Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 3379 word(s) 3379 2021-12-13 04:17:02 |
2 Format change Meta information modification 3379 2022-01-14 09:46:21 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Martínez-Culebras, P.V.; Gandía, M.; Garrigues, S.; Manzanares, P. Antimicrobial Peptides and Proteins (AMPs). Encyclopedia. Available online: https://encyclopedia.pub/entry/18242 (accessed on 17 May 2024).
Martínez-Culebras PV, Gandía M, Garrigues S, Manzanares P. Antimicrobial Peptides and Proteins (AMPs). Encyclopedia. Available at: https://encyclopedia.pub/entry/18242. Accessed May 17, 2024.
Martínez-Culebras, Pedro Vicente, Mónica Gandía, Sandra Garrigues, Paloma Manzanares. "Antimicrobial Peptides and Proteins (AMPs)" Encyclopedia, https://encyclopedia.pub/entry/18242 (accessed May 17, 2024).
Martínez-Culebras, P.V., Gandía, M., Garrigues, S., & Manzanares, P. (2022, January 14). Antimicrobial Peptides and Proteins (AMPs). In Encyclopedia. https://encyclopedia.pub/entry/18242
Martínez-Culebras, Pedro Vicente, et al. "Antimicrobial Peptides and Proteins (AMPs)." Encyclopedia. Web. 14 January, 2022.
Antimicrobial Peptides and Proteins (AMPs)
Edit

Mycotoxins are toxic secondary metabolites produced by filamentous fungi in crops or during storage, transport and processing of food and feed commodities, which pose serious health risks for both humans and animals. The trend of mycotoxin contamination in food and feed has reached alarming levels. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. 

antimicrobial peptide (AMP) antifungal AMP

1. Introduction

The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways.

2. General Properties and Characteristics of Antimicrobial Peptides and Proteins (AMPs)

AMPs are small bioactive proteins or peptides, mostly cationic, that are naturally produced by nearly all living organisms. They primarily act as components of their innate immune system, becoming the first-line defense against microbial attacks in higher organisms. Additionally, AMPs might be produced as competition strategies by microorganisms to limit the growth of other competitors [1][2]. AMPs are present in bacteria, fungi, plants, invertebrates and vertebrates [3][4][5], and are known for their broad spectrum activity against bacteria, fungi, viruses, protozoa and/or even cancer cells [6][7]. Remarkably, there are AMPs particularly effective against fungi [3][8][9] and some of them show antifungal activity against mycotoxin-producing fungi.
AMPs are basically synthesized by two biosynthetic routes. Most are ribosomally encoded AMPs, while other AMPs are generated by non-ribosomal peptide synthases (NRPSs). The latter are mainly found in bacteria, in particular Actinomycetes and Bacilli [10]. The NRPS-generated AMPs are characterized by the incorporation of nonproteinogenic amino acids into the sequence and are often heavily modified through hydroxylation, glycosylation, lipidation, and cyclization [11].
Characterization of the mode of action of AMPs is essential to improve their activity, avoid development of resistance, and accelerate their use as therapeutics or food preservatives. There is a significant volume of information available on the general mechanisms of action of AMPs (Figure 1) [12][13][14][15][16]. In general, AMPs can act at multiple cell targets. Cationic AMPs physically interact with the negatively charged microbial envelopes [17]. However, electrostatic interactions cannot entirely explain other observed activity of AMPs, and thus, specific component of membrane envelopes seem to aid AMP interactions. In fungi, the cell wall plays a key role in the internalization and activity of several AMPs. Different AMPs has been reported to affect fungal cell wall by inhibiting β-glucan or chitin synthesis, and targeting mannoproteins from the cell wall in sensitive fungi [8].
Figure 1. General mode of action of antifungal AMPs.
Once AMPs diffuse through the cell wall, they face the cell membrane. Any alteration of the plasma membrane may impact the distribution, regulation, activity and signaling function of membrane proteins, with adverse effects on fungal cells. Once the interaction occurs, AMPs are classified as membrane-disruptive or membrane non-disruptive. The cationic and amphipathic character of most AMPs allow the disruption of lipid cell membranes causing pore formation, loss of biophysical properties and cell killing [12][18]. However, peptides acting through a lytic mechanisms are often highly toxic to different cell types [15]. Therefore, AMPs with non-lytic mechanism such as the cell penetrating peptides (CPPs) are preferred [13]. Once inside the cells, AMPs may target multiple processes. Common patterns of AMPs are the disruption of intracellular ion homeostasis, disruption of internal organelles such as mitochondria, (in)activation of signaling cascades, induction of reactive oxygen species (ROS) or apoptotic markers, disruption of cell cycle, DNA damage, and transcription and protein biosynthesis alteration [19][15] (Figure 1).
AMPs can also affect less commonly reported processes such as the production of secondary metabolites, including mycotoxins, which opens novel aspects for their future use in crops, postharvest and food processes. However, little is known about their mechanisms affecting mycotoxin biosynthesis in filamentous fungi. Studies on the effect on mycotoxin biosynthesis are restricted mainly to cyclopeptides derived from bacteria such as lipopeptides, small cysteine rich proteins (CRPs) which include defensins and antifungal AMPs of fungal origin (AFPs), and non-natural synthetic peptides. The main characteristics of these antifungal AMPs are summarized below.
Cyclopeptides derived from microorganisms contain both proteinogenic and unnatural amino acid residues [20]. Among them, lipopeptides produced by members of the Bacillus genus are compounds of great interest due to their activity against mycotoxin-producing fungi. These low molecular weight secondary metabolites have a broad range of activity, high biodegradability and low toxicity and are usually synthetized through NRPSs. They are composed of a hydrophilic cyclic peptide structure of 7–10 amino acids linked to a hydrophobic fatty acid chain with 13–19 carbon atoms. These compounds maintain their activities at high temperatures and different pH values; additionally, they resist peptidase and protease treatments [21][22]. Lipopeptides are classified into three major families according to their amino acid sequence: iturins which are heptapeptides with a β-amino fatty acid; fengycins which are decapeptides with a β-hydroxy fatty acid chain and surfactins, heptapeptides containing a β-hydroxy fatty acid tail with synergistic action with the two previous groups.
Defensins found in mammals, insects and plants (45–54 amino acids in length) form by far, the largest family of CRPs and are highly active against a large range of microorganisms. Regardless of the origin, defensins are structurally similar peptides. They have β-hairpin structures, stabilized by three/four disulfide bonds, but their sequences are divergent and show different activities, which include antifungal, antibacterial, or antitumoral activities [4]. Another CRP group of interest comprises of the AMPs of fungal origin, the so-called AFPs. AFPs are small (45–64 amino acids) and cationic defensin-like proteins that are produced and secreted to the culture medium by filamentous ascomycetes, mostly from the genera Aspergillus and Penicillium, and exhibit antifungal activity [19]. Several of these proteins have activity towards fungal plant pathogens with minimal inhibitory concentration (MIC) in the low micromolar range [23][24][25], and no toxicity to bacterial, plant or animal cells [25][26][27]. AFPs fold into five β-strands forming two packed β-sheets that share a common interface, and typically have six cysteine residues, forming three disulfide bonds [28][29]. A three-dimensional peptide signature, called the ɣ-core (Gly-X-Cys-X3–9-Cys), is present in virtually all defensins and AFPs [30].
Finally, the synthetic peptides with antifungal activities should also be noted. Synthetic AMPs are designed de novo based on the properties of natural AMPs or identified using combinatorial approaches. Peptide analogs of natural AMPs have been synthesized with substituted, deleted, or extended amino acids. Synthetic analogs have been produced through the modification of amino acid sequence, either by shortening the sequence to determine minimal antimicrobial motifs, or by extending peptide length, even by fusion of fragments from different peptides [31]. These approaches, mainly directed to improve the antifungal activity, reduce toxicity to non-target cells and increase stability against degradation; additionally, they have contributed substantially to increasing the number and diversity of known AMPs [3][32][33][34].

3. Effects of Distinct AMPs on Growth of Mycotoxin-Producing Fungi

Mycotoxins are secondary metabolites that are normally produced at the end of the exponential growth phase. Thus, mycotoxin production is generally thought to be correlated with the growth rate of producing fungi. Therefore, inhibiting fungal growth is often considered as the most effective strategy to prevent mycotoxin production.
Here we describe those antifungal AMPs that show activity against common mycotoxin-producing fungi, such as Alternaria, Aspergillus, Penicilllium and Fusarium species. These peptides have distinct and phylogenetically distant origins, ranging from microorganisms, to plants and mammals, as well as synthetic rationally designed peptides.

