Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2094 word(s) 2094 2021-12-06 10:36:40

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Feng, T. Sesquiterpenoids Specially Produced by Fungi. Encyclopedia. Available online: (accessed on 20 June 2024).
Feng T. Sesquiterpenoids Specially Produced by Fungi. Encyclopedia. Available at: Accessed June 20, 2024.
Feng, Tao. "Sesquiterpenoids Specially Produced by Fungi" Encyclopedia, (accessed June 20, 2024).
Feng, T. (2021, December 06). Sesquiterpenoids Specially Produced by Fungi. In Encyclopedia.
Feng, Tao. "Sesquiterpenoids Specially Produced by Fungi." Encyclopedia. Web. 06 December, 2021.
Sesquiterpenoids Specially Produced by Fungi

Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. 

sesquiterpenoids fungus structures structural diversity biological activity synthesis

1. Introduction

Fungi are undoubtedly important resources for natural products discovery. With the advancement of natural product research, the importance of its biological resources has been infinitely enlarged. In the giant natural product system of fungi, sesquiterpenes, due to their carbon skeletons and amounts, are the largest of all types. The C-15-hydrocarbon skeletal system of various sesquiterpenoids isolated from fungi, bacteria, and plants are synthesized from farnesyl pyrophosphate (FPP) under the catalysis of sesquiterpene synthases [1][2]. Sesquiterpene synthases catalyze different initial cyclization reactions to produce secondary or tertiary cyclic carbocation intermediates, which can then be further cyclized and reassembled until carbocation quenching at the active center, followed by the enzymatic release of the final sesquiterpenoid scaffold (Figure 1) [3]. A huge number of sesquiterpenoids were, consequently, produced [4][5][6]. Among various other resources, fungal species have an enormous contribution owing to their potential to carry out the bio-transformations and drug synthesis under environmentally acceptable conditions. For instance, hydroxymethylacylfulvene (HMAF) is a semisynthetic antitumor agent based on the naturally occurring illudin S occurring in the mushroom Omphalotus olearius [7]. It has been advanced into human clinical trials for the treatment of cancers [8][9]. Trichothecenes, a class of tricyclic sesquiterpenes produced by a wide variety of fungi, are toxic to animals and humans and frequently present in cereal crops. They have attracted much attention in the areas such as agriculture, food contamination, and health care [10][11][12][13].
Figure 1. Cyclization of FPP by characterized fungal sesquiterpene synthases (Reference [3]).

2. Composition and Bioactivities

2.1. Alliacane, Cadinene, Azulene, and Zierane

Nine alliacane sesquiterpenoids inonoalliacanes A–I 1a/1b6a/6b79 were isolated from the culture broth of the basidiomycete Inonotus sp. BCC 22670 [14]. Inonoalliacane A 1 exhibited moderate antibacterial activity against Bacillus cereus with a minimum inhibitory concentration (MIC) value of 25 µg/mL. Inonoalliacane B 2 showed antiviral activity against herpes simplex virus type 1 (HSV-1) with IC50 of 17 μg/mL.
Clitocybulols G–O 1018, highly oxidized alliacane sesquiterpenoids, were isolated from the solid culture of the edible fungus Pleurotus cystidiosus [15]. Clitocybulols G 10 and L 15 showed weak inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 μM, respectively.
In the 1H NMR-guided fractionation of extracts from the edible mushroom Lactarius deliciosus, two new azulene-type sesquiterpenoids 19 and 20 were characterized [16]. Pestabacillin A 21 bearing a zierane-type sesquiterpene skeleton was isolated from the co-culture of the endophytic fungus Pestalotiopsis sp. with Bacillus subtilis [17]. Furthermore, the absolute configuration of 21 was confirmed by single-crystal X-ray diffraction analysis.
Jof 07 01026 i001

