Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 6638 word(s) 6638 2021-12-13 05:00:56 |
2 format correction -3 word(s) 6635 2022-03-15 02:36:04 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Sonal, S. Additive Manufacturing of High Entropy Alloys. Encyclopedia. Available online: https://encyclopedia.pub/entry/20558 (accessed on 15 November 2024).
Sonal S. Additive Manufacturing of High Entropy Alloys. Encyclopedia. Available at: https://encyclopedia.pub/entry/20558. Accessed November 15, 2024.
Sonal, Sonal. "Additive Manufacturing of High Entropy Alloys" Encyclopedia, https://encyclopedia.pub/entry/20558 (accessed November 15, 2024).
Sonal, S. (2022, March 14). Additive Manufacturing of High Entropy Alloys. In Encyclopedia. https://encyclopedia.pub/entry/20558
Sonal, Sonal. "Additive Manufacturing of High Entropy Alloys." Encyclopedia. Web. 14 March, 2022.
Additive Manufacturing of High Entropy Alloys
Edit

Alloying has been very common practice in materials engineering to fabricate metals of desirable properties for specific applications. Traditionally, a small amount of the desired material is added to the principal metal. However, a new alloying technique emerged in 2004 with the concept of adding several principal elements in or near equi-atomic concentrations. These are popularly known as high entropy alloys (HEAs) which can have a wide composition range.

high entropy alloys (HEAs) additive manufacturing (AM) wear nuclear applications irradiation

1. Introduction

1.1. The Definitions of High Entropy Alloys

The first ever definition of HEA was given by Yeh et al. [1] as a class of alloys composed of five or more principal elements having concentration between 5% to 35% for each element. The second definition was also proposed by the same group [2]. In the second definition, the three categories of alloys were introduced on the basis of the configurational entropy: low entropy alloys (configurational entropy alloys (ΔSconf) ≤ 0.69R), medium entropy alloys (0.69R ≤ ΔSconf ≤ 1.61R) and high entropy alloys (ΔSconf ≥ 1.61R) [3], where R is the universal gas constant. Here, the low entropy alloys are mostly conventional alloys with one or two major elements and the medium entropy alloys have two to four major elements. The high entropy alloys contain five or more major elements. The second definition does not require equi-atomic composition. For example, Ti2ZrHfV0.5Mo0.2 [4], FeCoNiCrTi0.2 [5] and Al0.1CoCrFeNi [6][7] are categorized as HEAs according to the second definition.
Moreover, these definitions are not strict, and it is not clarified which one should be used to categorize an alloy. For example, an alloy having composition of 5% A, 5% B, 20% C, 35% D and 35% E has the configuration entropy of 1.36R according to Equation (1) derived from Boltzmann’s entropy formula [3].
where cn is the atomic fraction of the nth element. In case of equi-atomic composition, Equation (1) reduces to [3]:
For example, an alloy having 25 components with equi-atomic concentration has ΔSconf = Rln(n = 25) = 3.22R. This material has the concentration of each element out of the range suggested by the first definition (between 5% to 35%), but it has sufficiently high entropy according to the second definition [8].

2. Manufacturing of HEAs

2.1. Background and Conventional Methods

Brian Cantor estimated the total number of possible metallic alloys with different compositions to be up to around 1078 [9]. This means many new alloys are yet to be discovered. For the manufacturing of HEAs, the initial synthesis strategy was to choose equi-atomic concentration of principle elements to maximize the entropy of the system. However, later, HEAs in non-equi-molar ratios were also developed for various applications. Arc melting was mostly preferred to produce HEAs thanks to its convenience, availability and simplicity. Furthermore, developing a HEA became more complex as more non-equi-atomic compositions were considered and several other manufacturing techniques were used. Alshataif et al. [10] covered almost all kinds of processing techniques used so far for HEAs synthesis. They detailed solid state processing (i.e., powder atomization methods, ball milling, cold/hot pressing, sintering, spark plasma sintering), liquid state processing (i.e., arc melting, vacuum induction melting, directional solidification, infiltration, electromagnetic stirring), thin film deposition (i.e., magnetron sputtering, pulsed laser deposition, plasma spray deposition) and additive manufacturing. Most of these manufacturing techniques are commercially available. That means most HEAs would not require a special manufacturing process and mass-producing HEAs would be possible with the existing alloying technologies and facilities.
The influence of process parameters, such as temperature and pressure, on the properties of HEAs were also studied. The effects of temperature on the properties of HEAs were studied through processes such as: annealing and heat treatments [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30] and thermomechanical processing [31][32][33][34]. A number of research groups reported how temperature affected the microstructures and mechanical properties of HEAs in various manufacturing processes [22][35][36][37][38]. Moreover, the physical or chemical responses of various HEAs under a variety of thermal histories during manufacturing were studied: thermal aging behavior [12][39][40][41], TaNbHfZrTi synthesis by hydrogenation–dehydrogenation reaction and thermal plasma treatment [42], martensite formation [43][44][45][46], AlxCoCrFeNi formation with high gravity combustion from oxides [47], laser surface melting [48], precipitation behavior [49][50][51][52] and WTaMoNbV synthesis using inductively coupled thermal plasma [53].
Researchers have also attempted to alter the microstructures and properties of HEAs by high pressure treatments. Regulating pressure during fabrication of HEAs can considerably alter the interaction between the atoms by changing the interatomic distance, bonding nature and packing densities. These changes often convert the microstructures and affect the mechanical and structural properties. Dong et al. [54] reviewed the applications of high pressure technology for HEAs. They reviewed the use of dynamic high pressure, diamond anvil cells, high pressure torsion and hexahedron anvil press. Zhang et al. [55] reviewed high pressure induced phase transitions in HEAs. Application of high pressure torsion [56][57][58][59][60][61][62][63][64][65][66][67][68][69][70] is more frequent than other pressure techniques [64][71][72][73][74][75][76][77][78].
Furthermore, various researchers successfully welded/brazed HEAs [79][80][81][82][83]. Guo et al. [79] reviewed arc welding, laser welding, electron beam welding, friction stir welding to join HEAs and conducted the microstructural analysis on the welded structures. Filho et al. [81] gave a general review on the properties of welded HEAs parts and Tillmann et al. [83] reviewed HEAs brazing. Lopez et al. [80] reviewed fusion based welding (i.e., for CoCrFeNiMn and other related HEA systems) and solid state welding. Scutelnicu et al. [82] reviewed friction stir, electron and laser beam, tungsten inert gas welding techniques for CoCrFeMnNi, AlCoCrCuFeNi, AlCrFeCoNi and CoCrFeNi alloys.

2.2. Additive Manufacturing of HEAs

3-D printing in manufacturing industries, when properly applied, not only makes a design phase more efficient and economic but also brings thoughtful impacts on product design. Recent advances in additive manufacturing (AM) made it more influential throughout the supply chain which generates revenue as well [84]. The additive manufactured HEAs showed improvement in their mechanical properties in comparison to as-cast HEAs [85][86][87][88][89][90][91][92]. Higher cooling rates in AM processes help suppress diffusional phase transformation and increase the chemical homogeneity of HEAs [93]. Under certain circumstances, AM gives a better control over the material processing and helps tailor application-specific microstructures which become more important for the parts for applications under extreme environments. For example, it was demonstrated that fine and tailorable microstructures in HEAs were obtained using AM techniques [94][95][96][97][98][99][100][101], which implies AM can improve the mechanical performance of at least some HEAs. However, this may not be a trivial task as a good understanding of the AM technique and material behavior during the AM process is required [102].
AM of HEAs has been discussed briefly in a few review papers [103][93][104][105] and books [106][107]. Xiaopeng Li [93] discussed the requirements and challenges of AM of HEAs and bulk metallic glasses. Chen et al. [103] examined the microstructural evolution and mechanical properties of AM-processed CoCrFeNi, AlxCoCrFeNi, CoCrFeMnNi and Ti25Zr50Nb50Ta25. Fabricating HEAs by spark plasma sintering (SPS) and their property analyses were discussed in the book chapter “Spark Plasma Sintering of High Entropy Alloys” of [108]. SPS followed by mechanical alloying has largely been used to develop HEAs, which was reviewed in detail by Vaidya et al. [109]. Therefore, SPS studies are not included here.
Here, studies on the AM of HEAs are tabulated and the mechanical properties of these HEAs are discussed. Table 1, Table 2 and Table 3 detail the HEAs synthesized by selective laser melting (SLM), electron beam melting (EBM) and direct energy deposition (DED), respectively. The performances of these HEAs are discussed in terms of their composition, their microstructure and their mechanical properties, such as ultimate tensile strength (UTS), % elongation at fracture (ε), yield strength (YS), hardness (H), compressive strength (CS), compressive yield strength (CYS), bending strength (BS), bending elongation (δb) and % compression at fracture (C).
Table 1. The compositions, microstructures and mechanical properties of SLM manufactured HEAs.

Source

Alloy Composition

Microstructure (Grain Size)

Result

UTS (MPa), YS (MPa), BS (MPa), δb (mm), ε (%), H, CS (MPa), C (%)

Chen et al. [110]

CoCrFeMnNi

FCC (53.1 µm)

UTS = 281 ± 18, YS = 12.5 ± 0.5, H = 261 ± 7 HV

Niu et al. [101]

CoCrFeMnNi

FCC (<5 µm)

CS = 2447.7

Li et al. [111]

CoCrFeMnNi + TiNp nanoparticles

FCC

UTS = 601–1036, ε = 12–30

Li et al. [112]

CoCrFeMnNi + Fe based metallic glass

FCC

UTS = 916–1517

Li et al. [113]

CoCrFeMnNi + TiN nanoparticles

FCC

-

Kim et al. [114]

(CoCrFeMnNi)C

FCC (180–330 nm)

YS = 800–900, ε = 25–30

Li et al. [115]

CoCrFeMnNi + 12 wt% nano-TiNp

FCC (<2 µm)

UTS = 1100

Piglione et al. [116]

CoCrFeMnNi

FCC (0.52–0.64 µm)

H = 212 HV

Zhu et al. [85]

CoCrFeMnNi

FCC

-

Xu et al. [117]

CoCrFeMnNi

FCC (1–2 µm)

H = 2.84 ± 0.13 GPa

Park et al. [86]

CoCrFeMnNi +1 at%C

FCC (20–35 µm)

UTS = 829–989, YS = 741, ε = 24.3

Ren et al. [118]

CoCrFeMnNi

-

-

Dovgyy et al. [119]

CoCrFeMnNi

FCC & cubic (0.2–0.8 µm)

-

Zhou et al. [87]

CoCrFeNi + 0.5 at%C

FCC (40–50 µm)

UTS = 776–797, YS = 630–656, ε = 7.7–13.5

Wu et al. [120]

CoCrFeNi + 0.5 at%C

FCC (40–50 µm)

UTS = 795, YS = 638

Lin et al. [24]

CoCrFeNi

FCC

 

Sun et al. [121]

CoCrFeNi

-, ~3 mm in length and ~200 μm in width

UTS = 676.7–691, YS = 556.7–572, ε = 12.4–17.9

Song et al. [122]

CoCrFeNi + N (1.8%)

FCC

UTS = 600–853, YS = 520–650, ε = 27

Zhou et al. [123]

(CoCrFeNi)1−x (WC)x

FCC

H = 603–768 HV

Brif et al. [88]

CoCrFeNi

FCC

UTS = 480–745, YS = 402–600, ε = 8–32, H = 205–238

Niu et al. [124]

AlCoCrFeNi

Disordered (A2) + Ordered (B2) BCC

H = 632.8 HV

Karlsson et al. [102]

AlCoCrFeNi

FCC & BCC (<20 µm)

-

Peyrouzet et al. [89]

Al0.3CoCrFeNi

FCC (width~13 and length~70–120 µm)

UTS = 896, YS = 730, ε = 29

Sun et al. [90]

Al0.5CoCrFeNi

FCC & BCC (1 µm)

UTS = 878, YS = 609, H = 270HV

Zhou et al. [92]

Al0.5CoCrFeNi

FCC

UTS = 721, YS = 579, ε = 22

Luo et al. [125]

AlCrCuFeNi

BCC (avg. width~4 µm)

CS = 1655.2–2052.8, C = 6.5–6.8

Luo et al. [126]

AlCrCuFeNix (2 ≤ x ≤ 3)

FCC (thickness~490 nm) & BCC (~140 nm)

Avg. thickness of both ~ 650 nm

UTS = 957, ε = 14.3

Li et al. [38]

AlCoCuFeNi

BCC

YS = 744, ε = 13.1, CS = 1600

Yao et al. [127]

AlCrFeNiV

FCC (width~15 µm, length~75–200 µm)

UTS = 1057.47, ε = 30.3

Wang et al. [128]

AlCoCrCuFeNi

FCC & BCC

H = 710.4 HV

Wang et al. [129]

AlMgScZrMn

Al3 (Sc, Zr) (1–10 nm + 7 µm)

UTS = 394, ε = 10.5

Sarawat et al. [130]

AlCoFeNiV0.9Sm0.1

AlCoFeNiSm0.1TiV0.9

AlCoFeNiSm0.05TiV0.95Zr,

AlCoFeNiTiVZr

FCC

H~42.8–86.7 HV

Agrawal et al. [131]

Fe40Mn20Co20Cr15Si5

HCP

UTS = 1100, YS = 530, ε = 30

Zhang et al. [132][133]

NbMoTaW

BCC (13.4 μm)

H = 826 HV

Yang et al. [134][135]

Ni6Cr4WFe9Ti

FCC (300–1000 nm) + unknown phase

UTS = 972, YS = 742, ε = 12.2

Chen et al. [136]

CoCrFeNiMn

FCC + Mn2O3 particles

YS = 620, UTS = 730, ε~12

Litwa et al. [137]

CoCrFeNiMn

FCC

H~320 HV

Zhang et al. [138]

CoCrFeNiMn

FCC

YS~729.6

Kim et al. [139]

CoCrFeNiMn

FCC

YS = 752.6

Choi et al. [140]

CoCrFeNiMn

FCC

 

Su et al. [141]

CrCuFeNi2

Al0.5CrCuFeNi2

Al0.75CrCuFeNi2

AlCrCuFeNi2

FCC

FCC

FCC + BCC/B2

FCC + BCC/B2

 

Peng et al. [142]

CoCrFeNi + Ti coated diamond

CoCrFeNi + diamond

FCC + diamond particles

FCC + Cr7C3 + diamond particles

H = 622 HV, BS = 530, δb = 0.64

H = 615 HV, BS = 925, δb = 0.48

Wang et al. [143]

CoCrFeNiMn

FCC

H = 164–370 HV

Sun et al. [144]

Al0.1CrCuFeNi

Al0.5CrCuFeNi

AlCrCuFeNi

FCC

FCC

FCC + BCC/B2 (NiAl)

 

Ishimoto et al. [145]

Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6

BCC

YS = 1690,

Park et al. [146]

(CoCrFeMnNi)99C1

FCC

YS~741, UTS~874

Lin et al. [147]

CoCrFeNi

FCC

YS = 701 ± 14, UTS = 907 ± 25

Kim et al. [148]

CoCrFeNiMn

FCC

-

Jin et al. [149]

CoCrFeNiMn

FCC

YS = 520 ± 10, UTS = 770 ± 10, ε~25

Lin et al. [150]

Al0.2Co1.5CrFeNi1.5Ti0.3

FCC + σ + L12

YS = 1235, UTS = 1550

Peng et al. [151]

CoCrFeNiMn

FCC

-

Vogiatzief et al. [152]

AlCrFe2Ni2

Heat treatment (750–950 °C, 3 h & 6 h)

FCC + BCC

H = 276–483 HV

Liao et al. [153]

Al0.5FeCrNi2.5V0.2

FCC

H = 220–240 HV

Guo et al. [154]

CoCrFeNiMn

FCC

YS = 622, UTS = 763, ε~16

Kim et al. [155]

(CoCrFeNiMn)100−xCx

FCC (15–22 µm)

YS = 653–753, UTS = 766–911

Zhao et al. [156]

CoCrFeNi

FCC

H = 238–525 HV

Gu et al. [157]

CoCr2.5FeNi2TiW0.5

FCC

YS = 449–581, CS = 823–893, ε = 4.4–9.9, H = 436.7–499.2 HV

Table 2. The compositions, microstructures and mechanical properties of EBM manufactured HEAs.

Source

Alloy Composition

Microstructure (Grain Size)

Result

UTS (MPa), YS (MPa), ε (%), H, CS (MPa), C (%)

Peng et al. [158]

CoCrFeNiMn

FCC

YS = 196

Wang et al. [159]

CoCrFeMnNi

FCC (65)

UTS = 497, 205, H = 157.1HV

Kuwabara et al. [160]

AlCoCrFeNi

BCC & FCC

UTS = 1073, YS = 769, ε = 0–1.2

YS = 944–1015, CS = 1447–1668, C = 14.5–26.4

Wang et al. [161]

AlCoCrFeNi

BCC

-

Fujieda et al. [162]

CoCrFeNiTi

FCC + Cubic

UTS = 1178, YS = 773, ε = 25.8

Popov et al. [163]

Al0.5CrMoNbTa0.5

BCC

 
Table 3. The compositions, microstructures and mechanical properties of DED manufactured HEAs.