3.1. Antifungal AMPs from Microorganisms

A wide diversity of antifungal AMPs, produced by bacteria, are able to control fungal growth in vitro and in vivo. They mainly include antifungal AMPs produced by lactic acid bacteria (LAB), as well as species from the Streptomyces, Bacillus and Burkholderia genera, which are particularly active against fungal species belonging to the Aspergillus, Penicillium and Fusarium genera, but also to other species such as those from the Byssochlamys genus (Table 1). As examples of applications in vivo, the antifungal protein YvgO isolated from Bacillus thuringiensis, was able to extend the shelf-life of different fruit juices inoculated with the PAT producer Byssochlamys fulva, and provided a complimentary measure of protection in UV-treated fruit juices [35]. On the other hand, a high antifungal activity of peptides generated by L. plantarum TE10 was reported against A. flavus. Results demonstrated promising application of the peptide mixture as bio-control agent to prevent the growth of A. flavus in maize [36]. Relevant bacterial AMPs with effect on mycotoxin biosynthesis are highlighted in the next section.
Fungi have a complex repertoire of AFPs that differ in amino acid composition and sequence [3][37][27][38][39]. Several studies already indicated that some of the most hazardous mycotoxin-producing fungi are sensitive to AFPs (Table 1). Of interest are those studies showing antifungal activity in a wide range of mycotoxin producers and differences in susceptibility to AFPs among the fungal genera and species. Delgado et al. [40] evaluated the antifungal activity of PgAFP from P. chrysogenum against toxigenic fungi commonly found in dry-ripened foods. PgAFP retarded the growth of most fungi tested and the main mycotoxin-producing fungi analyzed, such as those producing AFs (A. flavus and Aspergillus parasiticus), OTA (A. carbonarius, A. ochraceus, and P. nordicum), ST (A. versicolor) and PAT (P. expansum and P. griseofulvum). Recently, AFPs from P. digitatum (PdAfpB) and P. expansum (PeAfpA, PeAfpB and PeAfpC), were tested against a representative panel of mycotoxin-producing fungi belonging to the genera Alternaria, Aspergillus, Byssochlamys, Fusarium and Penicillium [41]. These were previously reported to produce up to 26 different mycotoxins. AFPs showed significant activity against most of the mycotoxigenic fungi tested, in particular PeAfpA. PeAfpC showed powerful inhibition against Byssochlamys spectabilis (PAT producer), which is an important spoilage fungus in pasteurized food products, such as fruit juices and canned fruits [42]. Differences in susceptibility to AFPs were observed among fungal genera. In general, Aspergillus, Byssochlamys and Penicillium were more sensitive than the Fusarium genus. Moreover, the antifungal effect of AFPs also differed within the same species [40][41][43]. Further studies on susceptibility and resistance of fungal species including more strains from each species are needed to elucidate antifungal specificities of AFPs.
Table 1. Microbial antifungal proteins and peptides with activity against mycotoxin-producing fungi.
Origin Peptide Target Fungi Ref.
Bacteria      
Bacillus amyloliquefaciens Flagellin F. oxysporum, A. niger [44]
B. subtilis Fengycins F. oxysporum [45]
B. subtilis Iturin A Aspergillus spp., Fusarium spp., Penicilium spp. [46]
B. thuringiensis YvgO B. fulva [35]
Burkholderia cepacia Cepacidines A. niger [47]
Enterococcus durans Duracin F. culmorum [48]
Lactic acid bacteria Bacteriocins A. parasiticus, P. expansum [49][50]
Lactobacillus brevis AM7 Peptides P. roqueforti [51]
L. paracasei Bacteriocin F1 P. glaucum, A. niger, A. flavus [52]
L. plantarum LR/14 A. niger, P. chrysogenum [53]
L. plantarum FPSHTGMSVPPP Aspergillus spp., P. roqueforti [54]
L. plantarum TE10 Peptides MIX A. flavus [36]
Streptomyces spp. C/33-6 F. graminearum [55]
S. tendae Nikkomycin Z Aspergillus spp., Fusarium spp., Penicilium spp. [56]
S. tendae Tu901 AFP1 A. fumigatus [57]
Fungi      
Aspergillus giganteous AFP Fusarium spp. [58]
A. clavatus AcAFP F. oxysporum, F. solani [59]
A. clavatus AcAMP F. oxysporum, F. solani [60]
A. niger Anafp A. flavus, F. oxysporum, F. solani [23]
Fusarium graminearum FgAFP F. verticilloides, F. proliferatum [61]
Emericellopsis alkalina Emericellipsin A A.niger, A. flavus [62]
Monascus pilosus MAFP1 Fusarium spp. [63]
Neosartoria fischeri NFAP A. nidulans, F. graminearum [64]
N. fischeri NFAP2 A. nidulans [65]
Penicillium citrinum PcPAF F. oxysporum [66]
P. chrysogenum PAF F. oxysporum, A. flavus [67]
P. chrysogenum PgAFP/PAFB F. oxysporum, A. flavus [40][68]
P. chrysogenum Pc-Arctin/PAFC A. longipes, B. spectabilis [24][69]
P. digitatum PdAfpB F. oxysporum, P. expansum [41][70]
P. expansum PeAfpA A. alternata, Aspergillus spp., Byssochlamys spp., Fusarium spp.,
Penicillium spp.
[41]
P. expansum PeAfpB Alternaria spp., Aspergillus spp., Byssochlamys spp., Fusarium spp.,
Penicillium spp.
[41]
P. expansum PeAfpC A. flavus, Byssochlamys spp. [41]
Remarkably, the efficacy of some AFPs in in vivo experiments has been proven. For instance, PgAFP efficiently reduced counts of A. flavus inoculated on a dry-fermented sausage [40], while A. giganteus AFP protected tomato seedlings from vascular wilt disease caused by F. oxysporum f. sp. lycopersici [58]. Also PdAfpB and PeAfpA controlled the growth of P. expansum in apple fruits [71].

3.2. Antifungal AMPs from Plants

Plant AMPs are constitutively expressed in both plant storage and reproductive organs, but they can also be locally or systematically induced during plant defense response [72]. Antifungal AMPs have been isolated from a wide variety of plant species, and classified by amino acid sequence, position and number of cysteine residues involved in the disulfide bridges, and/or function to families [3][73]. A large list of these families show inhibitory activity against mycotoxin-producing fungi (Table 2). It is noteworthy that, contrary to that described for fungal AFPs, most fungi sensitive to plant antifungal AMPs are Fusarium species, especially F. culmurum, F. graminearum, F. oxysporum and F. solani. However, other toxigenic fungal species from Aspergillus (A. flavus, A. niger), Penicillium (P. expansum) and Alternaria (A. alternata, A. solani) have been successfully inhibited by antifungal AMPs from plants [3][74][73]. As a practical example, we highlight the application of the onion (Allium cepa) defensin Ace-AMP1on tomato leaves. Treated leaves showed enhance resistance to the tomato pathogen A. solani (TeA and AOH producer), making this AMP a promising fungicide to be used in agriculture [75] (Table 2).
Table 2. Plant antifungal proteins and peptides with activity against mycotoxin-producing fungi.
Peptide Origin Target Fungi Ref.
Defensins      
Ace-AMP1 Allium cepa F. solani, F. oxysporum [75]
Dm-AMP1 Dahlia merkii Fusarium spp. [76]
MsDef1 Medicago sativa F. graminearum [77]
MtDef4 M. truncatula F. graminearum [78]
NaD1, NaD2 Nicotiana alata F. graminearum, F. oxysporum [79]
OefDef1.1 Olea europea Fusarium spp. [80]
PvD1 Phaseolus vulgaris F. solani, F. oxysporum [81]
Rs-AFP2 Raphanus sativus A. flavus, F. solani [82]
TPP3 N. tabacum Fusarium spp. [82]
Hevein-type      
Ee-CBP Euonymus europaeus F. culmorum [83]
GAFP Ginkgo bilolba F. graminearum [84]
SmAMP3 Stellariamedia F. solani [85]
Vaccatides Vaccaria hispanica Fusarium spp. [86]
WAMP-1a and b Triticum aestivum F. moniliforme [87]
Napin      
BoNap Brassica oleracea F. culmorum, P. expansum [88]
Snakins      
Snakin Z Jujube fruits A. niger [89]
SN1, SN2 Solanum tuberosum F. solani, F. culmorum [90]
StSN1-2 S. tuberosum Fusarium spp., A. flavus [91]
Thaumatin-like      
Osmotin N. tabacum F. solani, F. oxysporum [57]
Zeamatin Zea mays F. solani [92]
Thionins      
Pth-St1 S. tuberosum F. solani [93]
Thionin 2.4 Arabidopsis thaliana F. graminearum [94]
Tu-AMP1, AMP2 Tulipa gesneriana F. oxysporum [95]
Viscotoxin A3 Viscum album F. solani [96]
2S albumin      
Bn-2S Brassica napus F. culmorum, F. oxysporum [97]
CW-1 Malva parviflora F. graminearum [98]
Pe AFP1 Passiflora edulis F. oxysporum [99]
Pf2 P. edulis F. oxysporum [100]
LTPs      
Bc-nsLTP B. campestris F. oxysporum [101]
Ca-LTp1 Capsicum annuum F. oxysporum [102]
Ha-AP10 Helianthus annus F. solani [103]
Knottins      
Mj AMP2 Mirabilis jalapa F. oxysporum [104]
PAFP-s Phytolacca american F. oxysporum, F. graminearum  
Hairpinins      
Sm-AMP-x2 Stellaria media F.oxysporum, A. niger, A. alternata [105]
Puroindolines      
PIN-A T. aestivum F. culmorum [106]
PIN-B Hordeum vulgare F. graminearum  
Gly-rich peptides      
Gc-GRP Coffea canephora F. oxysporum [107]
Pg-AMP1 P. edulis F. oxysporum [108]