2.2. Bergamotane, Spiroaminal, and Spiroaxane

Bergamotane sesquiterpenes bearing a bridged 6/4 bicyclic ring incorporated with an isopentyl unit, are naturally occurring in plants and fungi [18][19]. A new class of polyoxygenated bergamotanes with notable features inspired by a 6/4/5/5 tetracyclic ring system was very rare in nature and all examples of the polycyclic bergamotanes only derived from fungi [20][21][22][23].
Jof 07 01026 i002
Purpurolide A 22, an unprecedented sesquiterpene lactone with a rarely encountered 5/5/5 spirocyclic skeleton, along with five new 6/4/5/5 tetracyclic sesquiterpene lactones (purpurolides B–F 2327), was isolated from the cultures of the endophytic fungus Penicillium purpurogenum [24][25]. The structures and absolute configurations of 2227 were established by spectroscopic analysis, a single-crystal X-ray diffraction, and calculations of the 13C NMR and ECD data. The plausible biosynthetic pathway of 2227 is shown in Scheme 1. Compounds 2227 showed significant inhibitory activity against pancreatic lipase with IC50 values of 1.22–7.88 μM.
Scheme 1. Plausible biogenetic pathways for 2227 (Reference [24]).
Jof 07 01026 i003
Expansolides C 28 and D 29 were two new bergamotane sesquiterpene lactones isolated from the plant pathogenic fungus Penicillium expansum [26]. The epimeric mixture of expansolides C 28 and D 29 (in a ratio of 2:1 at the temperature of the bioassay) exhibited more potent α-glucosidase inhibitory activity (IC50 0.50 mM) as compared with the positive control acarbose (IC50 1.90 mM) in an in vitro bioassay.
Donacinolides A 30 and B 31 and donacinoic acids A 32 and B 33, four new rare tetracyclic bergamotane-type sesquiterpenoids, were isolated from the mushroom-associated fungus Montagnula donacina [27]. Two new β-bergamotane sesquiterpenoids 34 and 35 were isolated from the marine-derived fungus Aspergillus fumigatus [28]. Brasilamides K–N 3639 were isolated from the plant endophytic fungus Paraconiothynium Brasiliense [29].
Sporulaminals A 40 and B 41, a pair of unusual epimeric spiroaminal derivatives bearing a 6/4/5/5 tetracyclic ring system derived from bergamotane sesquiterpenoid (Scheme 2), were isolated from a marine-derived fungus Paraconiothyrium sporulosum [30]. Pleurospiroketal F 42, a new perhydrobenzannulated 5,5-spiroketal sesquiterpene was isolated from solid-state fermentation of Pleurotus citrinopileatus, and the absolute configuration of 42 was determined by single-crystal X-ray diffraction analysis [31].
Scheme 2. Plausible biosynthetic pathways of sporulaminals A 40 and B 41 (Reference [30]).
Flammuspirones A–J 4352, ten spiroaxane sesquiterpenoids, were obtained from the edible mushroom Flammulina velutipes [32]. Flammuspirones A 43 and C 45 showed inhibition on HMG-CoA reductase with IC50 of 114.7 and 77.6 μM, respectively. Flammuspirones C–E 4547 and H 50 showed inhibitory activity on DPP-4 with IC50 values in the range from 70.9 to 83.7 μM.
Talaminoid A 53 was obtained from the fungus Talaromyces minioluteus [33]. Talaminoid A 53 showed a significant suppressive effect on the production of nitric oxide (NO) on lipopolysaccharide (LPS) induced BV-2 cell, with IC50 of 5.79 μM. In addition, talaminoid A 53 exhibited significant anti-inflammatory activities against the production of TNF-α and IL-6. Further immunofluorescence experiments revealed the mechanism of action to be inhibitory the NF-κB-activated pathway. A new sesquiterpenoid 54 was isolated from the fungus Pholiota nameko [34]. Tramspiroins A–D 5558 have been isolated from the cultures of Basidiomycete Trametes versicolor [35].
Jof 07 01026 i004

