Jha, S. Record of Insect Pollinators and Their Abundance on Indian Mustard (Brassica Juncea L.) in New Alluvial Zone of West Bengal. Int. J. Pure Appl. Biosci. 2018, 6, 848–853.
  118. Giri, S.; Chandra, U.; Jaiswal, R.; Singh, G.; Gautam, M.P. Study the Abundance of Insect Pollinators/Visitors in Rapeseed-Mustard (Brassica Juncea L.). J. Entomol. Zool. Stud. 2018, 6, 2563–2567.
  119. Woodcock, B.A.; Edwards, M.; Redhead, J.; Meek, W.R.; Nuttall, P.; Falk, S.; Nowakowski, M.; Pywell, R.F. Crop Flower Visitation by Honeybees, Bumblebees and Solitary Bees: Behavioural Differences and Diversity Responses to Landscape. Agric. Ecosyst. Environ. 2013, 171, 1–8.
  120. Bailey, S.; Requier, F.; Nusillard, B.; Roberts, S.P.M.; Potts, S.G.; Bouget, C. Distance from Forest Edge Affects Bee Pollinators in Oilseed Rape Fields. Ecol. Evol. 2014, 4, 370–380.
  121. Riedinger, V.; Mitesser, O.; Hovestadt, T.; Steffan-Dewenter, I.; Holzschuh, A. Annual Dynamics of Wild Bee Densities: Attractiveness and Productivity Effects of Oilseed Rape. Ecology 2015, 96, 1351–1360.
  122. Ouvrard, P.; Quinet, M.; Jacquemart, A.-L. Breeding System and Pollination Biology of Belgian Oilseed Rape Cultivars (Brassica Napus). Crop Sci. 2017, 57, 1455–1463.
  123. Zou, Y.; Bianchi, F.; Jauker, F.; Xiao, H.J.; Chen, J.H.; Cresswell, J.; Luo, S.D.; Huang, J.K.; Deng, X.Z.; Hou, L.L.; et al. Landscape Effects on Pollinator Communities and Pollination Services in Small-Holder Agroecosystems. Agric. Ecosyst. Environ. 2017, 246, 109–116.
  124. Akhtar, T.; Aziz, M.A.; Naeem, M.; Ahmed, M.S.; Bodlah, I. Diversity and Relative Abundance of Pollinator Fauna of Canola (Brassica Napus L. Var Chakwal Sarsoon) with Managed Apis Mellifera L. in Pothwar Region, Gujar Khan, Pakistan. Pak. J. Zool. 2018, 50, 567–573.
  125. Fuzaro, L.; Andaló, V.; Carvalho, S.M.; Silva, F.A.N.; Carvalho, F.J.; Rabelo, L.S. Floral Visitors of Canola (Brassica Napus L.) Hybrids in Cerrado Mineiro Region, Brazil. Arq. Do Inst. Biológico 2019, 86, e1312018.
  126. Sinha, S.N.; Chakrabarty, A.K. Studies on Pollination by Honeybees on Early Cauliflower and Its Effects on Seed Yield and Quality. Seed Res. 1985, 13, 115–119.
  127. Priti; Sihag, R.C. Diversity, Visitation Frequency, Foraging Behaviour and Pollinating Efficiency of Insect Pollinators Visiting Cauliflower (Brassica Oleracea L. Var. Botrytis Cv. Hazipur Local) Blossoms. Indian Bee J. 1997, 59, 230–237.
  128. Rana, V.K.; Kapoor, K.S.; Raj, D. Comparative Pollinating Activities of Apis Cerana Indica F. and Apis Mellifera L. on Cauliflower (Brassica Oleracea Var. Botrytis). J. Entomol. Res. 1999, 23, 141–148.
  129. Selvakumar, P.; Sinha, S.N.; Pandita, V.K. Abundance and Diurnal Rhythm of Honeybees Visiting Hybrid Seed Production Plots of Cauliflower (Brassica Oleracea Var. Botrytis L.). J. Apic. Res. 2006, 45, 7–15.
  130. Srivastava, K.; Sharma, D.; Singh, S.; Ahmad, H. Foraging Behaviour of Honeybees in Seed Production of Brassica Oleracea Var. Italica Plenck. Bangladesh J. Bot. 2017, 46, 675–681.