3.3. Antifungal AMPs from Animal Origin

Animal antifungal AMPs are produced at the sites that are constantly exposed to microbes, such as skin and mucosal barriers [109]. Various antifungal AMPs have been isolated from invertebrates and vertebrate species, including fish, amphibians, and mammals (Table 3). Several invertebrate AMPs display activity against mycotoxin-producing fungi, in particular Aspergillus and Fusarium species, and have been isolated from organisms such as scorpions, silk moth, fruit fly, mantis, bee, termites and ticks. Recently, the susceptibility of the AOH producer Alternaria brassicicola to thanatin, produced by the spined soldier bug Podisus maculiventris, was described [110]. An example of antifungal AMP from fish is pleurocidin, a cationic peptide isolated from the winter flounder Pleuronectes americanus, which showed antifungal activity against F. culmorum (DON, NIV and ZEA producer) and A. niger (OTA producer) [111]. Finally, mammalian antifungal AMPs are found in human and bovine, and show activity against a large list of mycotoxin-producing fungi including F. culmurum (DON, NIV, T-2 and ZON producer), P. expansum (PAT and CIT producer), A. niger (OTA producer), A. nidulans (ST), F. oxysporum (T-2 toxin, HT-2 toxin producer) and A. flavus (AFs producer).
Of note is the antifungal activity of the human β-defensin 3 (HBD-3) in cereal-based products. Application of 80 μg/mL delayed growth of F. culmorum, P. expansum and A. niger on bread after more than 13 days [112]. Antifungal functions of bovin lactoferrin and derived peptides have been also reported [113][114]. Different mycotoxin-producing fungi from Alternaria, Aspergillus, Penicillium and Fusarium were sensitive to lactoferrin-derived peptides. This report is interesting because lactoferrin has been designated by the United States Food and Drug Administration (FDA) as a GRAS food additive [115].
Table 3. Animal antifungal proteins and peptides with activity against mycotoxin-producing fungi.
Origin Peptide Target Fungi Ref.
Invertebrate      
Acanthoscurria gomesiana Gomesin Fusarium spp. [116]
Bombyx mori Cecropin A Aspergillus spp., Fusarium spp. [117]
Centruroides sculpturatus BmKbpp2 F. culmorum [118]
Drosophila melanogaster Drosomycin Fusarium spp., Aspergillus spp. [119]
D. melanogaster Metchnikowin F. graminearum [120]
Heliothis virescens Heliomicin Fusarium spp. [121]
Ixodes ricinus DefMT3, DefMT5, DefMT6 F. graminearum, F. culmorum [122]
Opistophtalmus carinatus Opistoporin-1 F. culmorum [123]
Penaeid shrimps Penaeidins Aspergillus spp., F. oxysporum [124]
Podisus maculiventris Thanatin A. brassicicola, F. culmorum [110]
Pseudacanthotermes spiniger Termicin/Spinigerin Aspergillus spp., F. culmorum, F. oxysporym [125]
Sphodromantis viridis Mastoparan-S F. culmorum, A. niger, A. fumigatus [126]
Fish and Amphibians      
Phyllomedusa bicolor Skin-PYY A. niger [127]
Pleuronectes americanus Pleurocidin F. oxysporum, A. niger, Alternaria spp. [111]
Mammals      
Bovine Cathelicidin BMAP-28 Aspergillus spp., Penicillium spp. [128]
Bovine Indolicidin A. niger, Penicillium spp. [129]
Bovine Lactoferrin A. niger [113]
Human Defensin HBD-3 F. culmorum, P. expansum, A. niger. [112]
Human Hepc20/Hepc25 A. niger [130]
Human Tritrptcin A. flavus [131]

3.4. Synthetic Antifungal Peptides

The development of synthetic peptides has grown to overcome some drawbacks associated with natural peptides, including low antifungal activity, toxicity or instability. Synthetic AMPs that show antifungal properties against mycotoxin producers are listed in Table 4. This includes analogs of natural AMPs and de novo peptides together with information about the susceptible mycotoxin-producing fungi to these synthetic AMPs, which include different species from Aspergillus, Penicillium and Fusarium genera.
Different strategies have been employed for developing analogs of AMPs. Natural proteins and peptides can be used for the design of novel synthetic bioactive peptides that are more potent than the original ones. They can derive from natural cleavage of natural proteins such as LfcinB17-31 and LfcinB20-25, which are derived from bovine lactoferrin [114]. Another strategy is to use the sequence of natural occurring AMPs as a template and design a new molecule. For instance, it has been shown that one of the functional regions of defensins is primarily located in the C-terminal β-sheet domain, called the γ-core motif. This is the case of the γ-core motif of the tick selected defensins (DefMT3, DefMT6, and DefMT7), which enhanced antifungal activity against F. graminearum and F. culmorum [122][132]. Another extensively used method is based on designing peptides that changes positive charge. In the peptide AGM182 the second disulfide linkage of tachyplesin1 has been replaced by a sequence that assumes an amphipathic β-sheet conformation with maximized positive charge density [133].
In addition to these analogs of AMPs, many synthetic peptides have been constructed via de novo synthesis such as a group of peptides, named PAFs, which have been designed using a combinatorial library [134][135][136]. Although these peptides were identified through a nonbiased approach, they show properties of natural AMPs. In fact, PAF26 has been proposed as a model peptide for the characterization and study of cationic, cell-penetrating antifungal peptides [137].
A good practical example of application is the tachyplesin1-derived peptide AGM182, which caused up to 72% reduction in A. flavus growth/infection after its expression in transgenic maize plants. Furthermore, reduced fungal growth in the AGM182 transgenic seeds resulted in a significant reduction in AF levels (76–98%) [138].
Table 4. Synthetic antifungal peptides with activity against mycotoxin-producing fungi.
Peptide Source Target Fungi Ref.
AGM182 Tachyplesin-derived A. flavus [133]
Di-K19Hc Halocidin-derived F. oxysporum, A. niger [139]
D4E1 Cecropin-derived Aspergillus spp., Fusarium spp. [117][140]
γ-core DefMT3, DefMT6, DefMT7-derived F. graminearum, F. culmorum [122][132]
K18M Thanatin (8–21)-derived F. culmorum [141]
LfcinB17-31/LfcinB20-25 Lactoferricin-derived A. nidulans, F. oxysporum, P. expansum, Alternaria spp. [136]
MsrA1 Cecropin: Melittin -derived F. solani [142]
BP22 de novo P. expansum [143]
D-V13K de novo Aspergillus spp. [144]
(KW)n/(RW)n de novo F. solani, F. oxysporum [145]
O3TR/C12O3TR de novo F. culmorum, P. expansum, A. niger [146]
PAF26/PAF32 de novo Penicillium spp., F. oxysporum, [33][136]
PAF76/PAF77 de novo F. oxysporum [147]
PEP 6 de novo F. oxysporum [147]
PPD1/66-10/77-3 de novo A. flavus, A. parasiticus [148]