Scheme

Alloy Composition

Microstructure (Grain Size)

Result

UTS (MPa), YS (MPa), ε (%), H, CS (MPa), C (%)

Guan et al. [164]

CoCrFeMnNi

FCC (13 μm)

YS = 517, ε = 26

Melia et al. [165]

CoCrFeMnNi

FCC (~4 μm)

UTS = 647–651, YS = 232–424

Li et al. [166]

CoCrFeMnNi

FCC

 

Gao et al. [167]

CoCrFeMnNi

FCC (30–150 μm) + BCC

UTS = 620, YS = 448

Xiang et al. [168][169]

CoCrFeNiMn

FCC

UTS = 400–600

Chew et al. [170]

CoCrFeNiMn

FCC (3.68 ± 0.85 μm)

UTS = 660, YS = 518

Qiu et al. [171]

CoCrFeMnNi

FCC

UTS = 891, YS = 564

Li et al. [172]

CoCrFeMnNi + WC (0–10 wt%)

FCC

UTS = 550–845, YS = 300–675, ε = 9

Amar et al. [173]

CoCrFeMnNi + TiC (0–5 wt%)

FCC

UTS = 550–723, YS = 300–385, ε = 32

Guan et al. [174]

CoCrFeMnNi

AlCoCrFeNiTi0.5

FCC (24 µm)

BCC (7 µm) + FCC

YS = 888–1100, H = 197–657 HV

Wang et al. [175]

CoCrFeNiMo0.2

FCC

UTS = 532–928, ε = 37

Zhou et al. [176]

CoCrFeNiNbx (x = 0–0.2)

FCC

UTS = 400–820, YS = 220–750

Gwalani et al. [177]

AlxCoCrFeNi (x = 0.3–0.7)

FCC

 

Nartu et al. [178]

Al0.3CoCrFeNi

FCC

YS = 410–630, ε = 18–28

Mohanty et al. [179]

AlxCoCrFeNi (x = 0.3–0.7)

FCC + BCC

H = 170–380 HV

Vikram et al. [180]

AlCoCrFeNi2.1

FCC & BCC

YS = 309–711, H = 278 ± 11–316 ± 14 HV

Gwalani et al. [181]

AlCrFeMoVx (x = 0–1)

BCC (68–165 μm)

H = 485–581 HV

Guan et al. [182]

AlCoCrFeNiTi0.5

BCC (12 μm)

-

Malatji et al. [183]

AlCrCuFeNi

BCC & FCC

H = 350 HV,

Dada et al. [184][185]

AlCoCrFeNiCu

AlTiCrFeCoNi

 

H = 600 HV, H = 850 HV

Moorehead et al. [186]

NbMoTaW

BCC

-

Kunce et al. [187]

TiZrNbMoV

BCC

-

Dobbelstein et al. [188]

TiZrNbHfTa

BCC

H = 509 HV0.2

Pegues et al. [189]

CoCrFeNiMn

FCC

-

Li et al. [190]

CoCrFeNiMn

FCC

-

Tong et al. [191]

CoCrFeNiMn

Vacuum arc melting

1 impact Laser shock peening

3 impact Laser shock peening

5 impact Laser shock peening

FCC

 

YS = 320.7, UTS = 531.7

YS = 427.4, UTS = 570.7

YS~435, UTS~600

YS = 489.9, UTS = 639.9

Shen et al. [192]

CoCrFeNi (SiC)x

FCC + Cr7C3 (1 µm)

UTS = 2155–2499, YS = 142–713, H = 139–310

Cai et al. [193]

CoCrFeNi

AlCoCrFeNi

BCC (102.27 µm)

BCC (18.75 µm)

YS = 318, UTS = 440, ε = 8.56

YS = 383, UTS = 533, ε = 10.6

Zhang et al. [194]

NbMoTa

NbMoTaTi

NbMoTaNi

NbMoTaTi0.5Ni0.5

BCC

BCC + α-Ti

BCC

BCC + Ni3Ta + β-Ti

YS = 1252, CS = 1282, ε = 15

YS = 1200, CS = 1350, ε = 23

YS = 1350, CS = 1380, ε = 11

YS = 1750, CS = 2277.79, ε = 15

CS of NbMoTaTi0.5Ni0.5 at 600, 800 and 1000 °C is 1699.75 MPa, 1033.63 MPa and 651.36 MPa

Peng et al. [195]

Al0.3CoCrFeNi

FCC + B2

YS = 373–476, CS = 473–508, ε = 0.6–2.96, H = 208–221 HV

Kuzminova et al. [196]

CoCrFeNi

FCC

YS = 456–551, UTS = 637–658, H = 209–259 HV

Malatji et al. [197]

AlCuCrFeNi

Heat treated (800–1100 °C)

FCC + BCC

H = 310–381 HV

Dong et al. [198]

AlCoCrFeNi2.1

FCC + BCC

YS = 388, UTS = 719, ε~27, H = 221–228

Zhou et al. [199]

CoCrFeNb0.2Ni2.1

Solution treatment (2 h,1250 °C)

96 h aged (650 °C)

FCC + HCP (Laves C14) + Nb rich carbide

YS~340, UTS~735

YS~239, UTS~607

YS~896, UTS~1127, ε~17

Zheng et al. [200]

CoCrFeNiMn

FCC

YS = 330, UTS = 630

Cantor alloy (i.e., CoCrFeMnNi) and its variants have been largely investigated. Apart from SPS, SLM is the most widely studied AM technique for HEAs [130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165]. HEAs that were successfully fabricated by SLM include CoCrFeNiMn [85][86][101][110][111][112][113][114][115][116][117][118][119][122][136][137][138][139][140][143][146][148][149][151][154][155], AlCrFeNiV [127], AlCoCrFeNi [102][124], AlCoCrCuFeNi [128], CoCrFeNi [24][87][120][121][123][142][147][156], CoCr2.5FeNi2TiW0.5 [157], Fe40Mn20Co20Cr15Si5 [131], AlxCoCrFeNi [89][90][92] AlCoCuFeNi [38][126], AlxCrCuFeNi [141][144], AlCrCuFeNix [201], AlCrFe2Ni2 [152], Al0.2Co1.5CrFeNi1.5Ti0.3 [150], Ni6Cr4WFe9Ti [134], Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 [145], Al0.5FeCrNi2.5V0.2 [153] and NbMoTaW [132][133].
Meanwhile, EBM was used to manufacture CoCrFeNiMn [159], AlCoCrFeNi [160][161], CoCrFeNiTi [162] and Al0.5CrMoNbTa0.5 [163]. DED techniques were used to fabricate CoCrFeNiMn [164][165][166][167][168][169][170][171][172][173][174][189][190][191][192][200], CoCrFeNi [192][193][196], Al0.3CoCrFeNi [195], CoCrFeNiMo0.2 [175], CoCrFeNiNbx [176], AlxCoCrFeNi [177][178][179][193][198], AlCoCrFeNi2.1 [180][198], AlCrFeMoVx [181], AlCoCrFeNiTi0.5 [182], AlCrCuFeNi [183][197], AlCoCrFeNiCu/AlTiCrFeCoNi [184][185], NbMoTaW [186], TiZrNbMoV [187], NbMoTaTixNix [194], CoCrFeNb0.2Ni2.1 [199] and TiZrNbHfTa [188].
The microstructures and mechanical behaviors of the HEAs produced by different AM processes are still under investigation by several research groups. The HEAs listed in Table 1, Table 2 and Table 3 mainly have either FCC or BCC microstructures except Co20Cr15Fe40Mn20Si5 which has HCP. Improvement in mechanical properties was reported when HEAs were fabricated with AM [90][101][111][114][122][127][202]. These improvements are mostly attributed to grain refinement. Grain refinement in HEAs is claimed to be due to the high cooling rates as it happens in various other materials [90][134][164]. Moreover, the wear behavior [123][183], thermo-mechanical analysis [133][180], effect of annealing [24], creep behavior [117], residual stresses [166], corrosion behavior [110][132][160][162][165][175][183], strengthening mechanisms [85] and deformation mechanism [171] of additive manufactured HEAs have also been reported.
Particle reinforcement in a HEA matrix with AM has been an area of interest for many researchers lately who expect microstructure refinement and mechanical properties enhancement [49][111][142][146][154][155][203][204][205][206][207][208][209][210][211][212][213][214]. Li et al. [111] introduced nano TiN ceramic particles in a CoCrFeMnNi matrix, which led to equiaxed grains of 5 µm. The same group [113] also fabricated the same composition with SLM followed by laser remelting and obtained ultrafine grains (80% grains less than 2 µm and 90% grains less than 3.5 µm). Song et al. [122] showed that the YS and ductility of CoCrFeNi increased by 25% and 34%, respectively, when doped with 1.8 at% nitrogen. Fu et al. [213] noticed that adding Ti-C-O particles into NbTaTiV increased the UTS, YS and fracture strain up to 2270 MPa, 1760 MPa and 11%, respectively. Amar et al. [173] added TiC into CoCrFeNiMn and found the YS and UTS increased from 300 MPa to 385 MPa and from 550 MPa to 723 MPa, respectively. Similarly, Li et al. [172] embedded WC particles into CoCrFeNiMn alloy and observed improvement in YS from 300 to 675 MPa and UTS from 550 to 845 MPa due to the formation of Cr23C6 precipitates. Li et al. [115] noticed that TiC reinforcement CoCrFeNiMn gave the UTS of around 1100 MPa. Rogal et al. [205] increased the UTS of CoCrFeNiMn up to 1600 MPa by introducing nano-Al2O3 particles. Carbon doping was attempted [86][87][114][120] to enhance the mechanical properties of HEAs. Peng et al. [142] added diamond particles into CoCrFeNi and found out the bending strength was 925MPa. Park et al. [146] added carbon into CoCrFeNiMn ((CoCrFeNiMn)99C1) and noticed that the YS and UTS were ~741 MPa and ~874 MPa, respectively. Similarly, Kim et al. [155] also added carbon into CoCrFeNiMn in a ratio (CoCrFeNiMn)100−xCx (x = 0.5–1.5). The YS for x = 0.5, 1, 1.5 was measured to be 653, 752 and 753 MPa respectively. The UTS for x = 0.5, 1, 1.5 was found to be 766 ± 318.5, 895 ± 22.3 and 911 ± 125.1 MPa, respectively. Shen et al. [192] discussed the effect of SiC particles added to CoCrFeNi. They noticed that adding SiC particles changed the microstructure from the FCC phase to the FCC/Cr2C7 dual phase. The hardness and YS improved significantly from ~139 HV to ~310 HV and ~142 MPa to ~713 MPa, respectively.
Various HEAs have exhibited significant improvement in their mechanical properties after AM synthesis as compared to the as-cast structures of the same compositions [85][86]. Zhou et al. [87] reported that arc-melted CoCrFeNi had the YS of 225 MPa whereas SLM-manufactured CoCrFeNi had the YS of 656 MPa. Brif et al. [88] observed that SLM-manufactured CoCrFeNi showed noticeable improvement in YS from 188 MPa (as-cast) to 600 MPa and in UTS from 457 MPa (as-cast) to 745 MPa. Peyrouzet et al. [89] showed that the YS of Al0.3CoCrFeNi increased from 275 MPa (as-cast) to 730 MPa and the UTS from 502 MPa (as-cast) to 896 MPa when manufactured with SLM. The UTS of as-cast Al0.3CoCrFeNi was 522 MPa and it was increased to 878 MPa with SLM processing [90]. Arc-melted Al0.5CoCrFeNi had the YS of 334 MPa and the UTS of 709 MPa [91]. SLM increased the YS up to 579 MPa and the UTS up to 721 MPa [92].
Moreover, the CS of AlCrCuFeNi was 2052 MPa when fabricated with SLM and 1750 ± 15 MPa [215] with arc-melting. The hardness of AlCoCrCuFeNi improved from 500 to 710 Hv [128] by using SLM. The YS of AlMgScZrMn manufactured with arc melting, SPS, and SLM is 188 ± 2.3 MPa, 231 ± 3 Mpa and 394 Mpa respectively [129]. Agrawal et al. [131] reported that the YS of as-cast and SLM-printed Fe40Mn20Co20Cr15Si5 was 420 ± 20 Mpa and 530 ± 40 Mpa, respectively. The YS of CoCrFeNiMn was 2.5 times higher (around 518 Mpa) [170] with DED in comparison to that of cast parts (209 Mpa) [216] at room temperature (RT). Furthermore, the as-cast AlCoCrFeNi had the UTS of 956 MPa, and the EBM specimen had the UTS of 1073 MPa [160]. Similarly, Fujieda et al. [162] reported that EBM-synthesized CoCrFeNiTi showed the improved tensile strength of around 1178 MPa, which is much stronger than various commercial high corrosion resistant materials such as duplex stainless steel: 655 MPa, super duplex stainless steel: 750–800 MPa and Ni-based super alloys (i.e., Alloy C276: 690 MPa, Alloy 718: 1275 MPa).
Refractory HEA NbMoTaW has shown a drastic reduction in grain size when made with AM. The average grain size of BCC phase was 200 μm in as-cast sample [217] and 13.4 μm in SLM-processed sample. Additionally, this alloy did not follow the rule of mixtures. Instead, it showed the cocktail effect for the hardness of the final structure. The hardness of Nb, Mo, Ta and W was in the range of 85–410 HV but the final hardness of SLM processed NbMoTaW was measured to be 826 HV [132]. Senkov et al. [218] commented that NbMoTaW did not have any abrupt hardness changes at high temperatures, consistently exhibiting better hardness properties than superalloys. Moreover, SLM-processed Ni6Cr4WFe9Ti (UTS = 972 MPa, YS = 742 MPa, ε = 12.2%) had ~93% increase in YS, ~50% increase in UTS, and ~77% increase in tensile ductility as compared to the vacuum arc melted samples (UTS = 649 MPa, YS = 385 MPa, ε = 6.9%) [134][135].
In summary, various studies have successfully manufactured SLM, EBM and DED techniques. They have also shown that the properties of HEAs could be altered by changing the input parameters for AM process. For example, CoCrFeNiMn was manufactured with SLM by multiple researchers [85][86][101][110][111][112][113][114][115][116][117][118][119][122][136][137][138][139][140][143][146][148][149][151][154][155] and many of them acquired different mechanical properties for CoCrFeNiMn by changing input parameters in AM processes (refer Table 1, Table 2 and Table 3).

3. Applications under Extreme Environments

3.1. Nuclear Applications

Nuclear energy is contributing to around 13% of electricity demand worldwide [219] with negligible carbon emission. The safety, reliability and economy of these nuclear power plants depends heavily on the performances of advanced structural materials under high-energy irradiation and elevated temperatures [220][221]. Radioactive waste handling units also require radiation-tolerant materials. Not to mention nuclear applications, radiation-resistant materials are in great demand in medical and aerospace fields as well.
The typical range of operating temperatures of nuclear reactors spans from 350 to 900 °C as listed in Table 4 [222]. At high temperatures, several effects come into play such as thermal expansion, vacancy concentration, diffusion rate, phase transformation, precipitation, recovery, recrystallization, dislocation climb, creep, grain weakening/migration/growth, oxidation and intergranular oxygen dispersion. With conventional alloys, design strategies for nuclear reactor materials were mostly concerned with tuning the microstructures by various heat treatments, precipitation, cold working and solute atoms to get desired properties. HEAs, though, introduce the concept of modifying compositional complexity of the structural materials to make them suitable for nuclear applications.
Table 4. Core outlet temperature of different gen-IV nuclear reactor coolant [222].

Reactor System

Core Outlet Temperature (°C)

Coolant

Super critical water-cooled reactor

350–620

Water

Sodium-cooled fast reactor

~550

Na liquid metal

Lead-cooled reactor

550–800

Pb, Pb-Bi liquid Metals

Molten salt reactor

700–800

Fluoride salts

Gas-cooled fast reactor

~850

Helium gas

Very high temperature reactor

>900

Helium gas

Currently, reduced activation ferritic/martensitic steels (RAFM) (e.g., F82H, EUROFER 97), are the most popular option for irradiation-resistant structural materials. Oxide dispersion strengthened (ODS) RAFM steels (i.e., EUROFER 97 reinforced with 0.3 wt.% Y2O3 particles), C/C, SiC/C, SiC/SiC, refractory metals/alloys (W, Cr), V and Ti-based alloys are also being used [223][224]. HEAs are considered to be potential candidates for nuclear applications [106][225][226][227]. Yeh et al. [228] mentioned that HEAs are potential candidates for structural materials of the 4th generation nuclear reactor. Previously, the irradiation responses and defect behaviors [229][230], intrinsic transport properties [230], irradiation induced structural changes [231] of HEAs were reviewed. Building upon these reviews, this section mainly focuses on ion irradiation resistance of HEAs.
The majority of the previous ion irradiation studies on HEAs are listed in Table 5 where phases, irradiation conditions and important findings are summarized. These HEAs were studied under Ni, Au, Ag, Ar, He, Kr, or Xe ions irradiation. The most popular strategy to design single-phase HEAs of high irradiation resistance used elements having low activation or thermal neutron absorption cross section [232][233][234][235][236].
Table 5. Summary of irradiation studies on HEAs.

Source

Material (Fabrication)

Phase

Irradiation Conditions (Energy, Ion, Fluence, Temperature)

Jawaharram et al. [237]

CoCrFeNiMn

FCC

2.6 MeV, Ag3+, 1.5 × 10−3 & 1.9 × 10−3 dpa−1 s−1, 23–500 °C

Lu et al. [238]

NiCoFeCr, CoCrFeNiMn

FCC

3 MeV, Ni2+, 5 × 1016 ions·cm−2, 500 °C

Barr et al. [239]

CoCrFeNiMn

FCC

3 MeV, Ni2+, 3 × 1015 ions·cm−2, 500 °C

Lu et al. [240]

CoCrFeNi, CoCrFeNiMn

FCC

1.5 MeV, Ni+, 4 × 1014 & 3 × 1015 ions·cm−2 (peak dose~4 dpa), 500 °C

3 MeV, Ni+, 5 × 1016 ions·cm−2 (peak dose~60 dpa), 500 °C

Tong et al. [241]

CoCrFeNiMn

CoCrFeNi

CoCrFeNiPd

FCC

16 MeV, Ni5+, 8 MeV Ni3+, 4 MeV Ni1+&

2 MeV Ni1+, 0.1–1 dpa, 420 °C

Jin et al. [242]

CoCrFeNi, CoCrFeNiMn

FCC

3 MeV, Ni2+, 5 × 1016 ions·cm−2 (peak dose~53 dpa), 500 °C

Chen et al. [243]

CoCrFeMnNi

Al0.3CoCrFeNi

FCC

FCC

1 MeV, Kr ions, 6.3 × 1015 ions·cm−2, 300 °C

Wang et al. [244]

CoCrFeNiCu

FCC

100 keV, He+, 2.5 × 1017, 5 × 1017 & 1 × 1018 ions·cm−2, RT

He et al. [245]

CoCrFeNi,

CoCrFeNiMn,

CoCrFeNiPd

FCC

electrons, 5 × 1018 e·cm−2·s−1, 400 °C

Yang et al. [246]

CoCrFeNiMn,

CoCrFeNiPd

FCC

3MeV, Ni2+, 5 × 1016 ions·cm−2, 420, 500 & 580 °C

Yang et al. [247]

CoCrFeNiMn

FCC

-, He ion, -, RT & 450 °C

Hashimoto et al. [248]

CoCrFeNiMn,

CoCrFeNiAl0.3

FCC

1250 keV, 1.5 dpa, 300–400 °C

Zhang et al. [249]

CoCrFeNiCu

FCC

3 MeV Ni2+, 1014 ions·cm−2, RT

Yang et al. [250]

CoNi, FeNi, CoCrFeNi

-

FCC

3 MeV, Ni2+, 1.5 × 1016 (peak dose~17 dpa) &

5.0 × 1016 (peak dose~53 dpa) ions·cm−2, 500 °C

Abhaya et al. [251]

CrCoFeNi

FCC

1.5 MeV, Ni2+, 1 × 1015 (peak dose~2 dpa) &

5 × 1016 (peak dose~96 dpa) ions·cm−2, RT

Sellami et al. [252]

CoCrFeNi

 

1.5 MeV, Ni2+, 1 × 1013–1 × 1014 ions·cm−2

21 MeV, Ni2+, 2 × 1013 & 1 × 1014 ions·cm−2, RT

Chen et al. [253]

CoCrFeNi

FCC

275 keV, He+, 5.14 × 1020 ions·m−2, 250, 300, 400 °C

Kombaiah et al. [254]

CoCrFeNi,

Al0.12CoCrFeNi

FCC

3 MeV, Ni2+, 1 × 1017 ions·cm−2 (peak dose~100 dpa), 500 °C

Lu et al. [255]

CoCrFeNiPd

FCC

3 MeV, Ni2+, 5 × 1016 ions·cm−2, 580 °C

Tunes et al. [256]

CrFeNiMn

FCC

30 keV, Xe+, 2.6 × 1016 ions·cm−2, 500 °C

Edmondson et al. [257]

CrFeNiMn

BCC

30 keV, Xe+, 9.3×1016 ions·cm−2

6 keV He+, 6.4 × 1016 ions·cm−2, RT

Fan et al. [258]

CoCrFeNi

FCC

3 MeV, Ni ions, 5 × 1016–8 × 1016 ions/cm2, 580 °C

Chen et al. [5]

CoCrFeNiTi0.2

FCC

275 keV, He2+, 5.14 × 1020 ions·m−2, 400 °C

Lyu et al. [259]

CoCrFeNiMo0.2

FCC

27 keV, electrons, -, RT

Xu et al. [260]

(CoCrFeNi)95Ti1Nb1Al3

FCC

2.5 MeV, Fe ions, 1.5 × 1019 ions·m−2, RT-500 °C

Cao et al. [261]

(CoCrFeNi)94Ti2Al4

FCC

4 MeV, Au ions, 10–49 dpa, RT

Tolstolutskaya et al. [262]

Cr0.18Fe0.4Mn0.28Ni0.14

Cr0.18Fe0.28Mn0.27Ni0.28

Cr0.2Fe0.4Mn0.2Ni0.2

FCC

1.4 MeV, Ar ions, 0, 0.3, 1 & 5 dpa, RT

Kumar et al. [263]