  131. Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Edwards, W. Spatial and Temporal Variation in Pollinator Effectiveness: Do Unmanaged Insects Provide Consistent Pollination Services to Mass Flowering Crops? J. Appl. Ecol. 2012, 49, 126–134.
  132. Mesa, L.A.; Howlett, B.G.; Grant, J.E.; Didham, R.K. Changes in the Relative Abundance and Movement of Insect Pollinators during the Flowering Cycle of Brassica Rapa Crops: Implications for Gene Flow. J. Insect Sci. 2013, 13, 13.
  133. Shakeel, M.; Ali, H.; Ahmad, S.; Said, F.; Khan, K.A.; Bashir, M.A.; Anjum, S.I.; Islam, W.; Ghramh, H.A.; Ansari, M.J.; et al. Insect Pollinators Diversity and Abundance in Eruca Sativa Mill. (Arugula) and Brassica Rapa L. (Field Mustard) Crops. Saudi J. Biol. Sci. 2019, 26, 1704–1709.
  134. Tasker, P.; Reid, C.; Young, A.D.; Threlfall, C.G.; Latty, T. If You Plant It, They Will Come: Quantifying Attractiveness of Exotic Plants for Winter-Active Flower Visitors in Community Gardens. Urban Ecosyst. 2020, 23, 345–354.
  135. Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using Pennycress, Camelina, and Canola Cash Cover Crops to Provision Pollinators. Ind. Crops Prod. 2015, 75, 20–25.
  136. Thom, M.D.; Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S.; Lundgren, J.G. Nectar Production in Oilseeds: Food for Pollinators in an Agricultural Landscape. Crop Sci. 2016, 56, 727–739.
  137. Thom, M.D.; Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S. Specialty Oilseed Crops Provide an Abundant Source of Pollen for Pollinators and Beneficial Insects. J. Appl. Entomol. 2018, 142, 211–222.
  138. Amy, C.; Noël, G.; Hatt, S.; Uyttenbroeck, R.; Van De Meutter, F.; Genoud, D.; Francis, F. Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. Insects 2018, 9, 114.
  139. Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821.
  140. Junqueira, C.N.; Pereira, R.A.S.; da Silva, R.C.; Alves Cardoso Kobal, R.O.; Araújo, T.N.; Prato, A.; Pedrosa, J.; Martínez-Martínez, C.A.; Castrillon, K.P.; Felício, D.T.; et al. Do Apis and Non-Apis Bees Provide a Similar Contribution to Crop Production with Different Levels of Pollination Dependency? A Review Using Meta-Analysis. Ecol. Entomol. 2021, 47, 76–83.
  141. Rollin, O.; Garibaldi, L.A. Impacts of Honeybee Density on Crop Yield: A Meta-Analysis. J. Appl. Ecol. 2019, 56, 1152–1163.
  142. Page, M.L.; Nicholson, C.C.; Brennan, R.M.; Britzman, A.T.; Greer, J.; Hemberger, J.; Kahl, H.; Müller, U.; Peng, Y.; Rosenberger, N.M.; et al. A Meta-Analysis of Single Visit Pollination Effectiveness Comparing Honeybees and Other Floral Visitors. Am. J. Bot. 2021, 108, 2196–2207.
  143. Wolowski, M.; Ashman, T.-L.; Freitas, L. Meta-Analysis of Pollen Limitation Reveals the Relevance of Pollination Generalization in the Atlantic Forest of Brazil. PLoS ONE 2014, 9, e89498.
  144. Bishop, J.; Nakagawa, S. Quantifying Crop Pollinator Dependence and Its Heterogeneity Using Multi-Level Meta-Analysis. J. Appl. Ecol. 2021, 58, 1030–1042.
  145. Cooley, H.; Vallejo-Marín, M. Buzz-Pollinated Crops: A Global Review and Meta-Analysis of the Effects of Supplemental Bee Pollination in Tomato. J. Econ. Entomol. 2021, 114, 505–519.