References

  1. Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell. Infect. Microbiol. 2021, 11, 453.
  2. Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The Value of Antimicrobial Peptides in the Age of Resistance. Lancet Infect. Dis. 2020, 20, e216–e230.
  3. Thery, T.; Lynch, K.M.; Arendt, E.K. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1327–1360.
  4. Van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and Mechanisms of Action of Naturally Occurring Antifungal Peptides. Cell. Mol. Life Sci. 2013, 70, 3545–3570.
  5. Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093.
  6. Do Nascimento Dias, J.; de Souza Silva, C.; de Araújo, A.R.; Souza, J.M.T.; de Holanda Veloso Júnior, P.H.; Cabral, W.F.; da Glória da Silva, M.; Eaton, P.; de Souza de Almeida Leite, J.R.; Nicola, A.M.; et al. Mechanisms of Action of Antimicrobial Peptides ToAP2 and NDBP-5.7 against Candida albicans Planktonic and Biofilm Cells. Sci. Rep. 2020, 10, 10327.
  7. Parvy, J.-P.; Yu, Y.; Dostalova, A.; Kondo, S.; Kurjan, A.; Bulet, P.; Lemaître, B.; Vidal, M.; Cordero, J.B. The Antimicrobial Peptide Defensin Cooperates with Tumour Necrosis Factor to Drive Tumour Cell Death in Drosophila. eLife 2019, 8, e45061.
  8. Buda De Cesare, G.; Cristy, S.A.; Garsin, D.A.; Lorenz, M.C. Antimicrobial Peptides: A New Frontier in Antifungal Therapy. mBio 2020, 11, e02123-20.
  9. Struyfs, C.; Cools, T.L.; De Cremer, K.; Sampaio-Marques, B.; Ludovico, P.; Wasko, B.M.; Kaeberlein, M.; Cammue, B.P.A.; Thevissen, K. The Antifungal Plant Defensin HsAFP1 Induces Autophagy, Vacuolar Dysfunction and Cell Cycle Impairment in Yeast. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183255.
  10. Finking, R.; Marahiel, M.A. Biosynthesis of Nonribosomal Peptides. Annu. Rev. Microbiol. 2004, 58, 453–488.
  11. Wang, G. Post-Translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. Curr. Biotechnol. 2012, 1, 72–79.
  12. Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250.
  13. Marcos, J.F.; Gandía, M. Antimicrobial Peptides: To Membranes and Beyond. Expert Opin. Drug Discov. 2009, 4, 659–671.
  14. Nicolas, P. Multifunctional Host Defense Peptides: Intracellular-Targeting Antimicrobial Peptides. FEBS J. 2009, 276, 6483–6496.
  15. Rautenbach, M.; Troskie, A.M.; Vosloo, J.A. Antifungal Peptides: To Be or Not to Be Membrane Active. Biochimie 2016, 130, 132–145.
  16. Nguyen, L.; Haney, E.; Vogel, H. The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action. Trends Biotechnol. 2011, 29, 464–472.
  17. Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395.
  18. Guilhelmelli, F.; Vilela, N.; Albuquerque, P.; Derengowski, L.D.S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic Development Challenges: The Various Mechanisms of Action of Antimicrobial Peptides and of Bacterial Resistance. Front. Microbiol. 2013, 4, 353.
  19. Hegedüs, N.; Marx, F. Antifungal Proteins: More than Antimicrobials? Fungal Biol. Rev. 2013, 26, 132–145.
  20. Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front. Chem. 2021, 9, 432.
  21. Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302.
  22. Jiao, R.; Cai, Y.; He, P.; Munir, S.; Li, X.; Wu, Y.; Wang, J.; Xia, M.; He, P.; Wang, G.; et al. Bacillus amyloliquefaciens YN201732 Produces Lipopeptides With Promising Biocontrol Activity Against Fungal Pathogen Erysiphe Cichoracearum. Front. Cell. Infect. Microbiol. 2021, 11, 387.
  23. Gun Lee, D.; Shin, S.Y.; Maeng, C.Y.; Jin, Z.Z.; Kim, K.L.; Hahm, K.S. Isolation and Characterization of a Novel Antifungal Peptide from Aspergillus niger. Biochem. Biophys. Res. Commun. 1999, 263, 646–651.
  24. Chen, Z.; Ao, J.; Yang, W.; Jiao, L.; Zheng, T.; Chen, X. Purification and Characterization of a Novel Antifungal Protein Secreted by Penicillium chrysogenum from an Arctic Sediment. Appl. Microbiol. Biotechnol. 2013, 97, 10381–10390.
  25. Moreno, A.B.; Martínez Del Pozo, A.; San Segundo, B. Biotechnologically Relevant Enzymes and Proteins. Antifungal Mechanism of the Aspergillus giganteus AFP against the Rice Blast Fungus Magnaporthe Grisea. Appl. Microbiol. Biotechnol. 2006, 72, 883–895.
  26. Silva, P.M.; Gonçalves, S.; Santos, N.C. Defensins: Antifungal Lessons from Eukaryotes. Front. Microbiol. 2014, 5, 97.
  27. Meyer, V.; Jung, S. Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms 2018, 6, 50.
  28. Batta, G.; Barna, T.; Gáspári, Z.; Sándor, S.; Kövér, K.E.; Binder, U.; Sarg, B.; Kaiserer, L.; Chhillar, A.K.; Eigentler, A.; et al. Functional Aspects of the Solution Structure and Dynamics of PAF—A Highly-Stable Antifungal Protein from Penicillium chrysogenum. FEBS J. 2009, 276, 2875–2890.
  29. Campos-Olivas, R.; Bruix, M.; Santoro, J.; Lacadena, J.; Martinez del Pozo, A.; Gavilanes, J.G.; Rico, M. NMR Solution Structure of the Antifungal Protein from Aspergillus giganteus: Evidence for Cysteine Pairing Isomerism. Biochemistry 1995, 34, 3009–3021.
  30. Yount, N.Y.; Yeaman, M.R. Multidimensional Signatures in Antimicrobial Peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 7363–7368.
  31. Marcos, J.F.; Manzanares, P. Antimicrobial Peptides. In Antimicrobial Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 195–212. ISBN 978-0-470-59822-1.
  32. Kerenga, B.K.; McKenna, J.A.; Harvey, P.J.; Quimbar, P.; Garcia-Ceron, D.; Lay, F.T.; Phan, T.K.; Veneer, P.K.; Vasa, S.; Parisi, K.; et al. Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32. Front. Microbiol. 2019, 10, 795.
  33. López-García, B.; Harries, E.; Carmona, L.; Campos-Soriano, L.; López, J.J.; Manzanares, P.; Gandía, M.; Coca, M.; Marcos, J.F. Concatemerization Increases the Inhibitory Activity of Short, Cell-Penetrating, Cationic and Tryptophan-Rich Antifungal Peptides. Appl. Microbiol. Biotechnol. 2015, 99, 8011–8021.
  34. Marcos, J.F.; Muñoz, A.; Pérez-Payá, E.; Misra, S.; López-García, B. Identification and Rational Design of Novel Antimicrobial Peptides for Plant Protection. Annu. Rev. Phytopathol. 2008, 46, 273–301.
  35. Manns, D.C.; Churey, J.J.; Worobo, R.W. Variable Efficacy of the Proteinaceous Antifungal YvgO in Select Fruit Juices and Teas as a Complement with UV Methods of Food Protection. J. Food Prot. 2015, 78, 1851–1860.
  36. Muhialdin, B.J.; Algboory, H.L.; Kadum, H.; Mohammed, N.K.; Saari, N.; Hassan, Z.; Meor Hussin, A.S. Antifungal Activity Determination for the Peptides Generated by Lactobacillus plantarum TE10 against Aspergillus flavus in Maize Seeds. Food Control. 2020, 109, 106898.