Fe0.27Ni0.28Mn0.27Cr0.18

FCC

3 MeV, Ni2+, 4.2 × 1013, 4.2 × 1014 & 4.2 × 1015 ions·cm−2, RT & 500 °C

3 MeV, Ni2+, 2.43 × 1015 & 2.43 × 1016 ions·cm−2, 400–700 °C

Li et al. [264]

Cr0.18Fe0.27Ni0.28Mn0.27

FCC

Neutron, 8.9 × 1014 n·cm−2.s, 60 °C

Voyevodin et al. [265]

Cr0.2Fe0.4Mn0.2Ni0.2+ Y2O3 + ZrO2

FCC

1.4 MeV, Ar ions, 2.2 × 1015 ions·cm−2, RT

Dias et al. [266]

CuxCrFeTiV

(x = 0.21–1.7)

BCC + FCC

300 keV, Ar+, 3 × 1020 at·m−2, RT

Yang et al. [234]

Al0.3CoCrFeNi

FCC

3 MeV, Au ions, 6 × 1015 ion·cm−2 (peak dose ~31 dpa), 250–650 °C

Gromov et al. [267]

AlCoCrFeNi

-

18 keV, electrons, -, RT

Zhang et al. [235]

AlCrMoNbZr,

(AlCrMoNbZr)N

FCC

400 keV, He+, 8 × 1015 & 8 × 1016 ion·cm−2, RT

Yang et al. [6]

Al0.1CoCrFeNi,

Al0.75CoCrFeNi,

Al1.5CoCrFeNi,

FCC

FCC + B2

A2 + B2

3 MeV, Au ions, 1 × 1014–1 × 1016 ions·cm−2, RT

Xia et al. [7]

Al0.1CoCrFeNi,

Al0.75CoCrFeNi,

Al1.5CoCrFeNi

FCC

FCC + B2

B2 + A2

3 MeV, Au ions, 1 × 1014–1 × 1016 ions·cm−2, RT

Yang et al. [268]

Al0.1CoCrFeNi

FCC

3 MeV, Au ions, 6 × 1015 ions·cm−2, 250–650 °C

Zhou et al. [269]

AlxCoCrFeNi (x = 0–2)

FCC + BCC

1 MeV, Kr2+, -, RT

Zhou et al. [270]

AlxCoCrFeNi,

HfNbTaTiZrV

FCC

Amorphous

MeV Kr & 200 KeV, electrons, 2 dpa, RT & 150 °C

Zhou et al. [271]

HfNbTaTiZrV

BCC

1 MeV Kr2+, -, RT-150 °C

Moschetti et al. [272]

HfNbTaTiZr

BCC

5 MeV, He2+, 1.6 × 1012–4.4 × 1017 ions·cm−2s, 50 °C

Sadeghilaridjani et al. [273]

HfTaTiZrV

BCC

4.4 MeV, Ni2+, 1.08 × 1017 ion·cm−2, RT

Li et al. [274]

HfNbTiZr

BCC

1.5 MeV, He ions, 5 × 1015–1 × 1017 ions·m−2, 700 °C

Kareer et al. [275]

TaTiVZr,

TaTiVCr,

TaTiVNb

BCC

BCC

BCC

2 MeV, V+, 2.26 × 1015 ions·cm−2, 500 °C

Wang et al. [276]

ZrTiHfCuBe,

ZrTiHfCuBeNi,

ZrTiHfCuNi

Amorphous

100 keV, He ions, 5.0 × 1017, 1.0 × 1018 & 2.0 × 1018 ions·cm−2, RT

Lu et al. [4]

Ti2ZrHfV0.5Mo0.2

BCC

3 MeV, He+, 5 × 1015, 1 × 1016 & 3 × 1016 ions·cm−2, 600 °C

Atwani et al. [277]

W0.38Ta0.36Cr0.15V0.11

BCC

1 MeV, Kr+2, 0.0006–8 dpa·s−1, 800 °C

Komarov et al. [278]

(TiHfZrVNb)N

-

500 KeV He2+, 5 × 1016–3 × 1017 ions·cm−2, 500 °C

Gandy et al. [279]

SiFeVCrMo

SiFeVCr

sigma

BCC+ sigma

5 MeV, Au2+, 5 × 1015 ions·cm−2, RT

Patel et al. [280]

V2.5Cr1.2WMoCo0.04

BCC

5 MeV, Au+, 5 × 1015 ion·cm−2 (peak dose~42 dpa), RT

Zhang et al. [281]

Mo0.5NbTiVCr0.25, Mo0.5NbTiV0.5Zr0.25

BCC

400 He2+, 1 × 1017–5 × 1017 ions·m−2, 350 °C

Zhang et al. [282]

Mo0.5NbTiVCr0.25, Mo0.5NbTiV0.5Zr0.25

BCC

400 keV, He2+, peak dose~10.5 dpa, 350 °C

Atwani et al. [283]

WtaCrV

BCC

2 keV, He+, 1.65 × 1017 ions·cm−2, 950 °C

3.2. Wear Behavior

The wear properties of HEAs were studied mostly with pin/ball on a disc set up with antagonist materials such as Al2O3, steels (i.e., SKH51, GCr15, 100Cr6), Si3N4, SiC, ZrO2, 1Cr18Ni9Ti, BN, inconel-718 and WC. For lubrication, mostly dry conditions were used but some studies also used H2O2, deionized water and acid rain (pH = 2). Previously, Tsai and Yeh et al. [284], Kasar et al. [285], Senkov et al. [286], Sharma et al. [287], Zhang et al. [56], Li et al. [288], Menghani et al. [289] and Ayyagari et al. [290] discussed the wear behaviors of HEAs. Here, the researchers will analyze the tribological studies of HEAs in terms of HEAs content variation, particle reinforcement, media and nitriding/carburizing/sulfurizing, temperature effects and oxide formation. Table 6 provides the details of the compositions, microstructures, methods and results (i.e., wear rate or wear resistance, hardness, friction coefficient) of the wear studies performed so far on HEAs.
Table 6. Wear studies of HEAs.

Source

Composition

Microstructure

Method, Medium, Antagonist Material, Temperature, Wear Rate

Joseph et al. [291]

CoCrFeNiMn

FCC

Pin-on-disc, dry, Al2O3, 600–800 °C, RT, 0.5 × 10−4–3.8 × 10−4 mm3·N−1·m−1

Wang et al. [292]

CoCrFeNiMn

FCC

Ball-on-disc, MoS2-oil lubrication, GCr15, RT-140 °C

Xiao et al. [293]

CoCrFeNiMn

FCC

Ball-on-flat, dry, WC-Co, RT, 0.5 × 10−4–5.4 × 10−4 mm3·N−1·m−1

Jones et al. [294]

CoCrFeNiMn

FCC

Rotary tribometer, -, -, ~0.5 × 10−6 mm3·N−1·m−1

Zhu et al. [295]

CoCrFeNiMn

CoCrFeNiMnV

CoCrFeNiMnNb

CoCrFeNiMnNbV

FCC + HCP (Laves) + σ

Ball-on-disc, dry, Si3N4, RT, 1.85 × 10−5–6.39 × 10−5 mm3·N−1·m−1

Deng et al. [296]

CoCrFeNiMox (x = 0–0.3)

FCC

Ball-on-disc, dry, GCr15, RT, 0.33 × 10−3–0.53 × 10−3 mm3·N−1·m−1

Lindner et al. [297]

CoCrFeNiMn

CoCrFeNi

FCC

FCC

Ball-on-disc, dry, Al2O3, RT

Sha et al. [298]

(CoCrFeNiMn)N

FCC + BCC

Ball-on-disc, dry, ruby, RT, 1 × 10−7–1.4 × 10−6 mm3·N−1·m−1

Xiao et al. [299]

CoCrFeNiMnCx (x = 0–1.2)

FCC

Ball-on-disk, dry, Si3N4, RT, 0.47 × 10−5–6.5 × 10−5 mm3·N−1·m−1

Zhu et al. [211]

CoCrFeNiMn + TiN-Al2O3

FCC + TiN

Ball-on-disc, dry, 440C steel, RT

Cheng et al. [300]

CoCrFeNiMn

Al0.5CoCrFeNiMn

AlCoCrFeNiMn

FCC

FCC + BCC

FCC + BCC

Ball-on-disc, dry, Si3N4, RT-800 °C, 0.5 × 10−4–3.8 × 10−4 mm3·N−1·m−1

Joseph et al. [301]

CoCrFeNiMn

Al0.3CoCrFeNi

Al0.6CoCrFeNi

AlCoCrFeNi

FCC

FCC

FCC + BCC

BCC

Pin-on-disc, dry, Al2O3, 25 & 900 °C

Liu et al. [302]

CoCrFeNiMn + Y2O3

FCC + Y2O3 (particles)

Ball-on-disc, dry, GCr15, RT

Wang et al. [303]

(CoCrFeMnNi)85Ti15

FCC + BCC

Ball-on-disc, dry, Si3N4, RT-800 °C, 4 × 10−6–2.23 × 10−5 mm3·N−1·m−1

Zhang et al. [304]

CoCrFeNi + (Ag or BaF2/CaF2)

FCC

Ball-on-disk, dry, Inconel-718, RT, ~4 × 10−5–40 × 10−5 mm3·N−1·m−1

Geng et al. [305]

CoCrFeNi

FCC

Pin-on-disc, vacuum (4 Pa) & air, Inconel 718, RT, 0.6 × 10−4–8 × 10−4 mm3·N−1·m−1

Zhang et al. [306]

CoCrFeNi + (graphite or MoS2)

FCC

Ball-on-disk, dry, Si3N4, RT-800 °C, ~1 × 10−5–23 × 10−5 mm3·N−1·m−1

Zhou et al. [307]

CoCrFeNiMo0.85

Al0.5CoCrFeNi

FCC

FCC

Slurry jet test-rig, HCl+NaCl, -, 40 °C, -

Zhang et al. [308]

CoCrFeNiMo

FCC

Ball-on-disc, dry, -, RT

Huang et al. [309]

FeCoCrNiSix

FCC + BCC

Ball-on-disk, dry, GCr15, RT

Cui et al. [310]

CoCrFeNiMo

Sulfurized at 260 °C for 2 h

FCC + FeS/MoS2 film

Pin-on-disk, dry, GCr15, RT

Li et al. [311]

CoCrFeNiMo0.2

FCC

Ball on disc, dry, GCr15, RT, 3.9 × 10−4–5.4 × 10−4 mm3·N−1·m−1

Ji et al. [312]

CoCrFeNiCu + 2% MoS2

CoCrFeNiCu + 5% MoS2

CoCrFeNiCu + 20% WC

CoCrFeNiCu + 50% WC

CoCrFeNiCu + 80% WC

FCC + MoS2 (particles)

FCC + MoS2 (particles)

FCC + WC (particles)

FCC + WC (particles)

FCC + WC (particles)

Ball-on-disk, dry, Si3N4, RT

Verma et al. [313]

CoCrFeNiCux (x = 0–1)

FCC

Pin-on-disk, dry, -, RT & 600 °C, ~1.3 × 10−5–2.5 × 10−5 mm3·N−1·m−1

Liu et al. [314]

CoCrFeNiBx (x = 0.5–1.5)

FCC + Borides

Roller friction wear tester, dry, W18Cr5V, RT

Jiang et al. [315]

CoCrFeNiNbx (x = 0–1.2)

FCC + HCP (Laves) HCP (Co2Nb)

Ball-on-disc, dry, BN, RT

Yu et al. [316]

CoCrFeNiNbx (x = 0.5–0.8)

FCC + HCP (Laves)

Pin-on-disk, dry, Si3N4, RT-800 °C, ~1.8 × 10−4–9 × 10−4 mm3·N−1·m−1

Liu et al. [317]

Co10Cr10Fe50Mn30 + graphene nanoplatelets (0.2–0.8 wt%)

FCC

Ball-on-plate, dry, GCr15, RT

Wang et al. [318]

Co10Cr10Fe40Mn40 + WC (10 wt%)

FCC+ WC + M23C6

Ball-on-disc, dry, Si3N4, RT

Derimow et al. [319]

(CoCrCuTi)100−xMnx (x = 5–10)

(CoCrCuTi)100−xMnx (x = 10–20)

FCC + BCC

FCC + HCP (Laves)

Ball-on-disc, dry, GCr15, RT

Guo et al. [320]

CoCrFeNiCuSi0.2 (Ti or C)x (x = 0–1.5)

FCC + TiC

Brooks sliding friction & wear tester, dry, RT

Zhang et al. [321]

(CoCrFeNiTi0.5)Cx (x = 3–12 wt%)

BCC + Cr23C6 + TiC

ML-100 friction and wear tester, -, -, RT

Erdoğan et al. [322]

CoCrFeNiTi0.5

CoCrFeNiTi0.5Al0.5

CoCrFeNiTi0.5Al

FCC

BCC

BCC

Ball-on-disc, dry, WC, RT

Liu et al. [323]

CoCrFeNiMo

CoCrFeNiMox (x ≥ 0.3)

CoCrFeNiMox (x ≥ 1)

FCC

FCC + σ

FCC + σ + µ

Pin-on-disk, dry, YG6, RT, 1 × 10−5–8.5 × 10−5 mm3·N−1·m−1

Moazzen et al. [324]

CoCrFexNi (x = 1–1.6)

FCC + BCC

Pin-on-disk, dry, AISI52100 steel, 20–30 °C, -

Yang et al. [325]

CoCrFeNiMoSix (x = 0.5–1.5)

FCC

Pin-on-disk, dry, Si3N4, RT, 0.292 × 10−4–0.892 × 10−4 mm3·N−1·m−1

Li et al. [326]

CoCrFeNi2V0.5Tix (x = 0.5–1.25)

BCC + (Co,Ni)Ti2

Ball-on-disc, dry, Si3N4, RT, 4.4 × 10−5- 37.5 × 10−5 mm3·N−1·m−1

Islak et al. [327]

CrFeNiMoTi

FCC

Ball-on-flat, dry, 100Cr6, RT, 2.7 × 10−3–9.4 × 10−3 mm3·N−1·m−1

Wen et al. [328]

CrCoNiTiV

FCC + BCC + TiO

HT-1000 tribometer, -, WC, RT & 600 °C

Wang et al. [329]

CuNiSiTiZr

BCC

CJS111A wear tester, dry, -, RT

Cheng et al. [330]

(Fe25Co25Ni25 (B0.7Si0.3)25)100−xNbx

(x = 0–4 wt%)

BCC + HCP (Laves) +

FCC

Ball-on-disc, dry, GCr15, RT, ~1.5 × 10−6–3.6 × 10−6 mm3·N−1·m−1

Yadav et al. [331]

(CuCrFeTiZn)1−xPbx

(x = 0.05–0.2)

FCC + BCC + Pb (particles)

Ball-on-disk, dry, -, SAE 52100, RT, 1.17 × 10−5–50 × 10−5 mm3·N−1·m−1

Gou et al. [332]

CoCrFeNi + WC + Mo2C + NbC

FCC

Ball-on-disc, dry, GCr15, 700 °C

Yadav et al. [333]

(CuCrFeTiZn)100−xPbx (x = 0–10)

(CuCrFeTiZn)100−xBix (x = 0–10)

FCC + BCC

BCC

Ball-on-disk, dry, steel, RT

Cui et al. [334]

AlxCoCrFeNiMn (x = 0–0.75)

FCC + BCC

MDW- 02 abrasive wear tester, RT

Gwalani et al. [335]

Al0.5CoCrFeNi

FCC + B2

Pin-on-disc, dry, Si3N4, RT, 1.8 × 10−5–11 × 10−5 mm3·N−1·m−1

Chen et al. [336]

Al0.6CoCrFeNi

FCC + BCC

Ball-on-plate, dry, Si3N4, RT-600 °C, ~0.5 × 10−4–5 × 10−4 mm3·N−1·m−1

Du et al. [337]

Al0.25CoCrFeNi

FCC

Universal wear testing machine, dry, Si3N4

20–600 °C, ~1.5 × 10−4–3.5 × 10−4 mm3·N−1·m−1

Chen et al. [338]

Al0.6CoCrFeNi

FCC + BCC

Ball-on-block, deionized water & acid rain (pH = 2), seawater, GCr15, RT, 1.58 × 10−4–6.52 × 10−4 mm3·N−1·m−1

Ji et al. [339]

Al3CoCrFeNi

 

Jet erosion testing machine, water and 15 wt% SiO2 particles (350–600 mm), RT

Haghdadi et al. [340]

Al0.3CoCrFeNi

AlCoCrFeNi

FCC

BCC

Scratch testing, dry, -, RT

Fang et al. [341]

Al0.3CoCrFeNi

FCC

Pin-on-disc, dry, -, 900 °C

Wu et al. [342]

Al0.1CoCrFeNi

FCC

Ball-on-block, dry and deionized water, Si3N4, RT, ~0.2 × 10−4–1.86 × 10−4 mm3·N−1·m−1

Nair et al. [343]

Al0.1CoCrFeNi

AlCoCrFeNi

Al3CoCrFeNi

FCC

FCC + BCC (B2)

BCC (B2) + A2 + σ

Ball-on-disc, dry, WC, RT

Kumar et al. [344]

Al0.4CoxCrFeNi (x = 0–1)

-

Pin-on-disc, demineralized water & (demineralized water + 3.5 wt% NaCl), EN-31, RT, 0.81 × 10−4–1.86 × 10−4 mm3·N−1·m−1

Mu et al. [345]

AlCoCrFeNi

BCC + FCC

Ball-on disc, dry, Si3N4, RT

Wu et al. [346]

AlCoCrFeNi

AlCoCrFeNiTi0.5

BCC

Pin-on-disc, dry, Si3N4, RT

Zhao et al. [347]

Al0.8CoCrFeNi

FCC + BCC

Ball-on-disk, dry, deionized water + 0.5 wt% NaCl, RT, ~2 × 10−5–7.5 × 10−5 mm3·N−1·m−1

Kumar et al. [348]

Al0.4CoxCrFeNi (x = 0–0.5)

Al0.4CoxCrFeNi (x = 1)

FCC + BCC

FCC

Pin-on-disk, engine oil (SAE Grade:20W-40), EN-31 steel, RT, 2.1 × 10−5–11 × 10−5 mm3·N−1·m−1

Li et al. [349]

Al0.8CoCrFeNiCu0.5Six

(x = 0–0.5)

FCC + BCC1 + BCC2

-, -, CGr15, RT, 0.9 × 10−6–1.19 × 10−6 mm3·N−1·m−1

Li et al. [206]

(AlCoCrFeNi)100-x (NbC)x

(x = 0–30 wt%)

FCC + BCC

Reciprocating tester, dry, N4Si3, RT

Kafexhiu et al. [350]

AlCoCrFeNi2.1

BCC + FCC

Ball-on-plate, dry, 100Cr6 steel, RT, 7 × 10−5–11 × 10−5 mm3·N−1·m−1

Miao et al. [351]

AlCoCrFeNi2.1

FCC (L12) + BCC (B2)

Ball-on-disk, dry, Al2O3/Si3N4/SiC/GCr15, RT-900 °C, ~1 × 10−4–4.2 × 10−4 mm3·N−1·m−1

Ye et al. [352]

AlCoCrFeNi2.1 + TiC (0–15 wt%)

FCC + B2 + TiC

MM-200 wear testing machine, dry, -, RT

Wang et al. [353]

(AlCoCrFeNi)N

BCC + nitrides (AlN,CrN,Fe4N)

Ball-on block, dry, deionized water & acid rain (pH = 2), Si3N4, RT, 2.8 × 10−5–7 × 10−5 mm3·N−1·m−1

Liu et al. [354]

AlCrCuFeNi2

 

Ball-on-block, dry, simulated rainwater & deionized water, Si3N4, RT, 2.163 × 10−3–0.23 × 10−3 mm3·N−1·m−1

Kong et al. [355]

Al1.8CrCuFeNi2

BCC

MMS-2A roller friction wear tester, dry, -, RT

Malatji et al. [197]