  146. Westcott, L.; Nelson, D. Canola Pollination: An Update. Bee World 2001, 82, 115–129.
  147. Adegas, J.E.B.; Nogueira Couto, R.H. Entomophilous Pollination in Rape (Brassica Napus L Var Oleifera) in Brazil. Apidologie 1992, 23, 203–209.
  148. Sabbahi, R.; de Oliveira, D.; Marceau, J. Does the Honeybee (Hymenoptera: Apidae) Reduce the Blooming Period of Canola? J. Agron. Crop Sci. 2006, 192, 233–237.
  149. Mesquida, J.; Renard, M.; Pierre, J.-S. Rapeseed (Brassica Napus) Productivity: The Effect of Honeybees (Apis Mellifera L.) and Different Polination Conditions in Cage and Field Tests. Apidologie 1988, 19, 51–72.
  150. Habekotté, B. Options for Increasing Seed Yield of Winter Oilseed Rape (Brassica Napus L.): A Simulation Study. Field Crops Res. 1997, 54, 109–126.
  151. Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611.
  152. Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-Bee Insects Are Important Contributors to Global Crop Pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151.
  153. Földesi, R.; Howlett, B.G.; Grass, I.; Batáry, P. Larger Pollinators Deposit More Pollen on Stigmas across Multiple Plant Species—A Meta-Analysis. J. Appl. Ecol. 2021, 58, 699–707.
  154. Sutter, L.; Albrecht, M.; Jeanneret, P. Landscape Greening and Local Creation of Wildflower Strips and Hedgerows Promote Multiple Ecosystem Services. J. Appl. Ecol. 2018, 55, 612–620.
  155. Ouvrard, P.; Jacquemart, A.-L. Review of Methods to Investigate Pollinator Dependency in Oilseed Rape (Brassica Napus). Field Crops Res. 2019, 231, 18–29.
  156. Mänd, M.; Williams, I.H.; Viik, E.; Karise, R. Oilseed Rape, Bees and Integrated Pest Management. In Biocontrol-Based Integrated Management of Oilseed Rape Pests; Springer: Berlin/Heidelberg, Germany, 2010; pp. 357–379.
  157. Abrol, D.P.; Shankar, U. Pollination in Oil Crops: Recent Advances and Future Strategies. In Technological Innovations in Major World Oil Crops; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2, pp. 221–267.
  158. Badenes-Pérez, F.R.; Shelton, A.M. Pest Management and Other Agricultural Practices among Farmers Growing Cruciferous Crops in the Central and Western Highlands of Kenya and the Western Himalayas of India. Int. J. Pest Manag. 2006, 52, 303–315.
  159. Pudasaini, R.; Thapa, R.B.; Tiwari, S. Farmers Perception on Effect of Pesticide on Insect Pollinators at Padampur and Jutpani Vdcs, Chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2016, 4, 64–66.
  160. Venturini, E.M.; Drummond, F.A.; Hoshide, A.K.; Dibble, A.C.; Stack, L.B. Pollination Reservoirs for Wild Bee Habitat Enhancement in Cropping Systems: A Review. Agroecol. Sustain. Food Syst. 2017, 41, 101–142.
  161. Phillips, B.B.; Wallace, C.; Roberts, B.R.; Whitehouse, A.T.; Gaston, K.J.; Bullock, J.M.; Dicks, L.V.; Osborne, J.L. Enhancing Road Verges to Aid Pollinator Conservation: A Review. Biol. Conserv. 2020, 250, 108687.
  162. Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native Wildflower Plantings Support Wild Bee Abundance and Diversity in Agricultural Landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131.
  163. Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator Habitat Enhancement: Benefits to Other Ecosystem Services. Agric. Ecosyst. Environ. 2012, 159, 112–122.
  164. Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The Interplay of Landscape Composition and Configuration: New Pathways to Manage Functional Biodiversity and Agroecosystem Services across Europe. Ecol. Lett. 2019, 22, 1083–1094.
  165. Badenes-Pérez, F.R. Trap Crops and Insectary Plants in the Order Brassicales. Ann. Entomol. Soc. Am. 2019, 112, 318–329.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 668
Revisions: 2 times (View History)
Update Date: 31 Mar 2022
1000/1000
Video Production Service