2.3. Carotane, Cyclonerane, Cyclofarnesane, and Longifolene

A new dimeric sesquiterpene divirensol H 59 and two exceptionally novel trimeric sesquiterpenes trivirensols A 60 and B 61 were purified from an endophytic fungus Trichoderma virens [36]. Divirensol H 59 showed significant activities against fungi Penicillium italicumFusarium oxysporumFusarium graminearumColletotrichum musae, and Colletotrictum gloeosporioides with MIC values of 6.25 to 25 μg/mL. Rhinomilisin A 62 and four new heptelidic acid derivatives, rhinomilisin B–E 6366, were isolated from the endophytic fungus Rhinocladiella similis [37]. Rhinomilisins A 62 showed moderate cytotoxicity activity against the mouse lymphoma cell line L5178Y with an IC50 value of 5.0 μM.
Jof 07 01026 i005
Jof 07 01026 i006
Peniterester 67, a new tricyclic sesquiterpene was isolated from the secondary metabolites of an artificial mutant Penicillium sp. T2-M20 [38]. Peniterester 67 showed significant activities against Bacillus subtilisEscherichia coli, and Staphylococcus aureus in vitro with MICs of 8.0, 8.0, and 4.0 μg/mL, respectively.
Piltunines A–F 6873 and penigrisacids A–D 7477, ten new carotane sesquiterpenoids, were isolated from the marine-derived fungus Penicillium griseofulvum and Penicillium piltunense, respectively [39][40]. Penigrisacid D 75 showed a weak effect on ECA-109 tumor cells with an IC50 value of 28.7 µM [39]. Trichocarotins A–H 7885, eight new carotane sesquiterpenes, were isolated from the culture of the fungus Trichoderma virens [41]. Trichocarotins C–E 8082 and H 85 displayed potent inhibition against the four marine phytoplankton species (Chattonella marinaHeterosigma akashiwoKarlodinium veneficum, and Prorocentrum donghaiense) tested, especially against C. marina with IC50 values ranging from 0.24 to 1.2 μg/mL.
Trichocaranes E 86 and F 87 were isolated from cultures of the insect pathogenic fungus Isaria fumosorosea [42]. Trichocaranes E 86 and F 87 showed potent cytotoxic activities against six tumor cell lines MDA, MCF-7, SKOV-3, Hela, A549, and HepG2 with IC50 values in a concentration range of 0.13–4.57 μg/mL. Two new carotane-type biogenetically related sesquiterpenes, aspterrics A 88 and B 89, were isolated from the deep-sea-derived fungus Aspergillus terreus [43].
Jof 07 01026 i007
Two new cycloneranes 90 and 91 were isolated from the marine alga endophytic fungus Trichoderma citrinoviride [44]. The compound 90 had an inhibition to the marine phytoplankton species Karlodinium veneficum with an IC50 value of 8.1 μg/mL. Six new cycloneranes 9297 were isolated from the fungus Trichoderma harzianum [45][46][47]. The three new ones 9597 all exhibited growth inhibition of the four phytoplankton species (Chattonella marinaHeterosigma akashiwoKarlodinium veneficum, and Prorocentrum donghaiense) with IC50 values ranging from 0.66 to 75 μg/mL [47].
Cyclonerotriol B 98 was isolated from the soil fungus Fusarium avenaceum [48]. Cyclonerodiol B 99 was isolated from the mangrove plant endophytic fungus Trichoderma sp. Xy24 [49]. Cyclonerodiol B 99 exhibited significant neural anti-inflammatory activity by inhibiting LPS-induced NO production in BV2 cells with the inhibitory rates of 75.0% at 0.1 μM, which are more potent than curcumin, positive control with the inhibitory rate of 21.1% at 0.1 μM.
Jof 07 01026 i008
Ten new cycloneranes 100109 were isolated from the algicolous endophytic fungus Trichoderma asperellum [50][51]. The seven new ones, 100104108, and 109, all exhibited growth inhibition of the four phytoplankton species (Chattonella marinaHeterosigma akashiwoKarlodinium veneficum, and Prorocentrum donghaiense) with IC50 values ranging from 2.4 to 76 μg/mL [50].
A new sesquiterpenoid 110 was isolated and identified from an endophytic fungus Umbelopsis dimorpha grown on host-plant Kadsura angustifolia and wheat bran [52]. Inonofarnesane 111, a new cyclofarnesane sesquiterpenoid, was isolated from cultures of the wood-rotting basidiomycete Inonotus sp. BCC 23706 [53].
One new norbisabolane sesquiterpenoid degradation, isopolisin B 112, was isolated from the fungus Pestalotiopsis heterocornis [54]. Koninginol D 113 as a new farnesane sesquiterpenoid was isolated from the endophytic fungus Trichoderma koningiopsis [55].
Bipolenin F 114, a new seco-longifolene sesquiterpenoid, and two new seco-sativene sesquiterpenoids, bipolenins D 115 and E 116, and two novel sesquiterpenoid-xanthone adducts, bipolenins I 117 and J 118, were obtained from cultures of potato endophytic fungus Bipolaris eleusines [56][57]. Bipolenins I 117 and J 118 exhibited potent inhibitory activity against the plant pathogens Alternaria solani with MIC values of 8 and 16 μg/mL, respectively [57].
Jof 07 01026 i009