AlCrCuFeNi

FCC + BCC

Ball-on-disk, dry, SiC, RT

Wang et al. [356]

Al1.3CoCuFeNi2

FCC + BCC

Ball-on block, dry, deionized water & acid rain (pH = 2), Si3N4, RT, 1 × 10−4–12 × 10−4 mm3·N−1·m−1

Xiao et al. [357]

AlxCoCrFeNiSi (x = 0.5–1.5)

FCC + BCC

Ball-on-flat, distilled water, WC-12Co, RT, 6.7 × 10−6–5.5 × 10−5 mm3·N−1·m−1

Liu et al. [358]

AlCoCrFeNiSix (0–0.5)

BCC

Pin-on-disk, dry, ZrO2, RT, 1.3 × 10−4–5.1 × 10−4 mm3·N−1·m−1

Hsu et al. [359]

Al0.5CoCrFeNiCuBx (x = 0–1)

FCC + boride precipitates

Pin-on-disk, dry, Al2O3, RT

Chen et al. [360]

Al0.5CoCrFeNiCuTix (x = 0–0.2)

Al0.5CoCrFeNiCuTix (x = 0.4–1) Al0.5CoCrFeNiCuTix (x = 1.2–2)

FCC

FCC + BCC

FCC + BCC + Ti2N

Pin-on-disk, dry, Al2O3, RT

Lobel et al. [361]

AlCoCrFeNiTi

BCC

Ball-on-disc, dry, Al2O3, RT

Lobel et al. [362]

AlCoCrFeNiTi

BCC

Ball-on-plate, dry, 100Cr6 Steel, RT

Wu et al. [363]

AlCoCrFeNiTix (x = 0.5–1)

AlCoCrFeNiTix (x = 1.5)

AlCoCrFeNiTix (x = 2)

FCC + BCC

FCC + BCC + Ti2Ni

FCC + BCC + Ti2Ni + ordered BCC

Cavitation erosion tests, Distilled water+ 3.5 wt% NaCl, RT

Erdogan et al. [364]

AlxCoCrFeNiTiy

(x = 0–0.5, y = 0–0.5)

FCC + BCC

Ball-on-disc, dry, WC, RT, 0.25 × 10−4–1.78 × 10−4 mm3·N−1·m−1, 0.25 × 10−4–1.78 × 10−4 mm3·N−1·m−1

Xin et al. [365]

Al0.2Co1.5CrFeNi1.5Ti0.5 + TiC

FCC

Ball-on-disc, dry, Si3N4, RT, 0.3 × 10−5–12.6 × 10−5 mm3·N−1·m−1

Gouvea et al. [366]

Al0.2Co1.5CrFeNi1.5Ti

FCC

Ball-on-plate, dry, AISI 52,100 steel, RT, 1.6 × 10−8–7.5 × 10−5 mm2·N−1

Chuang et al. [367]

AlxCo1.5CrFeNi1.5Tiy

(x = 0–0.2, y = 0.5–1)

FCC

Pin-on-disk, dry, SKH51 steel, RT, ~4 × 10−4–1.8 × 10−4 mm3·N−1·m−1

Liu et al. [368]

AlCoCrFeNiTi0.8

BCC + B2

Ball-on-disc, dry, Si3N4, RT, 1.36 × 10−6–6.96 × 10−6 mm3·N−1·m−1, 0.7 × 10−4–6 × 10−4 mm3·N−1·m−1

Yu et al. [369]

AlCoCrFeNiTi0.5

BCC1 + BCC2

Pin-on-disk, H2O2, SiC & ZrO2, RT

Lobel et al. [370]

AlCoCrFeNiTi0.5

BCC (A2 + B2)

SRV-Tribometer, dry, Al2O3, 22–900 °C

Chen et al. [371]

Al0.6CoCrFeNiTi

BCC

Pin-on-disc, Dry, Al2O3

RT-500 °C

Yu et al. [372]

AlCoCrFeNiTi0.5

AlCoCrFeNiCu

 

Pin-on-disc, dry, Si3N4

Yu et al. [373]

AlCoCrFeNiCu

AlCoCrFeNiTi0.5

FCC + BCC1

BCC1 + BCC2

Pin-on-disk, H2O2, 1Cr18Ni9Ti steel & ZrO2/SiC ceramic, RT

Jin et al. [374]

AlCoFeNiCu

FCC + BCC

Ball-on-disk, dry, WC, 200–800 °C

Zhu et al. [375]

AlCoFeNiCu + TiC (10–30 wt%)

FCC + BCC

Ball-on-disk, dry, Si3N420–600 °C, ~0.1 × 10−5–6.5 × 10−5 mm3·N−1·m−1

Wu et al. [376]

Al0.5CoCrFeNiCu

Al1.0CoCrFeNiCu

Al2.0CoCrFeNiCu

FCC

FCC + BCC

BCC

Pin-on-disk, dry, SKH-51 steel, RT

Yan et al. [377]

AlCoCrFeNiSi + Ti (C, N)

BCC + FCC

Ball-on-disc, dry, GCr15, RT, -

Li et al. [378]

AlCoCrFeNi + Ti (C,N) + TiB2

FCC

Ball-on-disc, dry, WC-6Co, 200–800 °C, 2.69 × 10−5–8.66 × 0−5 mm3·N−1·m−1

Kumar et al. [379]

AlCoCrCuFeNiSi0.3

AlCoCrCuFeNiSi0.6

FCC + BCC

FCC + BCC + σ

Pin-on-disk, dry, -, RT, -

Xin et al. [380]

Al0.2Co1.5CrFeNi1.5Ti0.5

FCC

Pin-on-disk, dry, Si3N4, 25–800 °C, 1.21 × 10−5–6.7 × 10−5 mm3·N−1·m−1

Karakaş et al. [381]

Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.1

FCC

Ball-on-disc, 3.5%NaCl & 5%H2SO4, -, RT, 16.26 × 10−9–77.84 × 10−8 mm3·N−1·m−1

Xin et al. [382]

Al0.2Co1.5CrFeNi1.5Ti (0.5+x) + Cx (x = 0)

FCC

Pin-on-disk, dry, Si3N4, 25–800 °C, 3.12 × 10−6–12.59 × 10−5 mm3·N−1·m−1

Zhao et al. [383]

AlCrCoFeNiCTax (x = 0–1)

BCC

Pin-on-disk, 3.5%NaCl & air, Si3N4, RT, 1.67 × 10−6–2.22 × 10−5 mm3·N−1·m−1

Ghanbariha et al. [384]

AlCoCrFeNi + ZrO2

FCC + BCC

Pin-on-disk, dry, WC, RT, 1.11 × 10−3–2.52 × 10−3 mm3·N−1·m−1

Li et al. [385]

AlxCrFeCoNiCu (x = 0–0.5)

AlxCrFeCoNiCu (x = 0.5–2)

FCC

FCC + BCC

-, dry, GCr15, RT, 6.64 × 10−7–2.26 × 10−4 mm3·N−1·m−1

Cai et al. [386]

AlCrTiV, AlCrTiVSi

BCC

Nanoindenter G200, dry, CGr15 &Al2O3, RT, -

Chandrakar et al. [387]

AlCoCrCuFeNiSix (x = 0–0.9)

BCC

Pin-on-disk, dry, -, RT, -

Erdogan et al. [388]

AlCrFeNiSi

AlCrFeNix (x = Cu,Co)

BCC

BCC + FCC

Ball-on-disc, dry, WC, RT, -

Duan et al. [389]

AlCoCrFeNiCu

-

Pin-on-disc, H2O2, Si3N4, RT

Chen et al. [390]

Al0.5CoCrFeNiCuVx (x = 0–0.2)

Al0.5CoCrFeNiCuVx (x = 0.4–0.8)

Al0.5CoCrFeNiCuVx (x = 1–2)

FCC

FCC + BCC

BCC

Pin-on-disk, dry, Al2O3, RT, 1 × 10−4–2.7 × 10−4 mm3·N−1·m−1

Gu et al. [391]

AlxMo0.5NbFeTiMn2 (x = 1–2)

BCC

Pin-on-disk, dry, Al2O3, RT

Hsu et al. [392]

AlCoCrFexNiMo0.5 (x = 0.6–2)

BCC + σ

Pin-on-disk, dry, SKH51 steel, RT

Liang et al. [393]

AlCrFe2Ni2W0.2Mo0.75

BCC

Ball-on-disc, deionized water, Al2O3, RT, ~5 × 10−6–22 × 10−6 mm3·N−1·m−1

Qui et al. [394]

Al2CoCrFeCuTiNix (x = 0–2)

FCC + BCC

Tribometer, -, -, RT

Kanyane et al. [395]

AlTiSiMoW

BCC + TiSi2 (ordered FCC)

Ball-on-disc, dry, stainless steel, RT

Huang et al. [396]

AlTiSiVCr

BCC+ (Ti,V)5Si3 precipitates

Ball-on-disc, dry, GCr15 steel, RT,

2 × 10−5–2.5 × 10−5 mm3·N−1·m−1

Zhang et al. [397]

AlTiSiVNi

B2 (NiAl) + (Ti,V)5Si3 + TiN

Ball-on-disc, dry, Si3N4, RT & 800 °C

Lin et al. [398]

AlCoCrNiW

AlCoCrNiSi

W + AlNi + Cr15.58Fe7.42C6

BCC

Pin-on-disc, dry, AISI 52100, RT

Yadav et al. [399]

AlCrFeMnV

(AlCrFeMnV)90Bi10

(AlCrFeMnV)90Bi10 + 10 wt% TiB2

(AlCrFeMnV)90Bi10 + 15 wt% TiB2

BCC

BCC + AlV3 + Bi

BCC + AlV3 + Bi + TiB2

BCC + AlV3 + Bi + TiB2

Ball-on-disk, dry, SAE 52,100 steel, RT, 1.02 × 10−5–7.02 × 10−5 mm3·N−1·m−1

Bhardwaj et al. [400]

AlTiZrNbHf

BCC

Pin-on-disk, dry, CGr15, RT, -

Zhao et al. [401]

AlNbTaZrx (x = 0.2–1)

BCC + HCP

Ball-on-disc, dry, Si3N4, RT, 1.85 × 10−4–2.41 × 10−4 mm3·N−1·m−1

Tuten et al. [402]

TiZrHfNbTa

Amorphous

Ball-on-disc, dry, Al2O3, RT

Pole et al. [403]

TiZrHfTaV,

TiZrTaVW

BCC

Ball-on-disk, dry, Si3N4, RT-500 °C, ~1 × 10−4–8 × 10−4 mm3·N−1·m−1

Ye et al. [404]

TiZrHfNb

BCC

Nano-scratch, dry, diamond indenter, RT

Pogrebnjak et al. [405]

(TiZrHfNbV)N

FCC

Ball-on-disc, dry, Al2O3, 20 °C

Gong et al. [406]

TiZrHfBeCu

TiZrHfBeNi

Ti20Zr20Hf20Be20Cu10Ni10

Ti13.8Zr41.2Ni10Be22.5Cu12.5

Amorphous

Nano-scratch, dry, diamond indenter, RT

Zhao et al. [407]

TiZrNiBeCu

Amorphous

Nano-scratch, dry, diamond indenter, RT

Jhong et al. [408]

(TiZrNbCrSi)Cx (x = 36.7–87.8 at.%)

FCC

Ball-on-disc, dry, 100Cr6 steel, RT, 0.2 × 103.3 × 10−6 mm3·N−1·m−1

Mathiou et al. [409]

TiZrNbMoTa

BCC + HCP

Ball-on disc, dry, 100Cr6 steel, Al2O3, RT, 0.154 × 10−1–0.199 × 10−1 mm3·N−1·m−1

Petroglou et al. [410]

MoTaxNbVTi (x = 0.25–1)

BCC

Ball-on-disk, dry, 100Cr6 steel, RT, 0.19 × 10−6–0.38 × 10−6 g·N−1·m−1

Poulia et al. [411]

MoTaNbVW

BCC

Ball-on-disc, dry, 100Cr6 steel & Al2O3, RT

Poulia et al. [412]

MoTaNbVW

BCC

Ball-on-disc, dry, 100Cr6 steel & Al2O3, RT, 1.05 × 10−4–4.89 × 10−4 mm3·N−1·m−1

Poulia et al. [413]

MoTaNbVTi

BCC + hexagonal C14 Laves + cubic C15 laves

Ball-on disc, dry, 100Cr6 steel, Al2O3, RT

Alvi et al. [414]

MoTaWVCu

BCC

Ball-on-disc, dry, E52100 steel & Si3N4, RT-600 °C, 2.3 × 10−2–5 × 10−2 mm3·N−1·m−1

Hua et al. [415]

TixZrNbTaMo (x = 0.5–2)

BCC

HSR-2M tester, dry, Si3N4, RT, 2.22 × 10−7–2.42 × 10−7 mm3·N−1·m−1

Gu et al. [416]

Ni1.5CrFeTi2.0.5Mox (x = 0–0.25)

Ni1.5CrFeTi2.0.5Mox (x = 0.5–0.25)