  37. Delgado, J.; Owens, R.A.; Doyle, S.; Asensio, M.A.; Núñez, F. Manuscript Title: Antifungal Proteins from Moulds: Analytical Tools and Potential Application to Dry-Ripened Foods. Appl. Microbiol. Biotechnol. 2016, 100, 6991–7000.
  38. Garrigues, S.; Gandía, M.; Marcos, J.F. Occurrence and Function of Fungal Antifungal Proteins: A Case Study of the Citrus Postharvest Pathogen Penicillium digitatum. Appl. Microbiol. Biotechnol. 2016, 100, 2243–2256.
  39. Leiter, É.; Gáll, T.; Csernoch, L.; Pócsi, I. Biofungicide Utilizations of Antifungal Proteins of Filamentous Ascomycetes: Current and Foreseeable Future Developments. BioControl 2017, 62, 125–138.
  40. Delgado, J.; Acosta, R.; Rodríguez-Martín, A.; Bermúdez, E.; Núñez, F.; Asensio, M.A. Growth Inhibition and Stability of PgAFP from Penicillium chrysogenum against Fungi Common on Dry-Ripened Meat Products. Int. J. Food Microbiol. 2015, 205, 23–29.
  41. Martínez-Culebras, P.V.; Gandía, M.; Boronat, A.; Marcos, J.F.; Manzanares, P. Differential Susceptibility of Mycotoxin-Producing Fungi to Distinct Antifungal Proteins (AFPs). Food Microbiol. 2021, 97, 103760.
  42. Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009; p. 519. ISBN 978-0-387-92206-5.
  43. Delgado, J.; Ballester, A.-R.; Núñez, F.; González-Candelas, L. Evaluation of the Activity of the Antifungal PgAFP Protein and Its Producer Mould against Penicillium spp. Postharvest Pathogens of Citrus and Pome Fruits. Food Microbiol. 2019, 84, 103266.
  44. Zhao, P.; Quan, C.; Wang, Y.; Wang, J.; Fan, S. Bacillus amyloliquefaciens Q-426 as a Potential Biocontrol Agent against Fusarium oxysporum f. sp. spinaciae. J. Basic Microbiol. 2014, 54, 448–456.
  45. Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 1986, 39, 888–901.
  46. Klich, M.; Lax, A.; Bland, J. Inhibition of Some Mycotoxigenic Fungi by Iturin A, a Peptidolipid Produced by Bacillus Subtilis. Mycopathologia 1991, 116, 77–80.
  47. Lim, Y.; Suh, J.W.; Kim, S.; Hyun, B.; Kim, C.; Lee, C.H. Cepacidine A, a Novel Antifungal Antibiotic Produced by Pseudomonas Cepacia. II. Physico-Chemical Properties and Structure Elucidation. J. Antibiot. 1994, 47, 1406–1416.
  48. Belguesmia, Y.; Choiset, Y.; Rabesona, H.; Baudy-Floc’h, M.; Le Blay, G.; Haertlé, T.; Chobert, J.-M. Antifungal Properties of Durancins Isolated from Enterococcus durans A5-11 and of Its Synthetic Fragments. Lett. Appl. Microbiol. 2012, 56.
  49. Daie Ghazvini, R.; Kouhsari, E.; Zibafar, E.; Hashemi, J.; Amini, A.; Niknejad, F. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus parasiticus. Open Microbiol. J. 2016, 10, 1–5.
  50. Luz, C.; Saladino, F.; Luciano, F.B.; Mañes, J.; Meca, G. In Vitro Antifungal Activity of Bioactive Peptides Produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT—Food Sci. Technol. 2017, 81, 128–135.
  51. Coda, R.; Rizzello, C.G.; Nigro, F.; De Angelis, M.; Arnault, P.; Gobbetti, M. Long-Term Fungal Inhibitory Activity of Water-Soluble Extracts of Phaseolus Vulgaris Cv. Pinto and Sourdough Lactic Acid Bacteria during Bread Storage. Appl. Environ. Microbiol. 2008, 74, 7391–7398.
  52. Miao, J.; Guo, H.; Ou, Y.; Liu, G.; Fang, X.; Liao, Z.; Ke, C.; Chen, Y.; Zhao, L.; Cao, Y. Purification and Characterization of Bacteriocin F1, a Novel Bacteriocin Produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan Kefir, a Traditional Fermented Milk from Tibet, China. Food Control. 2014, 42, 48–53.
  53. Gupta, R.; Srivastava, S. Antifungal Effect of Antimicrobial Peptides (AMPs LR14) Derived from Lactobacillus plantarum Strain LR/14 and Their Applications in Prevention of Grain Spoilage. Food Microbiol. 2014, 42, 1–7.
  54. Muhialdin, B.J.; Hassan, Z.; Bakar, F.A.; Saari, N. Identification of Antifungal Peptides Produced by Lactobacillus plantarum IS10 Grown in the MRS Broth. Food Control. 2016, 59, 27–30.
  55. Fulgueira, C.L.; Amigot, S.L.; Magni, C. Growth Inhibition of Toxigenic Fungi by a Proteinaceous Compound from Streptomyces sp. C/33-6. Curr. Microbiol. 2004, 48, 135–139.
  56. Li, R.K.; Rinaldi, M.G. In Vitro Antifungal Activity of Nikkomycin Z in Combination with Fluconazole or Itraconazole. Antimicrob. Agents Chemother. 1999, 43, 1401–1405.
  57. Freitas, C.; Nogueira, F.; Vasconcelos, I.; Oliveira, J.; Domont, G.; Ramos, M. Osmotin Purified from the Latex of Calotropis procera: Biochemical Characterization, Biological Activity and Role in Plant Defense. Plant. Physiol. Biochem. PPB/Soc. Fr. De Physiol. Veg. 2011, 49, 738–743.
  58. Theis, T.; Marx, F.; Salvenmoser, W.; Stahl, U.; Meyer, V. New Insights into the Target Site and Mode of Action of the Antifungal Protein of Aspergillus giganteus. Res. Microbiol. 2005, 156, 47–56.
  59. Skouri-Gargouri, H.; Gargouri, A. First Isolation of a Novel Thermostable Antifungal Peptide Secreted by Aspergillus clavatus. Peptides 2008, 29, 1871–1877.
  60. Mohamed, H.; Jellouli, K.; Hmidet, N.; Balti, R.; Sellami-Kamoun, A. A Highly Thermostable Antimicrobial Peptide from Aspergillus clavatus ES1: Biochemical and Molecular Characterization. J. Ind. Microbiol. Biotechnol. 2010, 37, 805–813.
  61. Patiño, B.; Vázquez, C.; Manning, J.M.; Roncero, M.I.G.; Córdoba-Cañero, D.; Di Pietro, A.; Martínez-del-Pozo, Á. Characterization of a Novel Cysteine-Rich Antifungal Protein from Fusarium graminearum with Activity against Maize Fungal Pathogens. Int. J. Food Microbiol. 2018, 283, 45–51.
  62. Rogozhin, E.A.; Sadykova, V.S.; Baranova, A.A.; Vasilchenko, A.S.; Lushpa, V.A.; Mineev, K.S.; Georgieva, M.L.; Kul’ko, A.B.; Krasheninnikov, M.E.; Lyundup, A.V.; et al. A Novel Lipopeptaibol Emericellipsin A with Antimicrobial and Antitumor Activity Produced by the Extremophilic Fungus Emericellopsis alkalina. Molecules 2018, 23, 2785.
  63. Tu, C.-Y.; Chen, Y.-P.; Yu, M.-C.; Hwang, I.-E.; Wu, D.-Y.; Liaw, L.-L. Characterization and Expression of the Antifungal Protein from Monascus pilosus and Its Distribution among Various Monascus Species. J. Biosci. Bioeng. 2016, 122, 27–33.
  64. Kovács, L.; Virágh, M.; Takó, M.; Papp, T.; Vágvölgyi, C.; Galgóczy, L. Isolation and Characterization of Neosartorya fischeri Antifungal Protein (NFAP). Peptides 2011, 32, 1724–1731.
  65. Tóth, L.; Kele, Z.; Borics, A.; Nagy, L.G.; Váradi, G.; Virágh, M.; Takó, M.; Vágvölgyi, C.; Galgóczy, L. NFAP2, a Novel Cysteine-Rich Anti-Yeast Protein from Neosartorya fischeri NRRL 181: Isolation and Characterization. AMB Express 2016, 6, 75.
  66. Wen, C.; Guo, W.; Chen, X. Purification and Identification of a Novel Antifungal Protein Secreted by Penicillium citrinum from the Southwest Indian Ocean. J. Microbiol. Biotechnol. 2014, 24, 1337–1345.