2.4. Cerapicane, Cucumane, Cuparene, Hirsutane, Isohirsutane, and Triquinane

Cuparane-type sesquiterpenoids of fungal origin possess a skeleton with a six-membered ring connected to a five-membered ring, of which the six-membered ring is always aromatic. Linear triquinane sesquiterpenoids have a basic skeleton 1H-cyclopenta[α]pentalene [58]. Many compounds displayed a wide range of biological activities, such as cytotoxic, antimicrobial, and anti-inflammatory activities. A review gives an overview about the isolation, structure, biological activities, and chemical synthesis of linear triquinane sesquiterpenoids [59].
Jof 07 01026 i010
Enokipodins A–D 119122, highly oxygenated cuparene-type sesquiterpenes were obtained from the fungi Flammulina rossica and Flammulina velutipes. In addition, enokipodins B 121 and D 122 are oxidized compounds of enokipodins A 119 and C 120, respectively [60].
One new cerapicane cerrenin A 123, and two new isohirsutane sesquiterpenoids cerrenins B 124 and C 125, were isolated from the broth extract of Cerrena sp. which was isolated from Pogostemon cablin [61]. Trefoliol C 126, one new cucumane sesquiterpenoid, was isolated from cultures of the basidiomycetes Tremella foliacea [62]. A new sesquiterpenoid 127 was isolated from the crude extract of Antrodiella albocinnamomea [63]. Two new hirsutane-type sesquiterpenoids, chondrosterins N 128 and O 129, were isolated from the marine fungus Chondrostereum sp. [64].
Ten new hirsutane-type sesquiterpenoids, sterhirsutins C–L 130139, were isolated from the culture of Stereum hirsutum [65]. Sterhirsutins C 130 and D 131 possessed an unprecedented chemical skeleton with a 5/5/5/6/9/4 fused ring system, and the absolute configuration of sterhirsutin C 130 was assigned by single-crystal X-ray diffraction experiment. Sterhirsutin L 139 was the first sesquiterpene coupled with a xanthine moiety. Sterhirsutins C–L 130139 showed cytotoxicity against K562 and HCT116 cell lines, and sterhirsutin K 138 induced autophagy in HeLa cells. Sterhirsutin G 133 inhibited the activation of the IFNβ promoter in Sendai virus-infected cells.
Cerrenins D 140 and E 141, two new triquinane-type sesquiterpenoids, were obtained from the endophytic fungus Cerrena sp. A593 [66]. Chondrosterins K–M 142144 were isolated from the marine fungus Chondrostereum sp. [67]. Chondrosterins K–M 142144 showed different degrees of cytotoxicities against various cancer cell lines (CNE1, CNE2, HONE1, SUNE1, A549, GLC82, and HL7702) in vitro, with IC50 values ranging from 12.03 to 58.83 µM.
Jof 07 01026 i011
Antrodins A–E 145149 were isolated from the fermentation of Antrodiella albocinnamomea [68]. Tremutin H 150 was isolated from cultures of the basidiomycetes Irpex lacteus [69]. The absolute configuration of 150 was determined by single-crystal X-ray diffraction analysis, and 150 shows a weak inhibitory effect on NO production with an IC50 value of 22.7 μM.