BCC

BCC + FCC

Ball-on-disc, dry, Al2O3, RT, 7.99 × 107–2.7 × 107 µm3

References

  1. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.
  2. Yeh, J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. 2006, 31, 633–648.
  3. Yeh, J.W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771.
  4. Lu, Y.; Huang, H.; Gao, X.; Ren, C.; Gao, J.; Zhang, H.; Zheng, S.; Jin, Q.; Zhao, Y.; Lu, C.; et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 369–373.
  5. Chen, D.; Tong, Y.; Wang, J.; Han, B.; Zhao, Y.L.; He, F.; Kai, J.J. Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy. J. Nucl. Mater. 2018, 510, 187–192.
  6. Yang, T.; Xia, S.; Liu, S.; Wang, C.; Liu, S.; Fang, Y.; Zhang, Y.; Xue, J.; Yan, S.; Wang, Y. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 2016, 6, 32146.
  7. Xia, S.; Gao, M.C.; Yang, T.; Liaw, P.K.; Zhang, Y. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 2016, 480, 100–108.
  8. Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22.
  9. Cantor, B. Multicomponent and high entropy alloys. Entropy 2014, 16, 4749–4768.
  10. Alshataif, Y.A.; Sivasankaran, S.; Al-Mufadi, F.A.; Alaboodi, A.S.; Ammar, H.R. Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review. Met. Mater. Int. 2019, 26, 1099–1133.
  11. He, Q.F.; Tang, P.H.; Chen, H.A.; Lan, S.; Wang, J.G.; Luan, J.H.; Du, M.; Liu, Y.; Liu, C.T.; Pao, C.W.; et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Mater. 2021, 216, 117140.
  12. Stepanov, N.D.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 2018, 211, 87–90.
  13. Tsai, C.W.; Chen, Y.L.; Tsai, M.H.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J. Alloys Compd. 2009, 486, 427–435.
  14. Zhang, K.B.; Fu, Z.Y.; Zhang, J.Y.; Shi, J.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, Q.J. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd. 2010, 502, 295–299.
  15. Bhattacharjee, P.P.; Sathiaraj, G.D.; Zaid, M.; Gatti, J.R.; Lee, C.; Tsai, C.W.; Yeh, J.W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2014, 587, 544–552.
  16. Stepanov, N.D.; Yurchenko, N.Y.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J. Alloys Compd. 2016, 687, 59–71.
  17. Zhang, K.; Fu, Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 2012, 22, 24–32.
  18. Haase, C.; Barrales-Mora, L.A. Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 2018, 150, 88–103.
  19. Niu, Z.; Wang, Y.; Geng, C.; Xu, J.; Wang, Y. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys. J. Alloys Compd. 2020, 820, 153273.
  20. Abbasi, E.; Dehghani, K. Microstructure and mechanical properties of Co19Cr20Fe20Mn21Ni19 and Co19Cr20Fe20Mn21Ni19Nb0.06C0.8 high-entropy/compositionally-complex alloys after annealing. Mater. Sci. Eng. A 2020, 772, 138812.
  21. Sathiaraj, G.D.; Pukenas, A.; Skrotzki, W. Texture formation in face-centered cubic high-entropy alloys. J. Alloys Compd. 2020, 826, 154183.
  22. Munitz, A.; Meshi, L.; Kaufman, M.J. Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy. Mater. Sci. Eng. A 2017, 689, 384–394.
  23. Tang, Q.H.; Huang, Y.; Huang, Y.Y.; Liao, X.Z.; Langdon, T.G.; Dai, P.Q. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 2015, 151, 126–129.
  24. Lin, D.; Xu, L.; Jing, H.; Han, Y.; Zhao, L.; Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Addit. Manuf. 2020, 32, 101058.
  25. Shahmir, H.; He, J.; Lu, Z.; Kawasaki, M.; Langdon, T.G. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2016, 676, 294–303.
  26. Xu, J.; Zhang, J.Y.; Wang, Y.Q.; Zhang, P.; Kuang, J.; Liu, G.; Zhang, G.J.; Sun, J. Annealing-dependent microstructure, magnetic and mechanical properties of high-entropy FeCoNiAl0.5 alloy. Mater. Sci. Eng. A 2020, 776, 139003.
  27. Ma, Y.; Peng, G.J.; Wen, D.H.; Zhang, T.H. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A 2015, 621, 111–117.
  28. Ma, S.G.; Qiao, J.W.; Wang, Z.H.; Yang, H.J.; Zhang, Y. Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater. Des. 2015, 88, 1057–1062.
  29. Zhuang, Y.X.; Xue, H.D.; Chen, Z.Y.; Hu, Z.Y.; He, J.C. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater. Sci. Eng. A 2013, 572, 30–35.
  30. Niu, S.; Kou, H.; Guo, T.; Zhang, Y.; Wang, J.; Li, J. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2016, 671, 82–86.
  31. Gwalani, B.; Gorsse, S.; Choudhuri, D.; Styles, M.; Zheng, Y.; Mishra, R.S.; Banerjee, R. Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing. Acta Mater. 2018, 153, 169–185.
  32. Wani, I.S.; Bhattacharjee, T.; Sheikh, S.; Bhattacharjee, P.P.; Guo, S.; Tsuji, N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 2016, 675, 99–109.
  33. Wani, I.S.; Sathiaraj, G.D.; Ahmed, M.Z.; Reddy, S.R.; Bhattacharjee, P.P. Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy. Mater. Charact. 2016, 118, 417–424.
  34. Sathiaraj, G.D.; Bhattacharjee, P.P. Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2015, 647, 82–96.
  35. Munitz, A.; Salhov, S.; Guttmann, G.; Derimow, N.; Nahmany, M. Heat treatment influence on the microstructure and mechanical properties of AlCrFeNiTi0.5 high entropy alloys. Mater. Sci. Eng. A 2019, 742, 1–14.
  36. Zhang, Y.; Jiang, X.; Sun, H.; Shao, Z. Effect of annealing heat treatment on microstructure and mechanical properties of nonequiatomic CoCrFeNiMo medium-entropy alloys prepared by hot isostatic pressing. Nanotechnol. Rev. 2020, 9, 580–595.
  37. Li, Z.; Fu, L.; Zheng, H.; Yu, R.; Lv, L.; Sun, Y.; Dong, X.; Shan, A. Effect of Annealing Temperature on Microstructure and Mechanical Properties of a Severe Cold-Rolled FeCoCrNiMn High-Entropy Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2019, 50, 3223–3237.
  38. Zhang, M.; Zhou, X.; Wang, D.; Zhu, W.; Li, J.; Zhao, Y.F. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment. Mater. Sci. Eng. A 2019, 743, 773–784.
  39. Lin, C.M.; Tsai, H.L.; Bor, H.Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics 2010, 18, 1244–1250.
  40. Wen, L.H.; Kou, H.C.; Li, J.S.; Chang, H.; Xue, X.Y.; Zhou, L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics 2009, 17, 266–269.
  41. Ren, B.; Liu, Z.X.; Cai, B.; Wang, M.X.; Shi, L. Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater. Des. 2012, 33, 121–126.
  42. Na, T.W.; Park, K.B.; Lee, S.Y.; Yang, S.M.; Kang, J.W.; Lee, T.W.; Park, J.M.; Park, K.; Park, H.K. Preparation of spherical TaNbHfZrTi high-entropy alloy powders by a hydrogenation–dehydrogenation reaction and thermal plasma treatment. J. Alloys Compd. 2020, 817, 152757.
  43. Zhang, H.; He, Y.; Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 2013, 69, 342–345.
  44. Yang, J.; Jo, Y.H.; Kim, D.W.; Choi, W.M.; Kim, H.S.; Lee, B.J.; Sohn, S.S.; Lee, S. Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5−xMnx high-entropy alloys. Mater. Sci. Eng. A 2020, 772, 138809.
  45. Lilensten, L.; Couzinié, J.P.; Perrière, L.; Bourgon, J.; Emery, N.; Guillot, I. New structure in refractory high-entropy alloys. Mater. Lett. 2014, 132, 123–125.
  46. Aryal, A.; Dubenko, I.; Talapatra, S.; Granovsky, A.; Lähderanta, E.; Stadler, S.; Ali, N. Magnetic field dependence of the martensitic transition and magnetocaloric effects in Ni49BiMn35In15. AIP Adv. 2020, 10, 015138.
  47. Li, R.X.; Liaw, P.K.; Zhang, Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng. A 2017, 707, 668–673.
  48. Chen, C.; Zhang, H.; Hu, S.; Wei, R.; Wang, T.; Cheng, Y.; Zhang, T.; Shi, N.; Li, F.; Guan, S.; et al. Influences of laser surface melting on microstructure, mechanical properties and corrosion resistance of dual-phase Cr–Fe–Co–Ni–Al high entropy alloys. J. Alloys Compd. 2020, 826, 154100.
  49. He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J.; Mao, H.H.; Nieh, T.G.; Lu, Z.P. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 2016, 79, 41–52.
  50. Zhang, K.; Wen, H.; Zhao, B.; Dong, X.; Zhang, L. Precipitation behavior and its impact on mechanical properties in an aged carbon-containing Al0.3Cu0.5CrFeNi2 high-entropy alloy. Mater. Charact. 2019, 155, 109792.
  51. Liu, W.H.; Yang, T.; Liu, C.T. Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 2018, 210, 2–11.
  52. He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196.
  53. Park, J.M.; Kang, J.W.; Lee, W.H.; Lee, S.Y.; Min, S.H.; Ha, T.K.; Park, H.K. Preparation of spherical WTaMoNbV refractory high entropy alloy powder by inductively-coupled thermal plasma. Mater. Lett. 2019, 255, 126513.
  54. Dong, W.; Zhou, Z.; Zhang, M.; Ma, Y.; Yu, P.; Liaw, P.K.; Li, G. Applications of high-pressure technology for high-entropy alloys: A review. Metals 2019, 9, 876.
  55. Zhang, F.; Lou, H.; Cheng, B.; Zeng, Z.; Zeng, Q. High-Pressure Induced Phase Transitions in High-Entropy Alloys: A Review. Entropy 2019, 21, 239.
  56. Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.
  57. Shahmir, H.; He, J.; Lu, Z.; Kawasaki, M.; Langdon, T.G. Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2017, 685, 342–348.
  58. Haušild, P.; Čížek, J.; Čech, J.; Zýka, J.; Kim, H.S. Indentation size effect in high pressure torsion processed high entropy alloy. Acta Polytech. CTU Proc. 2020, 27, 141–144.
  59. Zhang, K.; Peng, S.; Li, N.; Liu, X.; Zhang, M.; Wu, Y.D.; Yang, Y.; Greenberg, E.; Prakapenka, V.B.; Hui, X.; et al. Tuning to more compressible phase in TiZrHfNb high entropy alloy by pressure. Appl. Phys. Lett. 2020, 116, 031901.
  60. Sonkusare, R.; Biswas, K.; Al-Hamdany, N.; Brokmeier, H.G.; Kalsar, R.; Schell, N.; Gurao, N.P. A critical evaluation of microstructure-texture-mechanical behavior heterogeneity in high pressure torsion processed CoCuFeMnNi high entropy alloy. Mater. Sci. Eng. A 2020, 782, 139187.
  61. Podolskiy, A.V.; Shapovalov, Y.O.; Tabachnikova, E.D.; Tortika, A.S.; Tikhonovsky, M.A.; Joni, B.; Ódor, E.; Ungar, T.; Maier, S.; Rentenberger, C.; et al. Anomalous Evolution of Strength and Microstructure of High-Entropy Alloy CoCrFeNiMn after High-Pressure Torsion at 300 and 77 K. Adv. Eng. Mater. 2020, 22, 1900752.
  62. Skrotzki, W.; Pukenas, A.; Odor, E.; Joni, B.; Ungar, T.; Völker, B.; Hohenwarter, A.; Pippan, R.; George, E.P. Microstructure, texture, and strength development during high-pressure torsion of crmnfeconi high-entropy alloy. Crystals 2020, 10, 336.
  63. Asghari-Rad, P.; Sathiyamoorthi, P.; Thi-Cam Nguyen, N.; Bae, J.W.; Shahmir, H.; Kim, H.S. Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through high-pressure torsion and annealing. Mater. Sci. Eng. A 2020, 771, 138604.
  64. Ahmad, A.S.; Su, Y.; Liu, S.Y.; Ståhl, K.; Wu, Y.D.; Hui, X.D.; Ruett, U.; Gutowski, O.; Glazyrin, K.; Liermann, H.P.; et al. Structural stability of high entropy alloys under pressure and temperature. J. Appl. Phys. 2017, 121, 235901.
  65. LuŽnik, J.; KoŽelj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J. Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 224201.
  66. Feuerbacher, M.; Heidelmann, M.; Thomas, C. Hexagonal High-entropy Alloys. Mater. Res. Lett. 2014, 3, 1–6.
  67. Heczel, A.; Kawasaki, M.; Lábár, J.L.; Jang, J.I.; Langdon, T.G.; Gubicza, J. Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion. J. Alloys Compd. 2017, 711, 143–154.
  68. Kilmametov, A.; Kulagin, R.; Mazilkin, A.; Seils, S.; Boll, T.; Heilmaier, M.; Hahn, H. High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr. Mater. 2019, 158, 29–33.
  69. Asghari-Rad, P.; Sathiyamoorthi, P.; Bae, J.W.; Moon, J.; Park, J.M.; Zargaran, A.; Kim, H.S. Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy. Mater. Sci. Eng. A 2019, 744, 610–617.
  70. Edalati, P.; Floriano, R.; Tang, Y.; Mohammadi, A.; Pereira, K.D.; Luchessi, A.D.; Edalati, K. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Mater. Sci. Eng. C 2020, 112, 110908.
  71. Yu, P.F.; Zhang, L.J.; Cheng, H.; Zhang, H.; Ma, M.Z.; Li, Y.C.; Li, G.; Liaw, P.K.; Liu, R.P. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 2016, 70, 82–87.
  72. Tracy, C.L.; Park, S.; Rittman, D.R.; Zinkle, S.J.; Bei, H.; Lang, M.; Ewing, R.C.; Mao, W.L. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2017, 8, 15634.
  73. Liu, W.H.; Tong, Y.; Chen, S.W.; Xu, W.W.; Wu, H.H.; Zhao, Y.L.; Yang, T.; Wang, X.L.; Liu, X.; Kai, J.J.; et al. Unveiling the Electronic Origin for Pressure-Induced Phase Transitions in High-Entropy Alloys. Matter 2020, 2, 751–763.
  74. Yu, P.F.; Zhang, L.J.; Ning, J.L.; Ma, M.Z.; Zhang, X.Y.; Li, Y.C.; Liaw, P.K.; Li, G.; Liu, R.P. Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Mater. Lett. 2017, 196, 137–140.
  75. Zhang, F.; Lou, H.; Chen, S.; Chen, X.; Zeng, Z.; Yan, J.; Zhao, W.; Wu, Y.; Lu, Z.; Zeng, Q. Effects of non-hydrostaticity and grain size on the pressure-induced phase transition of the CoCrFeMnNi high-entropy alloy. J. Appl. Phys. 2018, 124, 115901.
  76. Zhang, F.X.; Zhao, S.; Jin, K.; Bei, H.; Popov, D.; Park, C.; Neuefeind, J.C.; Weber, W.J.; Zhang, Y. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett. 2017, 110, 011902.
  77. Cheng, B.; Zhang, F.; Lou, H.; Chen, X.; Liaw, P.K.; Yan, J.; Zeng, Z.; Ding, Y.; Zeng, Q. Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy. Scr. Mater. 2019, 161, 88–92.
  78. Zhang, C.; Bhandari, U.; Zeng, C.; Ding, H.; Guo, S.; Yan, J.; Yang, S. Carbide formation in refractory Mo15Nb20Re15Ta30W20 alloy under a combined high-pressure and high-temperature condition. Entropy 2020, 22, 718.
  79. Guo, J.; Tang, C.; Rothwell, G.; Li, L.; Wang, Y.C.; Yang, Q.; Ren, X. Welding of high entropy alloys—A review. Entropy 2019, 21, 431.
  80. Lopes, J.G.; Oliveira, J.P. A short review on welding and joining of high entropy alloys. Metals 2020, 10, 212.
  81. Filho, F.C.G.; Monteiro, S.N. Welding joints in high entropy alloys: A short-review on recent trends. Materials 2020, 13, 1411.
  82. Scutelnicu, E.; Simion, G.; Rusu, C.C.; Corneliu Gheonea, M.; Voiculescu, I.; Geanta, V. High Entropy Alloys Behaviour During Welding. Rev. Chim. 2020, 71, 219–233.
  83. Tillmann, W.; Ulitzka, T.; Wojarski, L.; Manka, M.; Ulitzka, H.; Wagstyl, D. Development of high entropy alloys for brazing applications. Weld. World 2020, 64, 201–208.
  84. Liu, R.; Wang, Z.; Sparks, T.; Liou, F.; Newkirk, J. Aerospace applications of laser additive manufacturing. In Laser Additive Manufacturing: Materials, Design, Technologies, and Applications; Brandt, M., Ed.; Matthew Deans; Woodhead Publishing: Sawston, England, 2017; pp. 351–371. ISBN 9780081004340.
  85. Zhu, Z.G.; Nguyen, Q.B.; Ng, F.L.; An, X.H.; Liao, X.Z.; Liaw, P.K.; Nai, S.M.L.; Wei, J. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 2018, 154, 20–24.
  86. Park, J.M.; Choe, J.; Kim, J.G.; Bae, J.W.; Moon, J.; Yang, S.; Kim, K.T.; Yu, J.H.; Kim, H.S. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett. 2020, 8, 1–7.
  87. Zhou, R.; Liu, Y.; Zhou, C.; Li, S.; Wu, W.; Song, M.; Liu, B.; Liang, X.; Liaw, P.K. Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics 2018, 94, 165–171.
  88. Brif, Y.; Thomas, M.; Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 2015, 99, 93–96.
  89. Peyrouzet, F.; Hachet, D.; Soulas, R.; Navone, C.; Godet, S.; Gorsse, S. Selective Laser Melting of Al0.3CoCrFeNi High-Entropy Alloy: Printability, Microstructure, and Mechanical Properties. JOM 2019, 71, 3443–3451.
  90. Sun, K.; Peng, W.; Yang, L.; Fang, L. Effect of SLM processing parameters on microstructures and mechanical properties of Al0. 5CoCrFeNi high entropy alloys. Metals 2020, 10, 292.
  91. Wang, J.; Niu, S.; Guo, T.; Kou, H.; Li, J. The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. J. Alloys Compd. 2017, 710, 144–150.
  92. Zhou, P.F.; Xiao, D.H.; Wu, Z.; Ou, X.Q. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders. Mater. Sci. Eng. A 2019, 739, 86–89.
  93. Li, X. Additive Manufacturing of Advanced Multi-Component Alloys: Bulk Metallic Glasses and High Entropy Alloys. Adv. Eng. Mater. 2018, 20, 1490.
  94. Li, X.P.; Wang, X.J.; Saunders, M.; Suvorova, A.; Zhang, L.C.; Liu, Y.J.; Fang, M.H.; Huang, Z.H.; Sercombe, T.B. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015, 95, 74–82.
  95. Li, X.P.; Ji, G.; Chen, Z.; Addad, A.; Wu, Y.; Wang, H.W.; Vleugels, J.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017, 129, 183–193.
  96. Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties. Acta Mater. 2014, 76, 13–22.
  97. Vrancken, B.; Thijs, L.; Kruth, J.P.; Van Humbeeck, J. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 2014, 68, 150–158.
  98. Li, X.P.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective. Mater. Des. 2017, 116, 352–358.
  99. Wang, Q.; Ren, L.; Li, X.; Zhang, S.; Sercombe, T.B.; Yang, K. Antimicrobial Cu-bearing stainless steel scaffolds. Mater. Sci. Eng. C 2016, 68, 519–522.
  100. Sercombe, T.B.; Li, X. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater. Technol. 2016, 31, 77–85.
  101. Niu, P.; Li, R.; Zhu, S.; Wang, M.; Chen, C.; Yuan, T. Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting. Opt. Laser Technol. 2020, 127, 106147.
  102. Karlsson, D.; Marshal, A.; Johansson, F.; Schuisky, M.; Sahlberg, M.; Schneider, J.M.; Jansson, U. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting. J. Alloys Compd. 2019, 784, 195–203.
  103. Chen, S.; Tong, Y.; Liaw, P.K. Additive manufacturing of high-entropy alloys: A review. Entropy 2018, 20, 937.
  104. Cui, W.; Zhang, X.; Liou, F. Additive Manufacturing of High-Entropy Alloys—A Review. In Proceedings of the 2017 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Rolla, MO, USA, 7–9 August 2017; pp. 712–724.
  105. Ostovari Moghaddam, A.; Shaburova, N.A.; Samodurova, M.N.; Abdollahzadeh, A.; Trofimov, E.A. Additive manufacturing of high entropy alloys: A practical review. J. Mater. Sci. Technol. 2021, 77, 131–162.
  106. Murty, B.; Yeh, J.; Ranganathan, S.; Bhattacharjee, P. High-Entropy Alloys; Elsevier: Amsterdam, The Netherlands, 2019.
  107. Yeh, M.C.G.J.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9783319270111.
  108. Riva, S.; Brown, S.G.R.; Lavery, N.P.; Tudball, A.; Yusenko, K.V. Spark Plasma Sintering of Materials; Cavaliere, P., Ed.; Springer: Lecce, Italy, 2019; ISBN 978-3-030-05326-0.
  109. Vaidya, M.; Muralikrishna, G.M.; Murty, B.S. High-entropy alloys by mechanical alloying: A review. J. Mater. Res. 2019, 34, 664–686.
  110. Chen, P.; Li, S.; Zhou, Y.; Yan, M.; Attallah, M.M. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying. J. Mater. Sci. Technol. 2020, 43, 40–43.