  67. Kaiserer, L.; Oberparleiter, C.; Weiler-Görz, R.; Burgstaller, W.; Leiter, E.; Marx, F. Characterization of the Penicillium chrysogenum Antifungal Protein PAF. Arch. Microbiol. 2003, 180, 204–210.
  68. Huber, A.; Hajdu, D.; Bratschun-Khan, D.; Gáspári, Z.; Varbanov, M.; Philippot, S.; Fizil, Á.; Czajlik, A.; Kele, Z.; Sonderegger, C.; et al. New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci. Rep. 2018, 8, 1751.
  69. Holzknecht, J.; Kühbacher, A.; Papp, C.; Farkas, A.; Váradi, G.; Marcos, J.F.; Manzanares, P.; Tóth, G.K.; Galgóczy, L.; Marx, F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. JoF 2020, 6, 141.
  70. Garrigues, S.; Gandía, M.; Popa, C.; Borics, A.; Marx, F.; Coca, M.; Marcos, J.F.; Manzanares, P. Efficient Production and Characterization of the Novel and Highly Active Antifungal Protein AfpB from Penicillium digitatum. Sci. Rep. 2017, 7, 14663.
  71. Gandía, M.; Monge, A.; Garrigues, S.; Orozco, H.; Giner-Llorca, M.; Marcos, J.F.; Manzanares, P. Novel Insights in the Production, Activity and Protective Effect of Penicillium expansum Antifungal Proteins. Int. J. Biol. Macromol. 2020, 164, 3922–3931.
  72. Marcos López, J.F.; Gandía Gómez, M.; Garrigues, S.; Manzanares, P.; Coca, M. Antifungal Peptides and Proteins with Activity against Fungi Causing Postharvest Decay; Taylor & Francis: New York, NY, USA, 2020; ISBN 978-1-315-20918-0.
  73. Yan, J.; Yuan, S.-S.; Jiang, L.-L.; Ye, X.-J.; Ng, T.; Wu, Z.-J. Plant Antifungal Proteins and Their Applications in Agriculture. Appl. Microbiol. Biotechnol. 2015, 99, 4961–4981.
  74. Shwaiki, L.N.; Lynch, K.M.; Arendt, E.K. Future of Antimicrobial Peptides Derived from Plants in Food Application—A Focus on Synthetic Peptides. Trends Food Sci. Technol. 2021, 112, 312–324.
  75. Wu, Y.; He, Y.; Ge, X. Functional Characterization of the Recombinant Antimicrobial Peptide Trx-Ace-AMP1 and Its Application on the Control of Tomato Early Blight Disease. Appl. Microbiol. Biotechnol. 2011, 90, 1303–1310.
  76. Sagaram, U.S.; El-Mounadi, K.; Buchko, G.W.; Berg, H.R.; Kaur, J.; Pandurangi, R.S.; Smith, T.J.; Shah, D.M. Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry. PLoS ONE 2013, 8, e82485.
  77. Cruz, L.P.; Ribeiro, S.F.F.; Carvalho, A.O.; Vasconcelos, I.M.; Rodrigues, R.; Cunha, M.D.; Gomes, V.M. Isolation and Partial Characterization of a Novel Lipid Transfer Protein (LTP) and Antifungal Activity of Peptides from Chilli Pepper Seeds. Protein Pept. Lett. 2010, 17, 311–318.
  78. Kaur, J.; Thokala, M.; Robert-Seilaniantz, A.; Zhao, P.; Peyret, H.; Berg, H.; Pandey, S.; Jones, J.; Shah, D. Subcellular Targeting of an Evolutionarily Conserved Plant Defensin MtDef4.2 Determines the Outcome of Plant-Pathogen Interaction in Transgenic Arabidopsis. Mol. Plant. Pathol. 2012, 13, 1032–1046.
  79. Dracatos, P.M.; van der Weerden, N.L.; Carroll, K.T.; Johnson, E.D.; Plummer, K.M.; Anderson, M.A. Inhibition of Cereal Rust Fungi by Both Class I and II Defensins Derived from the Flowers of Nicotiana alata. Mol. Plant. Pathol. 2013, 15, 67–79.
  80. Li, H.; Velivelli, S.; Shah, D. Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Mol. Plant.-Microbe Interact. 2019, 32, 1649–1664.
  81. Games, P.D.; Dos Santos, I.S.; Mello, E.O.; Diz, M.S.S.; Carvalho, A.O.; de Souza-Filho, G.A.; Da Cunha, M.; Vasconcelos, I.M.; Ferreira, B.D.S.; Gomes, V.M. Isolation, Characterization and Cloning of a CDNA Encoding a New Antifungal Defensin from Phaseolus vulgaris L. Seeds. Peptides 2008, 29, 2090–2100.
  82. Baxter, A.A.; Richter, V.; Lay, F.T.; Poon, I.K.H.; Adda, C.G.; Veneer, P.K.; Phan, T.K.; Bleackley, M.R.; Anderson, M.A.; Kvansakul, M.; et al. The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation to Mediate Cell Lysis. Mol. Cell. Biol. 2015, 35, 1964–1978.
  83. Van den Bergh, K.P.B.; Proost, P.; Van Damme, J.; Coosemans, J.; Van Damme, E.J.M.; Peumans, W.J. Five Disulfide Bridges Stabilize a Hevein-Type Antimicrobial Peptide from the Bark of Spindle Tree (Euonymus europaeus L.). FEBS Lett. 2002, 530, 181–185.
  84. Wong, K.H.; Tan, W.L.; Kini, S.G.; Xiao, T.; Serra, A.; Sze, S.K.; Tam, J.P. Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica. Front. Plant. Sci. 2017, 8, 1100.
  85. Rogozhin, E.; Slezina, M.; Slavokhotova, A.; Istomina, E.; Korostyleva, T.; Smirnov, A.; Grishin, E.; Egorov, T.; Odintsova, T. A Novel Antifungal Peptide from Leaves of the Weed Stellaria media L. Biochimie 2015, 116, 125–132.
  86. Huang, R.-H.; Xiang, Y.; Liu, X.-Z.; Zhang, Y.; Hu, Z.; Wang, D.-C. Two Novel Antifungal Peptides Distinct with a Five-Disulfide Motif from the Bark of Eucommia ulmoides Oliv. FEBS Lett 2002, 521, 87–90.
  87. Odintsova, T.I.; Vassilevski, A.A.; Slavokhotova, A.A.; Musolyamov, A.K.; Finkina, E.I.; Khadeeva, N.V.; Rogozhin, E.A.; Korostyleva, T.V.; Pukhalsky, V.A.; Grishin, E.V.; et al. A Novel Antifungal Hevein-Type Peptide from Triticum kiharae Seeds with a Unique 10-Cysteine Motif. FEBS J. 2009, 276, 4266–4275.
  88. Thery, T.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Isolation, Characterisation and Application of a New Antifungal Protein from Broccoli Seeds—New Food Preservative with Great Potential. Food Control. 2020, 117, 107356.
  89. Daneshmand, F.; Zare-Zardini, H.; Ebrahimi, L. Investigation of the Antimicrobial Activities of Snakin-Z, a New Cationic Peptide Derived from Zizyphus jujuba Fruits. Nat. Prod. Res. 2013, 27, 2292–2296.
  90. Bártová, V.; Bárta, J.; Jarošová, M. Antifungal and Antimicrobial Proteins and Peptides of Potato (Solanum tuberosum L.) Tubers and Their Applications. Appl. Microbiol. Biotechnol. 2019, 103, 5533–5547.
  91. Berrocal-Lobo, M.; Segura, A.; Moreno, M.; López, G.; García-Olmedo, F.; Molina, A. Snakin-2, an Antimicrobial Peptide from Potato Whose Gene Is Locally Induced by Wounding and Responds to Pathogen Infection. Plant. Physiol. 2002, 128, 951–961.
  92. Abad, L.R.; D’Urzo, M.P.; Liu, D.; Narasimhan, M.L.; Reuveni, M.; Zhu, J.K.; Niu, X.; Singh, N.K.; Hasegawa, P.M.; Bressan, R.A. Antifungal Activity of Tobacco Osmotin Has Specificity and Involves Plasma Membrane Permeabilization. Plant. Sci. 1996, 118, 11–23.
  93. Moreno, M.; Segura, A.; García-Olmedo, F. Pseudothionin-St1, a Potato Peptide Active against Potato Pathogens. Eur. J. Biochem. 1994, 223, 135–139.
  94. Asano, T.; Miwa, A.; Maeda, K.; Kimura, M.; Nishiuchi, T. The Secreted Antifungal Protein Thionin 2.4 in Arabidopsis thaliana Suppresses the Toxicity of a Fungal Fruit Body Lectin from Fusarium graminearum. PLOS Pathog. 2013, 9, e1003581.