2.5. Eudesmanolide, Gymnomitrane, and Humulane

Humulane-type sesquiterpenoids are found rarely in nature. They have been recognized as being biogenetic precursors of many types of sesquiterpenoids [6]. The macrocyclic nature of members of the humulane group has proved to be troublesome for the determination of their absolute configurations.
Four new 12,8-eudesmanolides 151154 were isolated from a mangrove rhizosphere-derived fungus Eutypella sp. 1–15 [70]. Periconianone A 155, a polyoxygenated sesquiterpenoid with a new 6/6/6 tricarbocyclic skeleton, was isolated from the endophytic fungus Periconia sp., and the biosynthesis of the unusual six-membered carbonic ring of 155 was postulated to be formed through intramolecular aldol condensation (Scheme 3) [71]. The first enantioselective total synthesis of the periconianone A 155 based on a postulated biogenesis has been reported (Scheme 4) [72].
Scheme 3. Hypothetical biosynthetic pathway of periconianone A 155 (Reference [71]).
Scheme 4. Total synthesis of periconianone A 155 (Reference [72]).
An unusual type sesquiterpene 156 possessed an unusual 14(7-6)-cuparane scaffold (Scheme 5), and six rarely-encountered gymnomitrane-type sesquiterpenoids 157162, were isolated from the medicinal mushroom Ganoderma lingzhi [73]. A new gymnomitrane-type sesquiterpenoid 163 was isolated from the fruiting body of Ganoderma lucidum [74]. This compound 163 significantly inhibited the growth of epidermal growth factor receptor-tyrosine kinase inhibitor EGFR-TKI-resistant human lung cancer A549 and human prostate cancer PC3 cell lines. Antrodin F 164 was isolated from the fermentation of Antrodiella albocinnamomea [68].
Scheme 5. Proposed biosynthetic pathway of 156 and 162 (Reference [73]).
Nine new humulane-derived sesquiterpenoids, ochracenes A–I 165173, were isolated from the Antarctic fungus Aspergillus ochraceopetaliformis [75]. A biogenetic pathway for them was given in Scheme 6. The two unprecedented 8,9-secocyclic sesquiterpenoids, ochracenes B 166 and C 167, exhibited inhibitory effects on LPS-induced NO release in RAW 264.7 mouse macrophage cell with IC50 values of 14.6 and 18.3 μM, respectively.
Scheme 6. Postulated biogenetic pathway for ochracenes A–I 165–173 (Reference [75]).
Jof 07 01026 i012