  111. Li, B.; Zhang, L.; Xu, Y.; Liu, Z.; Qian, B.; Xuan, F. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects. Powder Technol. 2020, 360, 509–521.
  112. Li, N.; Wu, S.; Ouyang, D.; Zhang, J.; Liu, L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. J. Alloys Compd. 2020, 822, 153695.
  113. Li, B.; Zhang, L.; Yang, B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos. Commun. 2020, 19, 56–60.
  114. Kim, J.G.; Park, J.M.; Seol, J.B.; Choe, J.; Yu, J.H.; Yang, S.; Kim, H.S. Nano-scale solute heterogeneities in the ultrastrong selectively laser melted carbon-doped CoCrFeMnNi alloy. Mater. Sci. Eng. A 2020, 773, 138726.
  115. Li, B.; Qian, B.; Xu, Y.; Liu, Z.; Xuan, F. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 2019, 252, 88–91.
  116. Piglione, A.; Dovgyy, B.; Liu, C.; Gourlay, C.M.; Hooper, P.A.; Pham, M.S. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Mater. Lett. 2018, 224, 22–25.
  117. Xu, Z.; Zhang, H.; Li, W.; Mao, A.; Wang, L.; Song, G.; He, Y. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting. Addit. Manuf. 2019, 28, 766–771.
  118. Ren, J.; Mahajan, C.; Liu, L.; Follette, D.; Chen, W.; Mukherjee, S. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy. Metals 2019, 9, 1029.
  119. Dovgyy, B.; Pham, M.S. Epitaxial growth in 316L steel and CoCrFeMnNi high entropy alloy made by powder-bed laser melting. AIP Conf. Proc. 2018, 1960, 140008.
  120. Wu, W.; Zhou, R.; Wei, B.; Ni, S.; Liu, Y.; Song, M. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Mater. Charact. 2018, 144, 605–610.
  121. Sun, Z.; Tan, X.P.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Lim, C.S. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 2019, 168, 129–133.
  122. Song, M.; Zhou, R.; Gu, J.; Wang, Z.; Ni, S.; Liu, Y. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 2020, 18, 100498.
  123. Zhou, R.; Chen, G.; Liu, B.; Wang, J.; Han, L.; Liu, Y. Microstructures and wear behaviour of (FeCoCrNi)1−x(WC)x high entropy alloy composites. Int. J. Refract. Met. Hard Mater. 2018, 75, 56–62.
  124. Niu, P.D.; Li, R.D.; Yuan, T.C.; Zhu, S.Y.; Chen, C.; Wang, M.B.; Huang, L. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 2019, 104, 24–32.
  125. Luo, S.; Gao, P.; Yu, H.; Yang, J.; Wang, Z.; Zeng, X. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior. J. Alloys Compd. 2019, 771, 387–397.
  126. Luo, S.; Zhao, C.; Su, Y.; Liu, Q.; Wang, Z. Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms. Addit. Manuf. 2020, 31, 100925.
  127. Yao, H.; Tan, Z.; He, D.; Zhou, Z.; Zhou, Z.; Xue, Y.; Cui, L.; Chen, L.; Wang, G.; Yang, Y. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J. Alloys Compd. 2020, 813, 152196.
  128. Wang, Y.; Li, R.; Niu, P.; Zhang, Z.; Yuan, T.; Yuan, J.; Li, K. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics 2020, 120, 106746.
  129. Wang, M.; Li, R.; Yuan, T.; Chen, C.; Zhou, L.; Chen, H.; Zhang, M.; Xie, S. Microstructures and mechanical property of AlMgScZrMn—A comparison between selective laser melting, spark plasma sintering and cast. Mater. Sci. Eng. A 2019, 756, 354–364.
  130. Sarswat, P.K.; Sarkar, S.; Murali, A.; Huang, W.; Tan, W.; Free, M.L. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system. Appl. Surf. Sci. 2019, 476, 242–258.
  131. Agrawal, P.; Thapliyal, S.; Nene, S.S.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Addit. Manuf. 2020, 32, 101098.
  132. Zhang, H.; Zhao, Y.; Huang, S.; Zhu, S.; Wang, F.; Li, D. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM). Materials 2019, 12, 720.
  133. Zhang, H.; Xu, W.; Xu, Y.; Lu, Z.; Li, D. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation. Int. J. Adv. Manuf. Technol. 2018, 96, 461–474.
  134. Yang, X.; Zhou, Y.; Xi, S.; Chen, Z.; Wei, P.; He, C.; Li, T.; Gao, Y.; Wu, H. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Mater. Sci. Eng. A 2019, 767, 138394.
  135. Yang, X.; Zhou, Y.; Xi, S.; Chen, Z.; Wei, P.; He, C.; Li, T.; Gao, Y.; Wu, H. Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys with outstanding tensile ductility. Mater. Sci. Eng. A 2019, 767, 138382.
  136. Chen, P.; Yang, C.; Li, S.; Attallah, M.M.; Yan, M. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion. Mater. Des. 2020, 194, 108966.
  137. Litwa, P.; Hernandez-Nava, E.; Guan, D.; Goodall, R.; Wika, K.K. The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloy. Mater. Des. 2021, 198, 109380.
  138. Zhang, C.; Feng, K.; Kokawa, H.; Han, B.; Li, Z. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi high entropy alloy using different scanning strategies. Mater. Sci. Eng. A 2020, 789, 139672.
  139. Kim, Y.K.; Suh, J.Y.; Lee, K.A. Effect of gaseous hydrogen embrittlement on the mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloy strengthened by in-situ formed oxide. Mater. Sci. Eng. A 2020, 796, 140039.
  140. Choi, N.; Kulitckii, V.; Kottke, J.; Tas, B.; Choe, J.; Yu, J.H.; Yang, S.; Park, J.H.; Lee, J.S.; Wilde, G.; et al. Analyzing the ‘non-equilibrium state’ of grain boundaries in additively manufactured high-entropy CoCrFeMnNi alloy using tracer diffusion measurements. J. Alloys Compd. 2020, 844, 155757.
  141. Su, Y.; Luo, S.; Wang, Z. Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi2 high entropy alloys via selective laser melting. J. Alloys Compd. 2020, 842, 155823.
  142. Peng, Y.; Kong, Y.; Zhang, W.; Zhang, M.; Wang, H. Effect of diffusion barrier and interfacial strengthening on the interface behavior between high entropy alloy and diamond. J. Alloys Compd. 2021, 852, 157023.
  143. Wang, H.; Zhu, Z.G.; Chen, H.; Wang, A.G.; Liu, J.Q.; Liu, H.W.; Zheng, R.K.; Nai, S.M.L.; Primig, S.; Babu, S.S.; et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater. 2020, 196, 609–625.
  144. Sun, Z.; Tan, X.; Wang, C.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Jägle, E.A.; Zaefferer, S.; Raabe, D. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 2021, 204, 116505.
  145. Ishimoto, T.; Ozasa, R.; Nakano, K.; Weinmann, M.; Schnitter, C.; Stenzel, M.; Matsugaki, A.; Nagase, T.; Matsuzaka, T.; Todai, M.; et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scr. Mater. 2021, 194, 113658.
  146. Park, J.M.; Choe, J.; Park, H.K.; Son, S.; Jung, J.; Kim, T.S.; Yu, J.H.; Kim, J.G.; Kim, H.S. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure. Addit. Manuf. 2020, 35, 101333.
  147. Lin, D.; Xu, L.; Li, X.; Jing, H.; Qin, G.; Pang, H.; Minami, F. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting. Addit. Manuf. 2020, 35, 101340.
  148. Kim, Y.K.; Yang, S.; Lee, K.A. Compressive creep behavior of selective laser melted CoCrFeMnNi high-entropy alloy strengthened by in-situ formation of nano-oxides. Addit. Manuf. 2020, 36, 101543.
  149. Jin, M.; Piglione, A.; Dovgyy, B.; Hosseini, E.; Hooper, P.A.; Holdsworth, S.R.; Pham, M.S. Cyclic plasticity and fatigue damage of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Addit. Manuf. 2020, 36, 101584.
  150. Lin, W.C.; Chang, Y.J.; Hsu, T.H.; Gorsse, S.; Sun, F.; Furuhara, T.; Yeh, A.C. Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment. Addit. Manuf. 2020, 36, 101601.
  151. Peng, H.; Lin, Z.; Li, R.; Niu, P.; Zhang, Z. Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy—A Comparison Between Selective Laser Melting and Cast. Front. Mater. 2020, 7, 244.
  152. Vogiatzief, D.; Evirgen, A.; Gein, S.; Molina, V.R.; Weisheit, A.; Pedersen, M. Laser Powder Bed Fusion and Heat Treatment of an AlCrFe2Ni2 High Entropy Alloy. Front. Mater. 2020, 7, 248.
  153. Liao, Y.; Zhu, P.; Li, S. Synthesis of AlFeCrNiV high entropy alloy by gas atomization and selective laser melting. Synthesis (Stuttg) 2020, 7, 11591–11594.
  154. Guo, L.; Gu, J.; Gan, B.; Ni, S.; Bi, Z.; Wang, Z.; Song, M. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy. J. Alloys Compd. 2021, 865, 158892.
  155. Kim, Y.K.; Yu, J.H.; Kim, H.S.; Lee, K.A. In-situ carbide-reinforced CoCrFeMnNi high-entropy alloy matrix nanocomposites manufactured by selective laser melting: Carbon content effects on microstructure, mechanical properties, and deformation mechanism. Compos. Part B Eng. 2021, 210, 108638.
  156. Zhao, W.; Han, J.-K.; Kuzminova, Y.O.; Evlashin, S.A.; Zhilyaev, A.P.; Pesin, A.M.; Jang, J.; Liss, K.-D.; Kawasaki, M. Significance of grain refinement on micro-mechanical properties and structures of additively-manufactured CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 2021, 807, 140898.
  157. Gu, Z.; Su, X.; Peng, W.; Guo, W.; Xi, S.; Zhang, X.; Tu, H.; Gao, Y.; Wu, H. An important improvement of strength and ductility on a new type of CoCr2.5FeNi2TiW0.5 high entropy alloys under two different protective gases by selective laser melting. J. Alloys Compd. 2021, 868, 159088.
  158. Peng, S.; Mooraj, S.; Feng, R.; Liu, L.; Ren, J.; Liu, Y.; Kong, F.; Xiao, Z.; Zhu, C.; Liaw, P.K.; et al. Additive manufacturing of three-dimensional (3D)-architected CoCrFeNiMn high- entropy alloy with great energy absorption. Scr. Mater. 2021, 190, 46–51.
  159. Wang, P.; Huang, P.; Ng, F.L.; Sin, W.J.; Lu, S.; Nai, M.L.S.; Dong, Z.L.; Wei, J. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater. Des. 2019, 168, 107576.
  160. Kuwabara, K.; Shiratori, H.; Fujieda, T.; Yamanaka, K.; Koizumi, Y.; Chiba, A. Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting. Addit. Manuf. 2018, 23, 264–271.
  161. Yang, S.; Liu, Z.; Pi, J. Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing. Mater. Lett. 2020, 261, 127004.
  162. Fujieda, T.; Chen, M.; Shiratori, H.; Kuwabara, K.; Yamanaka, K.; Koizumi, Y.; Chiba, A.; Watanabe, S. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit. Manuf. 2019, 25, 412–420.
  163. Popov, V.V.; Katz-Demyanetz, A.; Koptyug, A.; Bamberger, M. Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend. Heliyon 2019, 5, e01188.
  164. Guan, S.; Wan, D.; Solberg, K.; Berto, F.; Welo, T.; Yue, T.M.; Chan, K.C. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping. Mater. Sci. Eng. A 2019, 761, 138056.
  165. Melia, M.A.; Carroll, J.D.; Whetten, S.R.; Esmaeely, S.N.; Locke, J.; White, E.; Anderson, I.; Chandross, M.; Michael, J.R.; Argibay, N.; et al. Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy. Addit. Manuf. 2019, 29, 100833.
  166. Li, H.G.; Lee, T.L.; Zheng, W.; Lu, Y.Z.; Yin, H.B.C.; Yang, J.X.; Huang, Y.J.; Sun, J.F. Characterization of residual stress in laser melting deposited CoCrFeMnNi high entropy alloy by neutron diffraction. Mater. Lett. 2020, 263, 127247.
  167. Gao, X.; Lu, Y. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett. 2019, 236, 77–80.
  168. Xiang, S.; Li, J.; Luan, H.; Amar, A.; Lu, S.; Li, K.; Zhang, L.; Liu, X.; Le, G.; Wang, X.; et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2019, 743, 412–417.
  169. Xiang, S.; Luan, H.; Wu, J.; Yao, K.F.; Li, J.; Liu, X.; Tian, Y.; Mao, W.; Bai, H.; Le, G.; et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 2019, 773, 387–392.
  170. Chew, Y.; Bi, G.J.; Zhu, Z.G.; Ng, F.L.; Weng, F.; Liu, S.B.; Nai, S.M.L.; Lee, B.Y. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 2019, 744, 137–144.
  171. Qiu, Z.; Yao, C.; Feng, K.; Li, Z.; Chu, P.K. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int. J. Light. Mater. Manuf. 2018, 1, 33–39.
  172. Li, J.; Xiang, S.; Luan, H.; Amar, A.; Liu, X.; Lu, S.; Zeng, Y.; Le, G.; Wang, X.; Qu, F.; et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. J. Mater. Sci. Technol. 2019, 35, 2430–2434.
  173. Amar, A.; Li, J.; Xiang, S.; Liu, X.; Zhou, Y.; Le, G.; Wang, X.; Qu, F.; Ma, S.; Dong, W.; et al. Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition. Intermetallics 2019, 109, 162–166.
  174. Guan, S.; Wan, D.; Solberg, K.; Berto, F.; Welo, T.; Yue, T.M.; Chan, K.C. Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy. Scr. Mater. 2020, 183, 133–138.
  175. Wang, Q.; Amar, A.; Jiang, C.; Luan, H.; Zhao, S.; Zhang, H.; Le, G.; Liu, X.; Wang, X.; Yang, X.; et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: Prospective material for low temperature and corrosion resistant applications. Intermetallics 2020, 119, 106727.
  176. Zhou, K.; Li, J.; Wang, L.; Yang, H.; Wang, Z.; Wang, J. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics 2019, 114, 106592.
  177. Gwalani, B.; Gangireddy, S.; Shukla, S.; Yannetta, C.J.; Valentin, S.G.; Mishra, R.S.; Banerjee, R. Compositionally graded high entropy alloy with a strong front and ductile back. Mater. Today Commun. 2019, 20, 100602.
  178. Nartu, M.S.K.K.Y.; Alam, T.; Dasari, S.; Mantri, S.A.; Gorsse, S.; Siller, H.; Dahotre, N.; Banerjee, R. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy. Materialia 2020, 9, 100522.
  179. Mohanty, A.; Sampreeth, J.K.; Bembalge, O.; Hascoet, J.Y.; Marya, S.; Immanuel, R.J.; Panigrahi, S.K. High temperature oxidation study of direct laser deposited AlXCoCrFeNi (X = 0.3, 0.7) high entropy alloys. Surf. Coat. Technol. 2019, 380, 125028.
  180. Vikram, R.J.; Murty, B.S.; Fabijanic, D.; Suwas, S. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1. J. Alloys Compd. 2020, 827, 154034.
  181. Gwalani, B.; Soni, V.; Waseem, O.A.; Mantri, S.A.; Banerjee, R. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 0 to 1) high-entropy alloy system. Opt. Laser Technol. 2019, 113, 330–337.
  182. Guan, S.; Solberg, K.; Wan, D.; Berto, F.; Welo, T.; Yue, T.M.; Chan, K.C. Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy. Mater. Des. 2019, 184, 108202.
  183. Malatji, N.; Popoola, A.P.I.; Lengopeng, T.; Pityana, S. Tribological and corrosion properties of laser additive manufactured AlCrFeNiCu high entropy alloy. Mater. Today Proc. 2020, 28, 944–948.
  184. Dada, M.; Patricia, P.; Mathe, N.; Pityana, S.; Adeosun, S.; Lengopeng, T. Fabrication and Hardness Behaviour of High Entropy Alloys. In Proceedings of the TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 23–27 February 2020; pp. 1581–1591.
  185. Dada, M.; Popoola, P.; Mathe, N.; Pityana, S.; Adeosun, S. Effect of laser parameters on the properties of high entropy alloys: A preliminary study. Mater. Today Proc. 2020, 38, 756–761.
  186. Moorehead, M.; Bertsch, K.; Niezgoda, M.; Parkin, C.; Elbakhshwan, M.; Sridharan, K.; Zhang, C.; Thoma, D.; Couet, A. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater. Des. 2020, 187, 108358.
  187. Kunce, I.; Polanski, M.; Bystrzycki, J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 2014, 39, 9904–9910.
  188. Dobbelstein, H.; Gurevich, E.L.; George, E.P.; Ostendorf, A.; Laplanche, G. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Addit. Manuf. 2018, 24, 386–390.
  189. Pegues, J.W.; Melia, M.A.; Puckett, R.; Whetten, S.R.; Argibay, N.; Kustas, A.B. Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys. Addit. Manuf. 2021, 37, 101598.
  190. Li, H.; Huang, Y.; Jiang, S.; Lu, Y.; Gao, X.; Lu, X.; Ning, Z.; Sun, J. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy. Mater. Des. 2021, 197, 109262.
  191. Tong, Z.; Liu, H.; Jiao, J.; Zhou, W.; Yang, Y.; Ren, X. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit. Manuf. 2020, 35, 101417.
  192. Shen, Q.; Kong, X.; Chen, X.; Yao, X.; Deev, V.B.; Prusov, E.S. Powder plasma arc additive manufactured CoCrFeNi(SiC)x high-entropy alloys: Microstructure and mechanical properties. Mater. Lett. 2021, 282, 128736.
  193. Cai, Y.; Zhu, L.; Cui, Y.; Han, J. Manufacturing of FeCoCrNi + FeCoCrNiAl laminated high-entropy alloy by laser melting deposition (LMD). Mater. Lett. 2021, 289, 129445.
  194. Zhang, H.; Zhao, Y.; Cai, J.; Ji, S.; Geng, J.; Sun, X.; Li, D. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing. Mater. Des. 2021, 201, 109462.
  195. Peng, H.; Xie, S.; Niu, P.; Zhang, Z.; Yuan, T.; Ren, Z.; Wang, X.; Zhao, Y.; Li, R. Additive manufacturing of Al0.3CoCrFeNi high-entropy alloy by powder feeding laser melting deposition. J. Alloys Compd. 2021, 863, 158286.
  196. Kuzminova, Y.O.; Firsov, D.G.; Dagesyan, S.A.; Konev, S.D.; Sergeev, S.N.; Zhilyaev, A.P.; Kawasaki, M.; Akhatov, I.S.; Evlashin, S.A. Fatigue behavior of additive manufactured CrFeCoNi medium-entropy alloy. J. Alloys Compd. 2021, 863, 158609.
  197. Malatji, N.; Lengopeng, T.; Pityana, S.; Popoola, A.P.I. Effect of heat treatment on the microstructure, microhardness, and wear characteristics of AlCrFeCuNi high-entropy alloy. Int. J. Adv. Manuf. Technol. 2020, 111, 2021–2029.
  198. Dong, B.; Wang, Z.; Pan, Z.; Muránsky, O.; Shen, C.; Reid, M.; Wu, B.; Chen, X.; Li, H. On the development of pseudo-eutectic AlCoCrFeNi2.1 high entropy alloy using Powder-bed Arc Additive Manufacturing (PAAM) process. Mater. Sci. Eng. A 2021, 802, 140639.
  199. Zhou, K.; Wang, Z.; He, F.; Liu, S.; Li, J.; Kai, J.J.; Wang, J. A precipitation-strengthened high-entropy alloy for additive manufacturing. Addit. Manuf. 2020, 35, 101410.
  200. Zheng, M.; Li, C.; Zhang, X.; Ye, Z.; Yang, X.; Gu, J. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition. Addit. Manuf. 2020, 37, 101660.
  201. Luo, S.; Wang, Z.; Zeng, X. Study on the formability, microstructures and mechanical properties of AlCrCuFeNi high-entropy alloys prepared by selective laser melting. In Proceedings of the Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Wuhan, China, 12–14 August 2019; pp. 625–635.
  202. Jiang, F.; Zhao, C.; Liang, D.; Zhu, W.; Zhang, Y.; Pan, S.; Ren, F. In-situ formed heterogeneous grain structure in spark-plasma-sintered CoCrFeMnNi high-entropy alloy overcomes the strength-ductility trade-off. Mater. Sci. Eng. A 2020, 771, 138625.
  203. Rogal, Ł.; Kalita, D.; Tarasek, A.; Bobrowski, P.; Czerwinski, F. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2017, 708, 344–352.
  204. Yim, D.; Sathiyamoorthi, P.; Hong, S.J.; Kim, H.S. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. J. Alloys Compd. 2019, 781, 389–396.
  205. Rogal, Ł.; Kalita, D.; Litynska-Dobrzynska, L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics 2017, 86, 104–109.
  206. Li, X.; Feng, Y.; Liu, B.; Yi, D.; Yang, X.; Zhang, W.; Chen, G.; Liu, Y.; Bai, P. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J. Alloys Compd. 2019, 788, 485–494.
  207. Chen, S.; Chen, X.; Wang, L.; Liang, J.; Liu, C. Laser cladding FeCrCoNiTiAl high entropy alloy coatings reinforced with self-generated TiC particles. J. Laser Appl. 2017, 29, 012004.