  95. Fujimura, M.; Ideguchi, M.; Minami, Y.; Watanabe, K.; Tadera, K. Purification, Characterization, and Sequencing of Novel Antimicrobial Peptides, Tu-AMP 1 and Tu-AMP 2, from Bulbs of Tulip (Tulipa esneriana L.). Biosci. Biotechnol. Biochem. 2004, 68, 571–577.
  96. Giudici, M.; Poveda, J.A.; Molina, M.L.; de la Canal, L.; González-Ros, J.M.; Pfüller, K.; Pfüller, U.; Villalaín, J. Antifungal Effects and Mechanism of Action of Viscotoxin A3. FEBS J. 2006, 273, 72–83.
  97. Ngai, P.H.K.; Ng, T.B. A Napin-like Polypeptide from Dwarf Chinese White Cabbage Seeds with Translation-Inhibitory, Trypsin-Inhibitory, and Antibacterial Activities. Peptides 2004, 25, 171–176.
  98. Wang, X.; Bunkers, G. Potent Heterologous Antifungal Proteins from Cheeseweed (Malva parviflora). Biochem. Biophys. Res. Commun. 2001, 279, 669–673.
  99. Pelegrini, P.; Noronha, E.; Muniz, M.A.R.; Vasconcelos, I.; CHIARELLO, M.; Oliveira, J.T.A.; Franco, O. An Antifungal Peptide from Passion Fruit (Passiflora edulis) Seeds with Similarities to 2S Albumin Proteins. Biochim. Et Biophys. Acta 2006, 1764, 1141–1146.
  100. Agizzio, A.P.; Carvalho, A.O.; Ribeiro, S.D.F.F.; Machado, O.L.T.; Alves, E.W.; Okorokov, L.A.; Samarão, S.S.; Bloch, C.; Prates, M.V.; Gomes, V.M. A 2S Albumin-Homologous Protein from Passion Fruit Seeds Inhibits the Fungal Growth and Acidification of the Medium by Fusarium oxysporum. Arch. Biochem. Biophys. 2003, 416, 188–195.
  101. Lin, P.; Xia, L.; Wong, J.H.; Ng, T.B.; Ye, X.; Wang, S.; Xiangzhu, S. Lipid Transfer Proteins from Brassica campestris and Mung Bean Surpass Mung Bean Chitinase in Exploitability. J. Pept. Sci. 2007, 13, 642–648.
  102. Diz, M.; de Oliveira Carvalho, A.; Ribeiro, S.; Cunha, M.; Beltramini, L.; Rodrigues, R.; Nascimento, V.; Machado, O.; Gomes, V. Characterisation, Immunolocalisation and Antifungal Activity of a Lipid Transfer Protein from Chili Pepper (Capsicum annuum) Seeds with Novel α-Amylase Inhibitory Properties. Physiol. Plant. 2011, 142, 233–246.
  103. Regente, M.; de la Canal, L. Purification, Characterization and Antifungal Properties of a Lipid-Transfer Protein from Sunflower (Helianthus annuus) Seeds. Physiol. Plant. 2000, 110, 158–163.
  104. Cammue, B.P.; De Bolle, M.F.; Terras, F.R.; Proost, P.; Van Damme, J.; Rees, S.B.; Vanderleyden, J.; Broekaert, W.F. Isolation and Characterization of a Novel Class of Plant Antimicrobial Peptides Form Mirabilis jalapa L. Seeds. J. Biol. Chem. 1992, 267, 2228–2233.
  105. Utkina, L.L.; Andreev, Y.A.; Rogozhin, E.A.; Korostyleva, T.V.; Slavokhotova, A.A.; Oparin, P.B.; Vassilevski, A.A.; Grishin, E.V.; Egorov, T.A.; Odintsova, T.I. Genes Encoding 4-Cys Antimicrobial Peptides in Wheat Triticum kiharae Dorof. et Migush.: Multimodular Structural Organization, Instraspecific Variability, Distribution and Role in Defence. FEBS J. 2013, 280, 3594–3608.
  106. Charnet, P.; Molle, G.; Marion, D.; Rousset, M.; Lullien-Pellerin, V. Puroindolines Form Ion Channels in Biological Membranes. Biophys. J. 2003, 84, 2416–2426.
  107. Zottich, U.; Da Cunha, M.; Carvalho, A.O.; Dias, G.B.; Casarin, N.; Vasconcelos, I.M.; Gomes, V.M. An Antifungal Peptide from Coffea canephora Seeds with Sequence Homology to Glycine-Rich Proteins Exerts Membrane Permeabilization and Nuclear Localization in Fungi. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 3509–3516.
  108. Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; dos Santos, R.C.P.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr.; Noronha, E.F.; Miller, R.N.G.; Franco, O.L. Identification of a Novel Storage Glycine-Rich Peptide from Guava (Psidium guajava) Seeds with Activity against Gram-Negative Bacteria. Peptides 2008, 29, 1271–1279.
  109. López-Meza, J.; Ochoa-Zarzosa, A.; Aguilar, J.; Loeza-Lara, P. Antimicrobial Peptides: Diversity and Perspectives for Their Biomedical Application. In Biomedical Engineering, Trends, Research and Technologies; IntechOpen: London, UK, 2011; ISBN 978-953-307-514-3.
  110. Dash, R.; Bhattacharjya, S. Thanatin: An Emerging Host Defense Antimicrobial Peptide with Multiple Modes of Action. Int. J. Mol. Sci. 2021, 22, 1522.
  111. Souza, A.L.A.; Díaz-Dellavalle, P.; Cabrera, A.; Larrañaga, P.; Dalla-Rizza, M.; De-Simone, S.G. Antimicrobial Activity of Pleurocidin Is Retained in Plc-2, a C-Terminal 12-Amino Acid Fragment. Peptides 2013, 45, 78–84.
  112. Thery, T.; Tharappel, J.C.; Kraszewska, J.; Beckett, M.; Bond, U.; Arendt, E.K. Antifungal Activity of a Synthetic Human β-Defensin 3 and Potential Applications in Cereal-Based Products. Innov. Food Sci. Emerg. Technol. 2016, 38, 160–168.
  113. Fernandes, K.E.; Carter, D.A. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front. Microbiol. 2017, 8, 2.
  114. Muñoz, A.; Marcos, J.F. Activity and Mode of Action against Fungal Phytopathogens of Bovine Lactoferricin-Derived Peptides. J. Appl. Microbiol. 2007, 101, 1199–1207.
  115. Niaz, B.; Saeed, F.; Ahmed, A.; Imran, M.; Maan, A.A.; Khan, M.K.I.; Tufail, T.; Anjum, F.M.; Hussain, S.; Suleria, H.A.R. Lactoferrin (LF): A Natural Antimicrobial Protein. Int. J. Food Prop. 2019, 22, 1626–1641.
  116. Silva, P.I.; Daffre, S.; Bulet, P. Isolation and Characterization of Gomesin, an 18-Residue Cysteine-Rich Defense Peptide from the Spider Acanthoscurria gomesiana Hemocytes with Sequence Similarities to Horseshoe Crab Antimicrobial Peptides of the Tachyplesin Family. J. Biol. Chem. 2000, 275, 33464–33470.
  117. De Lucca, A.J.; Bland, J.M.; Grimm, C.; Jacks, T.J.; Cary, J.W.; Jaynes, J.M.; Cleveland, T.E.; Walsh, T.J. Fungicidal Properties, Sterol Binding, and Proteolytic Resistance of the Synthetic Peptide D4E1. Can. J. Microbiol. 1998, 44, 514–520.
  118. Zeng, X.-C.; Wang, S.; Nie, Y.; Zhang, L.; Luo, X. Characterization of BmKbpp, a Multifunctional Peptide from the Chinese Scorpion Mesobuthus Martensii Karsch: Gaining Insight into a New Mechanism for the Functional Diversification of Scorpion Venom Peptides. Peptides 2012, 33, 44–51.
  119. Zhang, Z.-T.; Zhu, S.-Y. Drosomycin, an Essential Component of Antifungal Defence in Drosophila. Insect. Mol. Biol. 2009, 18, 549–556.
  120. Atanasova-Penichon, V.; Legoahec, L.; Bernillon, S.; Deborde, C.; Maucourt, M.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; Ponts, N.; Moing, A.; Richard-Forget, F. Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure. Appl. Environ. Microbiol. 2018, 84.