  1. Christianson, D.W. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 2008, 12, 141–150.
  2. Minami, A.; Ozaki, T.; Liu, C.; Oikawa, H. Cyclopentane-forming di/sesterterpene synthases: Widely distributed enzymes in bacteria, fungi, and plants. Nat. Prod. Rep. 2018, 35, 1330–1346.
  3. Schmidt-Dannert, C. Biosynthesis of Terpenoid Natural Products in Fungi. Advances in Biochemical Engineering-Biotechnology; Schrader, J., Bohlmann, J., Eds.; Springer: New York, NY, USA, 2015; Volume 148, pp. 19–61.
  4. Li, D.; Wang, K.W. Natural new sesquiterpenes: Structural diversity and bioactivity. Curr. Org. Chem. 2016, 20, 994–1042.
  5. Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2012, 29, 1334–1366.
  6. Chen, H.P.; Liu, J.K. Secondary metabolites from higher fungi. Prog. Chem. Org. Nat. Prod. 2017, 106, 1–201.
  7. Gonzalez Del Val, A.; Platas, G.; Arenal, F.; Orihuela, J.C.; Garcia, M.; Hernandez, P.; Royo, I.; De Pedro, N.; Silver, L.L.; Young, K.; et al. Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illudin-like compounds among filamentous fungi. Mycol. Res. 2003, 107, 1201–1209.
  8. Alexandre, J.; Raymond, E.; Kaci, M.O.; Brain, E.C.; Lokiec, F.; Kahatt, C.; Faivre, S.; Yovine, A.; Goldwasser, F.; Smith, S.L.; et al. Phase I and pharmacokinetic study of irofulven administered weekly or biweekly in advanced solid tumor patients. Clin. Cancer Res. 2004, 10, 3377–3385.
  9. Tanasova, M.; Sturla, S.J. Chemistry and biology of acylfulvenes: Sesquiterpene-derived antitumor agents. Chem. Rev. 2012, 112, 3578–3610.
  10. McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 1997, 81, 1340–1348.
  11. Eriksen, G.S.; Pettersson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol. 2004, 114, 205–239.
  12. Qinghua, W.; Vlastimil, D.; Kami, K.; Zonghui, Y. Trichothecenes: Structure-toxic activity relationships. Curr. Drug Metab. 2013, 14, 641–660.
  13. Pascari, X.; Maul, R.; Kemmlein, S.; Marin, S.; Sanchis, V. The fate of several trichothecenes and zearalenone during roasting and enzymatic treatment of cereal flour applied in cereal-based infant food production. Food Control 2020, 114, 107245.
  14. Isaka, M.; Sappan, M.; Supothina, S.; Srichomthong, K.; Komwijit, S.; Boonpratuang, T. Alliacane sesquiterpenoids from submerged cultures of the basidiomycete Inonotus sp. BCC 22670. Phytochemistry 2017, 136, 175–181.
  15. Tao, Q.Q.; Ma, K.; Bao, L.; Wang, K.; Han, J.J.; Zhang, J.X.; Huang, C.Y.; Liu, H.W. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against alpha-glucosidase and PTP1B. Fitoterapia 2016, 111, 29–35.
  16. Tala, M.F.; Qin, J.C.; Ndongo, J.T.; Laatsch, H. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Nat. Prod. Bioprospect. 2017, 7, 269–273.
  17. Liu, S.; Dai, H.F.; Heering, C.; Janiak, C.; Lin, W.H.; Liu, Z.; Proksch, P. Inducing new secondary metabolites through co-cultivation of the fungus Pestalotiopsis sp. with the bacterium Bacillus subtilis. Tetrahedron Lett. 2017, 58, 257–261.
  18. Cane, D.E. Enzymic formation of sesquiterpenes. Chem. Rev. 1990, 90, 1089–1103.
  19. Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2013, 30, 1226–1264.
  20. Massias, M.; Rebuffat, S.; Molho, L.; Chiaroni, A.; Riche, C.; Bodo, B. Expansolides A and B: Tetracyclic sesquiterpene lactones from Penicillium expansum. J. Am. Chem. Soc. 1990, 112, 8112–8115.
  21. Oh, H.; Gloer, J.B.; Shearer, C.A. Massarinolins A-C: New bioactive sesquiterpenoids from the aquatic fungus Massarina tunicata. J. Nat. Prod. 1999, 62, 497–501.
  22. Che, Y.; Gloer, J.B.; Koster, B.; Malloch, D. Decipinin A and decipienolides A and B: New bioactive metabolites from the coprophilous fungus Podospora decipiens. J. Nat. Prod. 2002, 65, 916–919.
  23. MacíAs, F.A.; Varela, R.M.; Simonet, A.M.; Cutler, H.G.; Cutler, S.J.; Hill, R.A. Absolute configuration of bioactive expansolides A and B from Aspergillus fumigatus Fresenius. Tetrahedron Lett. 2003, 44, 941–943.