  208. Fan, Q.C.; Li, B.S.; Zhang, Y. The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites. Mater. Sci. Eng. A 2014, 598, 244–250.
  209. Jiang, L.; Jiang, H.; Lu, Y.; Wang, T.; Cao, Z.; Li, T. Mechanical properties improvement of AlCrFeNi2Ti0.5 high entropy alloy through annealing design and its relationship with its particle-reinforced microstructures. J. Mater. Sci. Technol. 2015, 31, 397–402.
  210. Guo, L.; Ou, X.; Ni, S.; Liu, Y.; Song, M. Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Mater. Sci. Eng. A 2019, 746, 356–362.
  211. Zhu, S.; Yu, Y.; Zhang, B.; Zhang, Z.; Yan, X.; Wang, Z. Microstructure and wear behaviour of in-situ TiN-Al2O3 reinforced CoCrFeNiMn high-entropy alloys composite coatings fabricated by plasma cladding. Mater. Lett. 2020, 272, 127870.
  212. Lim, K.R.; Kwon, H.J.; Kang, J.H.; Won, J.W.; Na, Y.S. A novel ultra-high-strength duplex Al–Co–Cr–Fe–Ni high-entropy alloy reinforced with body-centered-cubic ordered-phase particles. Mater. Sci. Eng. A 2020, 771, 138638.
  213. Fu, A.; Guo, W.; Liu, B.; Cao, Y.; Xu, L.; Fang, Q.; Yang, H.; Liu, Y. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties. J. Alloys Compd. 2020, 815, 152466.
  214. Wang, L.; Wang, L.; Tang, Y.C.; Luo, L.; Luo, L.S.; Su, Y.Q.; Guo, J.J.; Fu, H.Z. Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles. J. Alloys Compd. 2020, 843, 155997.
  215. Jinhong, P.; Ye, P.; Hui, Z.; Lu, Z. Microstructure and properties of AlCrFeCuNi x (0.6 ≤ x ≤ 1.4) high-entropy alloys. Mater. Sci. Eng. A 2012, 543, 228–233.
  216. He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113.
  217. Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.
  218. Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706.
  219. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
  220. Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222.
  221. Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials challenges for nuclear systems. Mater. Today 2010, 13, 14–23.
  222. Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195.
  223. Zinkle, S.J.; Boutard, J.L.; Hoelzer, D.T.; Kimura, A.; Lindau, R.; Odette, G.R.; Rieth, M.; Tan, L.; Tanigawa, H. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl. Fusion 2017, 57, 092005.
  224. Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19.
  225. Li, C. Characterization of Radiation Effects and Ab Initio Modeling of Defects in a High Entropy Alloy for Nuclear Power Application; The University of Tennessee: Knoxville, TN, USA, 2018.
  226. Hoffman, A.K. Development and characterization of nanostructured steels and high entropy alloys for nuclear applications. J. Mater. Res. 2019, 33, 3077–3091.
  227. King, D.J.M. Investigation of High-Entropy Alloys for Use in Advanced Nuclear Applications; University of Technology Sydney: Sydney, Australia, 2016.
  228. Yeh, J.W.; Lin, S.J. Breakthrough applications of high-entropy materials. J. Mater. Res. 2018, 33, 3129–3137.
  229. Yang, T.; Li, C.; Zinkle, S.J.; Zhao, S.; Bei, H.; Zhang, Y. Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. J. Mater. Res. 2018, 33, 3077–3091.
  230. Jin, K.; Bei, H. Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance. Front. Mater. 2018, 5, 26.
  231. Xia, S.Q.; Wang, Z.; Yang, T.F.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884.
  232. Barron, P.J.; Carruthers, A.W.; Fellowes, J.W.; Jones, N.G.; Dawson, H.; Pickering, E.J. Towards V-based high-entropy alloys for nuclear fusion applications. Scr. Mater. 2020, 176, 12–16.
  233. Xiang, C.; Fu, H.M.; Zhang, Z.M.; Han, E.H.; Zhang, H.F.; Wang, J.Q.; Hu, G.D. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J. Alloys Compd. 2020, 818, 153352.
  234. Yang, T.; Guo, W.; Poplawsky, J.D.; Li, D.; Wang, L.; Li, Y.; Hu, W.; Crespillo, M.L.; Yan, Z.; Zhang, Y.; et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Mater. 2020, 188, 1–15.
  235. Zhang, W.; Wang, M.; Wang, L.; Liu, C.H.; Chang, H.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation. Appl. Surf. Sci. 2019, 485, 108–118.
  236. Xiang, C.; Han, E.H.; Zhang, Z.M.; Fu, H.M.; Wang, J.Q.; Zhang, H.F.; Hu, G.D. Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application. Intermetallics 2019, 104, 143–153.
  237. Jawaharram, G.S.; Barr, C.M.; Monterrosa, A.M.; Hattar, K.; Averback, R.S.; Dillon, S.J. Irradiation induced creep in nanocrystalline high entropy alloys. Acta Mater. 2020, 182, 68–76.
  238. Lu, C.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 2017, 127, 98–107.
  239. Barr, C.M.; Nathaniel, J.E.; Unocic, K.A.; Liu, J.; Zhang, Y.; Wang, Y.; Taheri, M.L. Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation. Scr. Mater. 2018, 156, 80–84.
  240. Lu, C.; Niu, L.; Chen, N.; Jin, K.; Yang, T.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Shi, S.; et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 2016, 7, 13564.
  241. Tong, Y.; Velisa, G.; Zhao, S.; Guo, W.; Yang, T.; Jin, K.; Lu, C.; Bei, H.; Ko, J.Y.P.; Pagan, D.C.; et al. Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys. Materialia 2018, 2, 73–81.
  242. Jin, K.; Lu, C.; Wang, L.M.; Qu, J.; Weber, W.J.; Zhang, Y.; Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 2016, 119, 65–70.
  243. Chen, W.Y.; Liu, X.; Chen, Y.; Yeh, J.W.; Tseng, K.K.; Natesan, K. Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C. J. Nucl. Mater. 2018, 510, 421–430.
  244. Wang, Y.; Zhang, K.; Feng, Y.; Li, Y.; Tang, W.; Wei, B. Evaluation of radiation response in CoCrFeCuNi high-entropy alloys. Entropy 2018, 20, 835.
  245. He, M.R.; Wang, S.; Shi, S.; Jin, K.; Bei, H.; Yasuda, K.; Matsumura, S.; Higashida, K.; Robertson, I.M. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 2017, 126, 182–193.
  246. Yang, T.N.; Lu, C.; Velisa, G.; Jin, K.; Xiu, P.; Zhang, Y.; Bei, H.; Wang, L. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd. Scr. Mater. 2019, 158, 57–61.
  247. Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 35, 300–305.
  248. Hashimoto, N.; Ono, Y. Mobility of point defects in CoCrFeNi-base high entropy alloys. Intermetallics 2021, 133, 107182.
  249. Zhang, Y.; Tunes, M.A.; Crespillo, M.L.; Zhang, F.; Boldman, W.L.; Rack, P.D.; Jiang, L.; Xu, C.; Greaves, G.; Donnelly, S.E.; et al. Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology 2019, 30, 294004.
  250. Yang, T.N.; Lu, C.; Jin, K.; Crespillo, M.L.; Zhang, Y.; Bei, H.; Wang, L. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys. J. Nucl. Mater. 2017, 488, 328–337.
  251. Abhaya, S.; Rajaraman, R.; Kalavathi, S.; David, C.; Panigrahi, B.K.; Amarendra, G. Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam. J. Alloys Compd. 2016, 669, 117–122.
  252. Sellami, N.; Debelle, A.; Ullah, M.W.; Christen, H.M.; Keum, J.K.; Bei, H.; Xue, H.; Weber, W.J.; Zhang, Y. Effect of electronic energy dissipation on strain relaxation in irradiated concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 2019, 23, 107–115.
  253. Chen, D.; Tong, Y.; Li, H.; Wang, J.; Zhao, Y.L.; Hu, A.; Kai, J.J. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation. J. Nucl. Mater. 2018, 501, 208–216.
  254. Kombaiah, B.; Jin, K.; Bei, H.; Edmondson, P.D.; Zhang, Y. Phase stability of single phase Al0.12CrNiFeCo high entropy alloy upon irradiation. Mater. Des. 2018, 160, 1208–1216.
  255. Lu, C.; Yang, T.; Jin, K.; Velisa, G.; Xiu, P.; Song, M.; Peng, Q.; Gao, F.; Zhang, Y.; Bei, H.; et al. Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations. Mater. Res. Lett. 2018, 6, 584–591.
  256. Tunes, M.A.; Edmondson, P.D.; Vishnyakov, V.M.; Donnelly, S.E. Displacement damage and self-healing in high-entropy alloys: A TEM with in situ ion irradiation study. In Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2017; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017; Volume 1, pp. 62–64.
  257. AlTabbaa, O.; Ankrah, S. Social capital to facilitate ‘engineered’ university–industry collaboration for technology transfer: A dynamic perspective. Technol. Forecast. Soc. Chang. 2016, 104, 1–15.
  258. Fan, Z.; Zhong, W.; Jin, K.; Bei, H.; Osetsky, Y.N.; Zhang, Y. Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. J. Mater. Res. 2021, 36, 298–310.
  259. Lyu, P.; Peng, T.; Miao, Y.; Liu, Z.; Gao, Q.; Zhang, C.; Jin, Y.; Qingfeng Guan, J.C. Microstructure and properties of CoCrFeNiMo0.2 high-entropy alloy enhanced by high-current pulsed electron beam. Surf. Coat. Technol. 2021, 410, 126911.
  260. Xu, Q.; Zhu, T.; Zhong, Z.H.; Cao, X.Z.; Tsuchida, H. Investigation of irradiation resistance characteristics of precipitation strengthened high-entropy alloy (CoCrFeNi)95Ti1Nb1Al3 using slow positron beam. J. Alloys Compd. 2021, 888, 161518.
  261. Cao, P.P.; Wang, H.; He, J.Y.; Xuc, C.; Jiang, S.H.; Du, J.L.; Cao, X.Z.; Fu, E.G.; Lu, Z.P. Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys. J. Alloys Compd. 2021, 859, 158291.
  262. Tolstolutskaya, G.D.; Rostova, G.Y.; Voyevodin, V.N.; Velikodnyi, A.N.; Tikhonovsky, M.A.; Tolmachova, G.N.; Kalchenko, A.S.; Vasilenko, R.L.; Kopanets, I.E. Section 2 thermal and fast reactor materials hardening of Cr-Fe-Ni-Mn high-entropy alloys caused by the irradiation with argon ions. Probl. At. Sci. Technol. 2017, 5, 40–47. Available online: http://dspace.nbuv.gov.ua/handle/123456789/136159 (accessed on 30 November 2021).
  263. Kumar, N.A.P.K.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244.
  264. Li, C.; Hu, X.; Yang, T.; Kumar, N.K.; Wirth, B.D.; Zinkle, S.J. Neutron irradiation response of a Co-free high entropy alloy. J. Nucl. Mater. 2019, 527, 151838.
  265. Voyevodin, V.N.; Karpov, S.A.; Tolstolutskaya, G.D.; Tikhonovsky, M.A.; Velikodnyi, A.N.; Kopanets, I.E.; Tolmachova, G.N.; Kalchenko, A.S.; Vasilenko, R.L.; Kolodiy, I.V. Effect of irradiation on microstructure and hardening of Cr–Fe–Ni–Mn high-entropy alloy and its strengthened version. Philos. Mag. 2020, 100, 822–836.
  266. Dias, M.; Antão, F.; Catarino, N.; Galatanu, A.; Galatanu, M.; Ferreira, P.; Correia, J.B.; da Silva, R.C.; Gonçalves, A.P.; Alves, E. Sintering and irradiation of copper-based high entropy alloys for nuclear fusion. Fusion Eng. Des. 2020, 146, 1824–1828.
  267. Gromov, V.; Ivanov, Y.; Konovalov, S.; Osintsev, K.; Semin, A.; Rubannikova, Y. Modification of high-entropy alloy AlCoCrFeNi by electron beam treatment. J. Mater. Sci. Technol. 2021, 13, 787–797.
  268. Yang, T.; Xia, S.; Guo, W.; Hu, R.; Poplawsky, J.D.; Sha, G.; Fang, Y.; Yan, Z.; Wang, C.; Li, C.; et al. Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scr. Mater. 2018, 144, 31–35.
  269. Zhou, J.; Islam, M.I.; Guo, S.; Zhang, Y.; Lu, F. Radiation-induced grain growth of nanocrystalline alxcocrfeni high-entropy alloys. J. Phys. Chem. C 2021, 125, 3509–3516.
  270. Zhou, J. Radiation Effects in Apatite and High Entropy Alloy under Energetic Ions and Electrons; Louisiana State University and Agricultural and Mechanical College: Baton Rouge, LA, USA, 2020.
  271. Zhou, J.; Kirk, M.; Baldo, P.; Guo, S.; Lu, F. Phase stability of novel HfNbTaTiVZr refractory high entropy alloy under ion irradiation. Mater. Lett. 2021, 305, 130789.
  272. Moschetti, M.; Xu, A.; Schuh, B.; Hohenwarter, A.; Couzinié, J.P.; Kruzic, J.J.; Bhattacharyya, D.; Gludovatz, B. On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy. JOM 2020, 72, 130–138.
  273. Sadeghilaridjani, M.; Ayyagari, A.; Muskeri, S.; Hasannaeimi, V.; Salloom, R.; Chen, W.Y.; Mukherjee, S. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J. Nucl. Mater. 2020, 529, 151955.
  274. Li, D.; Jia, N.; Huang, H.; Chen, S.; Dou, Y.; He, X.; Yang, W.; Xue, Y.; Hua, Z.; Zhang, F.; et al. Helium ion irradiation enhanced precipitation and the impact on cavity formation in a HfNbZrTi refractory high entropy alloy. J. Nucl. Mater. 2021, 552, 153023.
  275. Kareer, A.; Waite, J.C.; Li, B.; Couet, A.; Armstrong, D.E.J.; Wilkinson, A.J. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’. J. Nucl. Mater. 2019, 526, 151744.
  276. Wang, Y.; Zhang, K.; Feng, Y.; Li, Y.; Tang, W.; Zhang, Y.; Wei, B.; Hu, Z. Excellent irradiation tolerance and mechanical behaviors in high-entropy metallic glasses. J. Nucl. Mater. 2019, 527, 151785.
  277. El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J.K.S.; Schneider, M.M.; Sobieraj, D.; Wróbel, J.S.; Nguyen-Manh, D.; Maloy, S.A.; et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 2019, 5, eaav2002.
  278. Komarov, F.F.; Konstantinov, S.V.; Pogrebnyak, A.D. Effect of high-fluence ion irradiation on the structure and mechanical properties of coatings based on nanostructured nitrides of high-entropy alloys (Ti, Hf, Zr, V, Nb). Dokl. Natsional’noj Akad. Nauk Belarusi 2015, 48, 24–30.
  279. Gandy, A.S.; Jim, B.; Coe, G.; Patel, D.; Hardwick, L.; Akhmadaliev, S.; Reeves-McLaren, N.; Goodall, R. High temperature and ion implantation-induced phase transformations in novel reduced activation si-fe-v-cr (-mo) high entropy alloys. Front. Mater. 2019, 6, 146.
  280. Patel, D.; Richardson, M.D.; Jim, B.; Akhmadaliev, S.; Goodall, R.; Gandy, A.S. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04. J. Nucl. Mater. 2020, 531, 152005.
  281. Zhang, Z.; Han, E.H.; Xiang, C. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. J. Mater. Sci. Technol. 2021, 84, 230–238.
  282. Zhang, Z.; Han, E.H.; Xiang, C. Effect of helium ion irradiation on short-time corrosion behavior of two novel high-entropy alloys in simulated PWR primary water. Corros. Sci. 2021, 191, 109742.
  283. El-Atwani, O.; Alvarado, A.; Unal, K.; Fensin, S.; Hinks, J.A.; Greaves, G.; Baldwin, J.K.S.; Maloy, S.A.; Martinez, E. Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloys. Mater. Today Energy 2021, 19, 100599.
  284. Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123.
  285. Kasar, A.K.; Scalaro, K.; Menezes, P.L. Tribological properties of high-entropy alloys under dry conditions for a wide temperature range—a review. Materials 2021, 14, 5814.
  286. Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128.
  287. Sharma, A.S.; Yadav, S.; Biswas, K.; Basu, B. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng. R Rep. 2018, 131, 1–42.
  288. Li, Z.; Zhao, S.; Ritchie, R.O.; Meyers, M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345.
  289. Menghani, J.; Vyas, A.; Patel, P.; Natu, H.; More, S. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings—A review. Mater. Today Proc. 2020, 38, 2824–2829.
  290. Ayyagari, A.; Hasannaeimi, V.; Grewal, H.S.; Arora, H.; Mukherjee, S. Corrosion, erosion andwear behavior of complex concentrated alloys: A review. Metals 2018, 8, 603.
  291. Joseph, J.; Haghdadi, N.; Annasamy, M.; Kada, S.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scr. Mater. 2020, 186, 230–235.
  292. Wang, H.; Ren, K.; Xie, J.; Zhang, C.; Tang, W. Friction and wear behavior of single-phase high-entropy alloyFeCoNiCrMn under MoS2-oil lubrication. Ind. Lubr. Tribol. 2019, 2019, 2–9.
  293. Xiao, J.K.; Tan, H.; Wu, Y.Q.; Chen, J.; Zhang, C. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying. Surf. Coat. Technol. 2020, 385, 125430.
  294. Jones, M.R.; Nation, B.L.; Wellington-Johnson, J.A.; Curry, J.F.; Kustas, A.B.; Lu, P.; Chandross, M.; Argibay, N. Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys. Sci. Rep. 2020, 10, 14336.
  295. Zhu, S.; Zhang, B.; Tao, X.; Yu, Y.; Zhang, Z.; Wang, Z.; Lu, B. Microstructure and tribology performance of plasma clad intermetallics reinforced CoCrFeMnNi-based high-entropy alloy composite coatings. Tribol. Trans. 2020, 64, 264–274.
  296. Deng, G.; Tieu, A.K.; Su, L.; Wang, P.; Wang, L.; Lan, X.; Cui, S.; Zhu, H. Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration. Wear 2020, 460–461, 203440.
  297. Lindner, T.; Löbel, M.; Saborowski, E.; Rymer, L.M.; Lampke, T. Wear and corrosion behaviour of supersaturated surface layers in the high-entropy alloy systems CrMnFeCoNi and CrFeCoNi. Crystals 2020, 10, 110.
  298. Sha, C.; Zhou, Z.; Xie, Z.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci. 2020, 507, 145101.
  299. Xiao, J.K.; Tan, H.; Chen, J.; Martini, A.; Zhang, C. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys. J. Alloys Compd. 2020, 847, 156533.
  300. Cheng, H.; Fang, Y.; Xu, J.; Zhu, C.; Dai, P.; Xue, S. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures. J. Alloys Compd. 2020, 817, 153305.
  301. Joseph, J.; Haghdadi, N.; Shamlaye, K.; Hodgson, P.; Barnett, M.; Fabijanic, D. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 2019, 428–429, 32–44.
  302. Liu, X.; Yin, H.; Xu, Y. Microstructure, mechanical and tribological properties of Oxide Dispersion Strengthened high-entropy alloys. Materials 2017, 10, 1312.
  303. Wang, J.; Zhang, B.; Yu, Y.; Zhang, Z.; Zhu, S.; Lou, X.; Wang, Z. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf. Coat. Technol. 2020, 384, 125337.
  304. Zhang, A.; Han, J.; Su, B.; Meng, J. A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J. Alloys Compd. 2017, 725, 700–710.
  305. Geng, Y.; Chen, J.; Tan, H.; Cheng, J.; Yang, J.; Liu, W. Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures. Wear 2020, 456, 203368.
  306. Zhang, A.; Han, J.; Su, B.; Li, P.; Meng, J. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater. Des. 2017, 114, 253–263.
  307. Brownlie, F.; Hodgkiess, T.; Fanicchia, F. Erosion-corrosion behaviour of CoCrFeNiMo0.85 and Al0.5CoCrFeNi complex concentrated alloys produced by laser metal deposition. Surf. Coatings Technol. 2021, 423, 127634.
  308. Zhang, M.; Zhang, W.; Liu, Y.; Liu, B.; Wang, J. FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications. Powder Metall. 2018, 61, 123–130.
  309. Huang, L.; Wang, X.; Jia, F.; Zhao, X.; Huang, B.; Ma, J.; Wang, C. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys. Mater. Lett. 2021, 282, 128809.
  310. Cui, G.; Han, B.; Yang, Y.; Wang, Y.; Chunyang, H. Microstructure and tribological property of CoCrFeMoNi High entropy alloy treated by ion sulfurization. J. Mater. Res. Technol. 2020, 9, 2598–2609.
  311. Li, T.; Liu, Y.; Liu, B.; Guo, W.; Xu, L. Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxy-fuel spray processes. Coatings 2017, 7, 151.
  312. Ji, X.; Zhao, J.; Wang, H.; Luo, C. Sliding wear of spark plasma sintered CrFeCoNiCu high entropy alloy coatings with MoS2 and WC additions. Int. J. Adv. Manuf. Technol. 2018, 96, 1685–1691.