  121. Lamberty, M.; Zachary, D.; Lanot, R.; Bordereau, C.; Robert, A.; Hoffmann, J.A.; Bulet, P. Insect Immunity. Constitutive Expression of a Cysteine-Rich Antifungal and a Linear Antibacterial Peptide in a Termite Insect. J. Biol. Chem. 2001, 276, 4085–4092.
  122. Tonk, M.; Cabezas-Cruz, A.; Valdés, J.J.; Rego, R.O.M.; Grubhoffer, L.; Estrada-Peña, A.; Vilcinskas, A.; Kotsyfakis, M.; Rahnamaeian, M. Ixodes ricinus Defensins Attack Distantly-Related Pathogens. Dev. Comp. Immunol. 2015, 53, 358–365.
  123. Moerman, L.; Bosteels, S.; Noppe, W.; Willems, J.; Clynen, E.; Schoofs, L.; Thevissen, K.; Tytgat, J.; Van Eldere, J.; Van Der Walt, J.; et al. Antibacterial and Antifungal Properties of Alpha-Helical, Cationic Peptides in the Venom of Scorpions from Southern Africa. Eur. J. Biochem. 2002, 269, 4799–4810.
  124. Destoumieux-Garzón, D.; Rosa, R.D.; Schmitt, P.; Barreto, C.; Vidal-Dupiol, J.; Mitta, G.; Gueguen, Y.; Bachère, E. Antimicrobial Peptides in Marine Invertebrate Health and Disease. Phil. Trans. R. Soc. B 2016, 371, 20150300.
  125. Lamberty, M.; Caille, A.; Landon, C.; Tassin-Moindrot, S.; Hetru, C.; Bulet, P.; Vovelle, F. Solution Structures of the Antifungal Heliomicin and a Selected Variant with Both Antibacterial and Antifungal Activities. Biochemistry 2001, 40, 11995–12003.
  126. Zare-Zardini, H.; Taheri-Kafrani, A.; Ordooei, M.; Ebrahimi, L.; Tolueinia, B.; Soleimanizadeh, M. Identification and Biochemical Characterization of a New Antibacterial and Antifungal Peptide Derived from the Insect Sphodromantis viridis. Biochemistry 2015, 80, 433–440.
  127. Vouldoukis, I.; Shai, Y.; Nicolas, P.; Mor, A. Broad Spectrum Antibiotic Activity of the Skin-PYY. FEBS Lett 1996, 380, 237–240.
  128. Benincasa, M.; Scocchi, M.; Pacor, S.; Tossi, A.; Nobili, D.; Basaglia, G.; Busetti, M.; Gennaro, R. Fungicidal Activity of Five Cathelicidin Peptides against Clinically Isolated Yeasts. J. Antimicrob. Chemother. 2006, 58, 950–959.
  129. Lee, D.G.; Kim, H.K.; Kim, S.A.; Park, Y.; Park, S.-C.; Jang, S.-H.; Hahm, K.-S. Fungicidal Effect of Indolicidin and Its Interaction with Phospholipid Membranes. Biochem. Biophys. Res. Commun. 2003, 305, 305–310.
  130. Park, C.H.; Valore, E.V.; Waring, A.J.; Ganz, T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver*. J. Biol. Chem. 2001, 276, 7806–7810.
  131. De Lucca, A.J.; Walsh, T.J. Antifungal Peptides: Novel Therapeutic Compounds against Emerging Pathogens. Antimicrob. Agents Chemother. 1999, 43, 1–11.
  132. Leannec-Rialland, V.; Cabezas-Cruz, A.; Atanasova, V.; Chereau, S.; Ponts, N.; Tonk, M.; Vilcinskas, A.; Ferrer, N.; Valdés, J.J.; Richard-Forget, F. Tick Defensin γ-Core Reduces Fusarium graminearum Growth and Abrogates Mycotoxins Production with High Efficiency. Sci. Rep. 2021, 11, 7962.
  133. Rajasekaran, K.; Cary, J.W.; Chlan, C.A.; Jaynes, J.M.; Bhatnagar, D. Strategies for Controlling Plant Diseases and Mycotoxin Contamination Using Antimicrobial Synthetic Peptides. In ACS Symposium Series; Rajasekaran, K., Cary, J.W., Jaynes, J.M., Montesinos, E., Eds.; American Chemical Society: Washington, DC, USA, 2012; Volume 1095, pp. 295–315. ISBN 978-0-8412-2748-4.
  134. López-García, B.; González-Candelas, L.; Pérez-Payá, E.; Marcos, J.F. Identification and Characterization of a Hexapeptide with Activity against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits. Mol. Plant. Microbe Interact. 2000, 13, 837–846.
  135. López-García, B.; Pérez-Payá, E.; Marcos, J.F. Identification of Novel Hexapeptides Bioactive against Phytopathogenic Fungi through Screening of a Synthetic Peptide Combinatorial Library. Appl Environ. Microbiol. 2002, 68, 2453–2460.
  136. Muñoz, A.; López-García, B.; Marcos, J.F. Studies on the Mode of Action of the Antifungal Hexapeptide PAF26. Antimicrob. Agents Chemother. 2006, 50, 3847–3855.
  137. Muñoz, A.; Gandía, M.; Harries, E.; Carmona, L.; Read, N.D.; Marcos, J.F. Understanding the Mechanism of Action of Cell-Penetrating Antifungal Peptides Using the Rationally Designed Hexapeptide PAF26 as a Model. Fungal Biol. Rev. 2013, 26, 146–155.
  138. Hauser, C.; Thielmann, J.; Muranyi, P. Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; Chapter 46; pp. 563–580. ISBN 978-0-12-800723-5.
  139. Jang, W.S.; Kim, H.K.; Lee, K.Y.; Kim, S.A.; Han, Y.S.; Lee, I.H. Antifungal Activity of Synthetic Peptide Derived from Halocidin, Antimicrobial Peptide from the Tunicate, Halocynthia aurantium. FEBS Lett. 2006, 580, 1490–1496.
  140. Cary, J.W.; Rajasekaran, K.; Jaynes, J.M.; Cleveland, T.E. Transgenic Expression of a Gene Encoding a Synthetic Antimicrobial Peptide Results in Inhibition of Fungal Growth in Vitro and in Planta. Plant. Sci. 2000, 154, 171–181.
  141. Fehlbaum, P.; Bulet, P.; Chernysh, S.; Briand, J.P.; Roussel, J.P.; Letellier, L.; Hetru, C.; Hoffmann, J.A. Structure-Activity Analysis of Thanatin, a 21-Residue Inducible Insect Defense Peptide with Sequence Homology to Frog Skin Antimicrobial Peptides. Proc. Natl. Acad. Sci. USA 1996, 93, 1221–1225.
  142. Osusky, M.; Zhou, G.; Osuska, L.; Hancock, R.E.W.; Kay, W.; Misra, S. Transgenic Plants Expressing Cationic Peptide Chimeras Exhibit Broad-Spectrum Resistance to Phytopathogens. Nat. Biotechnol. 2000, 18, 1162–1166.
  143. Badosa, E.; Ferre, R.; Francés, J.; Bardají, E.; Feliu, L.; Planas, M.; Montesinos, E. Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of Penicillium Rot of Apples. Appl. Environ. Microbiol. 2009, 75, 5563–5569.
  144. Jiang, Z.; Kullberg, B.J.; van der Lee, H.; Vasil, A.I.; Hale, J.D.; Mant, C.T.; Hancock, R.E.W.; Vasil, M.L.; Netea, M.G.; Hodges, R.S. Effects of Hydrophobicity on the Antifungal Activity of α-Helical Antimicrobial Peptides. Chem. Biol. Drug Des. 2008, 72, 483–495.
  145. Ramamourthy, G.; Na, H.; Seo, C.; Park, Y. Antifungal Activity of (KW)n or (RW)n Peptide against Fusarium solani and Fusarium oxysporum. Int. J. Mol. Sci. 2012, 13, 15042–15053.
  146. Thery, T.; O’Callaghan, Y.; O’Brien, N.; Arendt, E.K. Optimisation of the Antifungal Potency of the Amidated Peptide H-Orn-Orn-Trp-Trp-NH2 against Food Contaminants. Int. J. Food Microbiol. 2018, 265, 40–48.
  147. Reed, J.D.; Edwards, D.L.; Gonzalez, C.F. Synthetic Peptide Combinatorial Libraries: A Method for the Identification of Bioactive Peptides Against Phytopathogenic Fungi. MPMI 1997, 10, 537–549.
  148. Devi, M.S.; Sashidhar, R.B. Antiaflatoxigenic Effects of Selected Antifungal Peptides. Peptides 2019, 115, 15–26.
More
Information
Subjects: Polymer Science
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 506
Revisions: 2 times (View History)
Update Date: 14 Jan 2022
1000/1000