  24. Wang, Y.N.; Xia, G.Y.; Wang, L.Y.; Ge, G.B.; Zhang, H.W.; Zhang, J.F.; Wu, Y.Z.; Lin, S. Purpurolide A, 5/5/5 spirocyclic sesquiterpene lactone in nature from the endophytic fungus Penicillium purpurogenum. Org. Lett. 2018, 20, 7341–7344.
  25. Xia, G.Y.; Wang, L.Y.; Zhang, J.F.; Wu, Y.Z.; Ge, G.B.; Wang, Y.N.; Lin, P.C.; Lin, S. Three new polyoxygenated bergamotanes from the endophytic fungus Penicillium purpurogenum IMM 003 and their inhibitory activity against pancreatic lipase. Chin. J. Nat. Med. 2020, 18, 75–80.
  26. Ying, Y.M.; Fang, C.A.; Yao, F.Q.; Yu, Y.; Shen, Y.; Hou, Z.N.; Wang, Z.; Zhang, W.; Shan, W.G.; Zhan, Z.J. Bergamotane sesquiterpenes with α-glucosidase inhibitory activity from the plant pathogenic fungus Penicillium expansum. Chem. Biodivers. 2017, 14, e1600184.
  27. Zhao, Z.Z.; Zhao, K.; Chen, H.P.; Bai, X.; Zhang, L.; Liu, J.K. Terpenoids from the mushroom-associated fungus Montagnula donacina. Phytochemistry 2018, 147, 21–29.
  28. Wang, Y.; Li, D.H.; Li, Z.L.; Sun, Y.J.; Hua, H.M.; Liu, T.; Bai, J. Terpenoids from the marine-derived fungus Aspergillus fumigatus YK-7. Molecules 2016, 21, 31.
  29. Guo, Z.; Ren, F.X.; Che, Y.S.; Liu, G.; Liu, L. New bergamotane sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Molecules 2015, 20, 14611–14620.
  30. Zhang, L.H.; Feng, B.M.; Chen, G.; Li, S.G.; Sun, Y.; Wu, H.H.; Bai, J.; Hua, H.M.; Wang, H.F.; Pei, Y.H. Sporulaminals A and B: A pair of unusual epimeric spiroaminal derivatives from a marine-derived fungus Paraconiothyrium sporulosum YK-03. RSC Adv. 2016, 6, 42361–42366.
  31. Tao, Q.Q.; Ma, K.; Bao, L.; Wang, K.; Han, J.J.; Wang, W.Z.; Zhang, J.X.; Huang, C.Y.; Liu, H.W. Sesquiterpenoids with PTP1B inhibitory activity and cytotoxicity from the edible mushroom Pleurotus citrinopileatus. Planta Med. 2016, 82, 639–644.
  32. Tao, Q.Q.; Ma, K.; Yang, Y.L.; Wang, K.; Chen, B.S.; Huang, Y.; Han, J.J.; Bao, L.; Liu, X.B.; Yang, Z.L.; et al. Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J. Org. Chem. 2016, 81, 9867–9877.
  33. Chen, C.M.; Sun, W.G.; Liu, X.R.; Wei, M.S.; Liang, Y.; Wang, J.P.; Zhu, H.C.; Zhang, Y.H. Anti-inflammatory spiroaxane and drimane sesquiterpenoids from Talaromyces minioluteus (Penicillium minioluteum). Bioorg. Chem. 2019, 91, 103166.
  34. Yang, X.Y.; Niu, W.R.; Li, R.T.; Cui, X.M.; Liu, J.K. Two new sesquiterpenes from cultures of the higher fungus Pholiota nameko. Nat. Prod. Res. 2018, 33, 1992–1996.
  35. Wang, S.R.; Zhang, L.; Chen, H.P.; Li, Z.H.; Dong, Z.J.; Wei, K.; Liu, J.K. Four new spiroaxane sesquiterpenes and one new rosenonolactone derivative from cultures of Basidiomycete Trametes versicolor. Fitoterapia 2015, 105, 127–131.
  36. Hu, Z.B.; Tao, Y.W.; Tao, X.Y.; Su, Q.H.; Cai, J.C.; Qin, C.; Ding, W.J.; Li, C.Y. Sesquiterpenes with phytopathogenic fungi inhibitory activities from fungus Trichoderma virens from Litchi chinensis Sonn. J. Agric. Food Chem. 2019, 67, 10646–10652.
  37. Liu, S.; Zhao, Y.P.; Heering, C.; Janiak, C.; Muller, W.E.G.; Akone, S.H.; Liu, Z.; Proksch, P. Sesquiterpenoids from the endophytic fungus Rhinocladiella similis. J. Nat. Prod. 2019, 82, 1055–1062.
  38. Duan, R.T.; Yang, R.N.; Li, H.T.; Tang, L.H.; Liu, T.; Yang, Y.B.; Zhou, H.; Ding, Z.T. Peniterester, a carotane-type antibacterial sesquiterpene from an artificial mutant Penicillium sp. T2-M20. Fitoterapia 2020, 140, 104422.
  39. Xing, C.P.; Xie, C.L.; Xia, J.M.; Liu, Q.M.; Lin, W.X.; Ye, D.Z.; Liu, G.M.; Yang, X.W. Penigrisacids A-D, four new sesquiterpenes from the deep-sea-derived Penicillium griseofulvum. Mar. Drugs 2019, 17, 507.
  40. Afiyatullov, S.S.; Zhuravleva, O.I.; Antonov, A.S.; Leshchenko, E.V.; Pivkin, M.V.; Khudyakova, Y.V.; Denisenko, V.A.; Pislyagin, E.A.; Kim, N.Y.; Berdyshev, D.V.; et al. Piltunines A-F from the marine-derived fungus Penicillium piltunense KMM 4668. Mar. Drugs 2019, 17, 647.