  313. Verma, A.; Tarate, P.; Abhyankar, A.C.; Mohape, M.R.; Gowtam, D.S.; Deshmukh, V.P.; Shanmugasundaram, T. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr. Mater. 2019, 161, 28–31.
  314. Liu, D.; Zhao, J.; Li, Y.; Zhu, W.; Lin, L. Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding. Appl. Sci. 2020, 10, 49.
  315. Jiang, H.; Jiang, L.; Qiao, D.; Lu, Y.; Wang, T.; Cao, Z.; Li, T. Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys. J. Mater. Sci. Technol. 2017, 33, 712–717.
  316. Yu, Y.; He, F.; Qiao, Z.; Wang, Z.; Liu, W.; Yang, J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd. 2019, 775, 1376–1385.
  317. Liu, X.; Zhou, S.; Xu, Y. Microstructure and tribological performance of Fe50Mn30Co10Cr10 high-entropy alloy based self-lubricating composites. Mater. Lett. 2018, 233, 142–145.
  318. Wang, J.; Yang, H.; Liu, Z.; Li, R.; Ruan, J.; Ji, S. Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy. J. Mater. Res. Technol. 2019, 8, 3550–3564.
  319. Derimow, N.; MacDonald, B.E.; Lavernia, E.J.; Abbaschian, R. Duplex phase hexagonal-cubic multi-principal element alloys with high hardness. Mater. Today Commun. 2019, 21, 100658.
  320. Guo, Y.; Li, C.; Zeng, M.; Wang, J.; Deng, P.; Wang, Y. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Mater. Chem. Phys. 2020, 242, 122522.
  321. Zhang, Y.; Han, T.; Xiao, M.; Shen, Y. Tribological behavior of diamond reinforced FeNiCoCrTi0.5 carbonized high-entropy alloy coating. Surf. Coat. Technol. 2020, 401, 126233.
  322. Erdoğan, A.; Gök, M.S.; Zeytin, S. Analysis of the high-temperature dry sliding behavior of CoCrFeNiTi0.5Alx high-entropy alloys. Friction 2020, 8, 198–207.
  323. Liu, Y.; Xie, Y.; Cui, S.; Yi, Y.; Xing, X.; Wang, X.; Li, W. Effect of mo element on the mechanical properties and tribological responses of cocrfenimox high-entropy alloys. Metals 2021, 11, 486.
  324. Moazzen, P.; Toroghinejad, M.R.; Cavaliere, P. Effect of Iron content on the microstructure evolution, mechanical properties and wear resistance of FeXCoCrNi high-entropy alloy system produced via MA-SPS. J. Alloys Compd. 2021, 870, 159410.
  325. Yang, Y.; Ren, Y.; Tian, Y.; Li, K.; Zhang, W.; Shan, Q.; Tian, Y.; Huang, Q.; Wu, H. Microstructure and properties of FeCoCrNiMoSix high-entropy alloys fabricated by spark plasma sintering. J. Alloys Compd. 2021, 884, 161070.
  326. Li, Y.; Liang, H.; Nie, Q.; Qi, Z.; Deng, D.; Jiang, H.; Cao, Z. Microstructures and Wear Resistance of CoCrFeNi2V0.5Tix High-Entropy Alloy Coatings Prepared by Laser Cladding. Crystals 2020, 10, 352.
  327. Islak, S.; Eski, Ö.; Koç, V.; Özorak, C. Wear properties and synthesis of crfenimoti high entropy alloy coatings produced by TIG process. Indian J. Eng. Mater. Sci. 2020, 27, 659–664.
  328. Wen, X.; Cai, Z.; Yin, B.; Cui, X.; Zhang, X.; Jin, G. Tribological and Corrosion Properties of Ni-Cr-Co-Ti-V Multi-Principal Element Alloy Prepared by Vacuum Hot-Pressing Sintering. Adv. Eng. Mater. 2019, 21, 1801239.
  329. Wang, X.R.; Wang, Z.Q.; He, P.; Lin, T.S.; Shi, Y. Microstructure and wear properties of CuNiSiTiZr high-entropy alloy coatings on TC11 titanium alloy produced by electrospark—computer numerical control deposition process. Surf. Coat. Technol. 2015, 283, 156–161.
  330. Cheng, J.; Sun, B.; Ge, Y.; Hu, X.; Zhang, L.; Liang, X.; Zhang, X. Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior. Surf. Coat. Technol. 2020, 402, 126321.
  331. Yadav, S.; Sarkar, S.; Aggarwal, A.; Kumar, A.; Biswas, K. Wear and mechanical properties of novel (CuCrFeTiZn)100−xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 2018, 410–411, 93–109.
  332. Gou, Q.; Xiong, J.; Guo, Z.; Liu, J.; Yang, L.; Li, X. Influence of NbC additions on microstructure and wear resistance of Ti(C,N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2020, 94, 105375.
  333. Yadav, S.; Kumar, A.; Biswas, K. Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater. Chem. Phys. 2018, 210, 222–232.
  334. Cui, Y.; Shen, J.; Manladan, S.M.; Geng, K.; Hu, S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736.
  335. Gwalani, B.; Torgerson, T.; Dasari, S.; Jagetia, A.; Nartu, M.S.K.K.Y.; Gangireddy, S.; Pole, M.; Wang, T.; Scharf, T.W.; Banerjee, R. Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrFeNi high-entropy alloy. J. Alloys Compd. 2021, 853, 157126.
  336. Chen, M.; Lan, L.; Shi, X.; Yang, H.; Zhang, M.; Qiao, J. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature. J. Alloys Compd. 2019, 777, 180–189.
  337. Du, L.M.; Lan, L.W.; Zhu, S.; Yang, H.J.; Shi, X.H.; Liaw, P.K.; Qiao, J.W. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 917–925.
  338. Chen, M.; Shi, X.H.; Yang, H.J.; Liaw, P.K.; Gao, M.C.; Hawk, J.A. Wear behavior of Al0.6CoCrFeNi high-entropy alloy: Effect of environments. J. Mater. Res. 2018, 33, 3310–3320.
  339. Ji, X.; Duan, H.; Zhang, H.; Ma, J. Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings. Tribol. Trans. 2015, 58, 1119–1123.
  340. Haghdadi, N.; Guo, T.; Ghaderi, A.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. The scratch behaviour of AlXCoCrFeNi (x = 0.3 and 1.0) high entropy alloys. Wear 2019, 428–429, 293–301.
  341. Fang, Y.; Chen, N.; Du, G.; Zhang, M.; Zhao, X.; Cheng, H.; Wu, J. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J. Alloys Compd. 2020, 815, 152486.
  342. Wu, Y.H.; Yang, H.J.; Guo, R.P.; Wang, X.J.; Shi, X.H.; Liaw, P.K.; Qiao, J.W. Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions. Wear 2020, 460–461, 203452.
  343. Nair, R.B.; Arora, H.S.; Boyana, A.V.; Saiteja, P.; Grewal, H.S. Tribological behavior of microwave synthesized high entropy alloy claddings. Wear 2019, 436–437, 203028.
  344. Kumar, S.; Rani, P.; Patnaik, A.; Pradhan, A.K.; Kumar, V. Effect of cobalt content on wear behaviour of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high entropy alloys tested under demineralised water with and without 3.5% NaCl solution. Mater. Res. Express 2019, 6, 0865b3.
  345. Mu, Y.; Zhang, L.; Xu, L.; Prashanth, K.; Zhang, N.; Ma, X.; Jia, Y.; Xu, Y.; Jia, Y.; Wang, G. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying. Entropy 2020, 22, 740.
  346. Wu, M.; Chen, K.; Xu, Z.; Li, D.Y. Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy. Wear 2020, 462–463, 203493.
  347. Zhao, D.; Yamaguchi, T.; Wang, W. Fabrication and wear performance of Al0.8FeCrCoNi high entropy alloy coating on magnesium alloy by resistance seam welding. Mater. Lett. 2020, 265, 127250.
  348. Kumar, S.; Patnaik, A.; Pradhan, A.K.; Kumar, V. Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions. J. Mater. Res. 2019, 34, 841–853.
  349. Li, Y.; Shi, Y. Phase assemblage and wear resistance of laser-cladding Al0.8FeCoNiCrCu0.5Six high-entropy alloys on aluminum. Mater. Res. Express 2020, 7, 086504.
  350. Kafexhiu, F.; Podgornik, B.; Feizpour, D. Tribological behavior of as-cast and aged AlCoCrFeNi2.1 CCA. Metals 2020, 10, 208.
  351. Miao, J.; Liang, H.; Zhang, A.; He, J.; Meng, J.; Lu, Y. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribol. Int. 2021, 153, 106599.
  352. Ye, F.; Yang, Y.; Lou, Z.; Feng, L.; Guo, L.; Yu, J. Microstructure and wear resistance of TiC reinforced AlCoCrFeNi2.1 eutectic high entropy alloy layer fabricated by micro-plasma cladding. Mater. Lett. 2021, 284, 128859.
  353. Wang, Y.; Yang, Y.; Yang, H.; Zhang, M.; Ma, S.; Qiao, J. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 2018, 210, 233–239.
  354. Liu, Y.; Ma, S.; Gao, M.C.; Zhang, C.; Zhang, T.; Yang, H.; Wang, Z.; Qiao, J. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 3312–3321.
  355. Kong, D.; Guo, J.; Cui, X.; Zhang, X. Effect of superheating on microstructure and wear resistance of high-entropy Al1.8CrCuFeNi2 alloy. Mater. Lett. 2020, 274, 128021.
  356. Wang, Y.; Yang, Y.; Yang, H.; Zhang, M.; Qiao, J. Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 2017, 725, 365–372.
  357. Xiao, J.K.; Wu, Y.Q.; Chen, J.; Zhang, C. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 2020, 448–449, 203209.
  358. Liu, H.; Sun, S.; Zhang, T.; Zhang, G.; Yang, H.; Hao, J. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2020, 405, 126522.
  359. Hsu, C.Y.; Yeh, J.W.; Chen, S.K.; Shun, T.T. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35A, 1465–1469.
  360. Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Tu, C.P. Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys. Mater. Trans. 2006, 47, 1395–1401.
  361. Löbel, M.; Lindner, T.; Mehner, T.; Lampke, T. Microstructure and wear resistance of AlCoCrFeNiTi high-entropy alloy coatings produced by HVOF. Coatings 2017, 7, 144.
  362. Kane, S.N.; Mishra, A.; Dutta, A.K. Preface: International Conference on Recent Trends in Physics (ICRTP 2016). J. Phys. Conf. Ser. 2016, 755, 011001.
  363. Wu, C.L.; Zhang, S.; Zhang, C.H.; Zhang, H.; Dong, S.Y. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd. 2017, 698, 761–770.
  364. Erdogan, A.; Döleker, K.M.; Zeytin, S. Effect of laser re-melting on electric current assistive sintered CoCrFeNiAlxTiy high entropy alloys: Formation, micro-hardness and wear behaviors. Surf. Coat. Technol. 2020, 399, 126179.
  365. Xin, B.; Zhang, A.; Han, J.; Su, B.; Meng, J. Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy matrix composites. J. Alloys Compd. 2020, 836, 155273.
  366. Moravcikova-Gouvea, L.; Moravcik, I.; Omasta, M.; Veselý, J.; Cizek, J.; Minárik, P.; Cupera, J.; Záděra, A.; Jan, V.; Dlouhy, I. High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2020, 159, 110046.
  367. Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W. Microstructure and wear behavior of AlxCo 1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317.
  368. Liu, H.; Liu, J.; Li, X.; Chen, P.; Yang, H.; Hao, J. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi0.8 high-entropy alloy coatings. Surf. Coat. Technol. 2020, 392, 125758.
  369. Yu, Y.; Liu, W.M.; Zhang, T.B.; Li, J.S.; Wang, J.; Kou, H.C.; Li, J. Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 201–207.
  370. Löbel, M.; Lindner, T.; Lampke, T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf. Coatings Technol. 2020, 403, 126379.
  371. Chen, L.; Bobzin, K.; Zhou, Z.; Zhao, L.; Öte, M.; Königstein, T.; Tan, Z.; He, D. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 2019, 358, 215–222.
  372. Yu, Y.; Wang, J.; Yang, J.; Qiao, Z.; Duan, H.; Li, J.; Li, J.; Liu, W. Corrosive and tribological behaviors of AlCoCrFeNi-M high entropy alloys under 90 wt. % H2O2 solution. Tribol. Int. 2019, 131, 24–32.
  373. Yu, Y.; Wang, J.; Li, J.; Kou, H.; Duan, H.; Li, J.; Liu, W. Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts. Tribol. Int. 2015, 92, 203–210.
  374. Jin, G.; Cai, Z.; Guan, Y.; Cui, X.; Liu, Z.; Li, Y.; Dong, M.; Zhang, D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 2018, 445, 113–122.
  375. Zhu, T.; Wu, H.; Zhou, R.; Zhang, N.; Yin, Y.; Liang, L.; Liu, Y.; Li, J.; Shan, Q.; Li, Q.; et al. Microstructures and Tribological Properties of TiC Reinforced FeCoNiCuAl High-Entropy Alloy at Normal and Elevated Temperature. Metals 2020, 10, 387.
  376. Wu, J.M.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Chen, H.C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006, 261, 513–519.
  377. Yan, G.; Zheng, M.; Ye, Z.; Gu, J.; Li, C.; Wu, C.; Wang, B. In-situ Ti(C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding. J. Alloys Compd. 2021, 886, 161252.
  378. Li, Z.; Fu, P.; Hong, C.; Chang, F.; Dai, P. Tribological behavior of Ti(C, N)-TiB2 composite cermets using FeCoCrNiAl high entropy alloys as binder over a wide range of temperatures. Mater. Today Commun. 2021, 26, 102095.
  379. Kumar, A.; Chandrakar, R.; Chandraker, S.; Rao, K.R.; Chopkar, M. Microstructural and mechanical properties of AlCoCrCuFeNiSix (x = 0.3 and 0.6) high entropy alloys synthesized by spark plasma sintering. J. Alloys Compd. 2021, 184, 158193.
  380. Xin, B.; Zhang, A.; Han, J.; Meng, J. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. J. Alloys Compd. 2021, 869, 159122.
  381. Karakaş, M.S.; Günen, A.; Çarboğa, C.; Karaca, Y.; Demir, M.; Altınay, Y.; Erdoğan, A. Microstructure, some mechanical properties and tribocorrosion wear behavior of boronized Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 high entropy alloy. J. Alloys Compd. 2021, 886, 161222.
  382. Xin, B.; Zhang, A.; Han, J.; Meng, J. The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys. Wear 2021, 484, 204045.
  383. Zhao, P.; Li, J.; Lei, R.; Yuan, B.; Xia, M.; Li, X.; Zhang, Y. Investigation into microstructure, wear resistance in air and nacl solution of alcrconifectax high-entropy alloy coatings fabricated by laser cladding. Coatings 2021, 11, 358.
  384. Ghanbariha, M.; Farvizi, M.; Ebadzadeh, T.; Alizadeh Samiyan, A. Effect of ZrO2 particles on the nanomechanical properties and wear behavior of AlCoCrFeNi–ZrO2 high entropy alloy composites. Wear 2021, 484–485, 204032.
  385. Li, Y.; Shi, Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt. Laser Technol. 2021, 134, 106632.
  386. Cai, Z.; Wang, Z.; Hong, Y.; Lu, B.; Liu, J.; Li, Y.; Pu, J. Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films. Tribol. Int. 2021, 163, 107195.
  387. Chandrakar, R.; Kumar, A.; Chandraker, S.; Rao, K.R.; Chopkar, M. Microstructural and mechanical properties of AlCoCrCuFeNiSix (x = 0 and 0.9) high entropy alloys. Vacuum 2021, 184, 109943.
  388. Erdogan, A.; Sunbul, S.E.; Icin, K.; Doleker, K.M. Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum 2021, 187, 110143.
  389. Duan, H.; Wu, Y.; Hua, M.; Yuan, C.; Wang, D.; Tu, J.; Kou, H.; Li, J. Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 2013, 297, 1045–1051.
  390. Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Chuang, M.H. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37, 1363–1369.
  391. Gu, Z.; Xi, S.; Mao, P.; Wang, C. Microstructure and wear behavior of mechanically alloyed powder AlxMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding. Surf. Coat. Technol. 2020, 401, 126244.
  392. Hsu, C.Y.; Sheu, T.S.; Yeh, J.W.; Chen, S.K. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 2010, 268, 653–659.
  393. Liang, H.; Miao, J.; Gao, B.; Deng, D.; Wang, T.; Lu, Y.; Cao, Z.; Jiang, H.; Li, T.; Kang, H. Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water. Surf. Coat. Technol. 2020, 400, 126214.
  394. Qiu, X.W.; Liu, C.G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloys Compd. 2013, 553, 216–220.
  395. Kanyane, L.R.; Popoola, A.P.; Malatji, N. Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 538, 012009.
  396. Huang, C.; Zhang, Y.; Vilar, R.; Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater. Des. 2012, 41, 338–343.
  397. Zhang, H.X.; Dai, J.J.; Sun, C.X.; Li, S.Y. Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V. J. Mater. Process. Technol. 2020, 282, 116671.
  398. Lin, Y.C.; Cho, Y.H. Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis. Surf. Coat. Technol. 2008, 202, 4666–4672.
  399. Yadav, S.; Aggrawal, A.; Kumar, A.; Biswas, K. Effect of TiB2 addition on wear behavior of (AlCrFeMnV)90Bi10 high entropy alloy composite. Tribol. Int. 2019, 132, 62–74.
  400. Bhardwaj, V.; Zhou, Q.; Zhang, F.; Han, W.; Du, Y.; Hua, K.; Wang, H. Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol. Int. 2021, 160, 107031.
  401. Zhao, P.; Li, J.; Zhang, Y.; Li, X.; Xia, M.M.; Yuan, B.G. Wear and high-temperature oxidation resistances of AlNbTaZrx high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding. J. Alloys Compd. 2021, 862, 158405.
  402. Tüten, N.; Canadinc, D.; Motallebzadeh, A.; Bal, B. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti–6Al–4V substrates. Intermetallics 2019, 105, 99–106.
  403. Pole, M.; Sadeghilaridjani, M.; Shittu, J.; Ayyagari, A.; Mukherjee, S. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J. Alloys Compd. 2020, 843, 156004.
  404. Ye, Y.X.; Liu, C.Z.; Wang, H.; Nieh, T.G. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 2018, 147, 78–89.
  405. Pogrebnjak, A.D.; Yakushchenko, I.V.; Abadias, G.; Chartier, P.; Bondar, O.V.; Beresnev, V.M.; Takeda, Y.; Sobol’, O.V.; Oyoshi, K.; Andreyev, A.A.; et al. The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties. J. Superhard Mater. 2013, 35, 356–368.
  406. Gong, P.; Li, F.; Deng, L.; Wang, X.; Jin, J. Research on nano-scratching behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. J. Alloys Compd. 2020, 817, 153240.
  407. Zhao, Y.Y.; Ye, Y.X.; Liu, C.Z.; Feng, R.; Yao, K.F.; Nieh, T.G. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics 2019, 113, 1065601.
  408. Jhong, Y.S.; Huang, C.W.; Lin, S.J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater. Chem. Phys. 2018, 210, 348–352.
  409. Mathiou, C.; Poulia, A.; Georgatis, E.; Karantzalis, A.E. Microstructural features and dry—Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 2018, 210, 126–135.
  410. Petroglou, D.; Poulia, A.; Mathiou, C.; Georgatis, E.; Karantzalis, A.E. A further examination of MoTaxNbVTi (x = 0.25, 0.50, 0.75 and 1.00 at.%) high-entropy alloy system: Microstructure, mechanical behavior and surface degradation phenomena. Appl. Phys. A Mater. Sci. Process. 2020, 126, 364.
  411. Poulia, A.; Georgatis, E.; Lekatou, A.; Karantzalis, A.E. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Met. Hard Mater. 2016, 57, 50–63.
  412. Poulia, A.; Georgatis, E.; Lekatou, A.; Karantzalis, A. Dry-Sliding Wear Response of MoTaWNbV High Entropy Alloy. Adv. Eng. Mater. 2017, 19, 1600535.
  413. Poulia, A.; Georgatis, E.; Karantzalis, A. Evaluation of the Microstructural Aspects, Mechanical Properties and Dry Sliding Wear Response of MoTaNbVTi Refractory High Entropy Alloy. Met. Mater. Int. 2019, 25, 1529–1540.
  414. Alvi, S.; Akhtar, F. High temperature tribology of CuMoTaWV high entropy alloy. Wear 2019, 426–427, 412–419.
  415. Hua, N.; Wang, W.; Wang, Q.; Ye, Y.; Lin, S.; Zhang, L.; Guo, Q.; Brechtl, J.; Liaw, P.K. Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys. J. Alloys Compd. 2021, 861, 157997.
  416. Gu, Z.; Peng, W.; Guo, W.; Zhang, Y.; Hou, J.; He, Q.; Zhao, K.; Xi, S. Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings. Surf. Coat. Technol. 2021, 408, 126793.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.8K
Revisions: 2 times (View History)
Update Date: 15 Mar 2022
1000/1000
ScholarVision Creations