  41. Shi, Z.Z.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Trichocarotins A–H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma virens. Bioorg. Chem. 2018, 81, 319–325.
  42. Zhang, J.; Liu, S.S.; Yuan, W.Y.; Wei, J.J.; Zhao, Y.X.; Luo, D.Q. Carotane-type sesquiterpenes from cultures of the insect pathogenic fungus Isaria fumosorosea. J. Asian Nat. Prod. Res. 2017, 21, 234–240.
  43. Li, Y.L.; Liu, W.; Xu, W.; Zeng, X.; Cheng, Z.B.; Li, Q. Aspterrics A and B, new sesquiterpenes from deep sea-derived fungus Aspergillus terreus YPGA10. Rec. Nat. Prod. 2020, 14, 18–22.
  44. Liu, X.H.; Hou, X.L.; Song, Y.P.; Wang, B.G.; Ji, N.Y. Cyclonerane sesquiterpenes and an isocoumarin derivative from the marine-alga-endophytic fungus Trichoderma citrinoviride A-WH-20-3. Fitoterapia 2020, 141, 104469.
  45. Shi, T.; Shao, C.L.; Liu, Y.; Zhao, D.L.; Cao, F.; Fu, X.M.; Yu, J.Y.; Wu, J.S.; Zhang, Z.K.; Wang, C.Y. Terpenoids from the coral-derived fungus Trichoderma harzianum (XS-20090075) induced by chemical epigenetic manipulation. Front. Microbiol. 2020, 11, 572.
  46. Fang, S.T.; Wang, Y.J.; Ma, X.Y.; Yin, X.L.; Ji, N.Y. Two new sesquiterpenoids from the marine-sediment-derived fungus Trichoderma harzianum P1-4. Nat. Prod. Res. 2019, 33, 3127–3133.
  47. Song, Y.P.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Diterpenes and sesquiterpenes from the marine algicolous fungus Trichoderma harzianum X-5. J. Nat. Prod. 2018, 81, 2553–2559.
  48. Jiang, C.X.; Li, J.; Zhang, J.M.; Jin, X.J.; Yu, B.; Fang, J.G.; Wu, Q.X. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J. Agric. Food Chem. 2019, 67, 1839–1846.
  49. Zhang, M.; Zhao, J.L.; Liu, J.M.; Chen, R.D.; Xie, K.B.; Chen, D.W.; Feng, K.P.; Zhang, D.; Dai, J.G. Neural anti-inflammatory sesquiterpenoids from the endophytic fungus Trichoderma sp. Xy24. J. Asian Nat. Prod. Res. 2017, 19, 651–658.
  50. Song, Y.P.; Miao, F.P.; Liu, X.H.; Yin, X.L.; Ji, N.Y. Cyclonerane derivatives from the algicolous endophytic fungus Trichoderma asperellum A-YMD-9-2. Mar. Drugs 2019, 17, 252.
  51. Song, Y.P.; Liu, X.H.; Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Ji, N.Y. Bisabolane, cyclonerane, and harziane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Phytochemistry 2018, 152, 45–52.
  52. Qin, D.; Wang, L.; Han, M.J.; Wang, J.Q.; Song, H.C.; Yen, X.; Duan, X.X.; Dong, J.Y. Effects of an endophytic fungus Umbelopsis dimorpha on the secondary metabolites of host-plant Kadsura angustifolia. Front. Microbiol. 2018, 9, 2845.
  53. Isaka, M.; Yangchum, A.; Supothina, S.; Boonpratuang, T.; Choeyklin, R.; Kongsaeree, P.; Prabpai, S. Aromadendrane and cyclofarnesane sesquiterpenoids from cultures of the basidiomycete Inonotus sp. BCC 23706. Phytochemistry 2015, 118, 94–101.
  54. Lei, H.; Lin, X.P.; Han, L.; Ma, J.; Ma, Q.J.; Zhong, J.L.; Liu, Y.H.; Sun, T.M.; Wang, J.H.; Huang, X.S. New metabolites and bioactive chlorinated benzophenone derivatives produced by a marine-derived fungus Pestalotiopsis heterocornis. Mar. Drugs 2017, 15, 69.
  55. Chen, S.C.; Li, H.H.; Chen, Y.C.; Li, S.N.; Xu, J.L.; Guo, H.; Liu, Z.M.; Zhu, S.; Liu, H.X.; Zhang, W.M. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma koningiopsis A729. Bioorg. Chem. 2019, 86, 368–374.
  56. Yang, M.S.; Cai, X.Y.; He, Y.Y.; Lu, M.Y.; Liu, S.; Wang, W.X.; Li, Z.H.; Ai, H.L.; Feng, T. Seco-sativene and seco-longifolene sesquiterpenoids from cultures of endophytic fungus Bipolaris eleusines. Nat. Prod. Bioprospect. 2017, 7, 147–150.
  57. He, J.; Yang, M.S.; Wang, W.X.; Li, Z.H.; Elkhateeb, W.A.M.; Wen, T.C.; Ai, H.L.; Feng, T. Anti-phytopathogenic sesquiterpenoid-xanthone adducts from potato endophytic fungus Bipolaris eleusines. RSC Adv. 2019, 9, 128–131.
  58. Le Bideau, F.; Kousara, M.; Chen, L.; Wei, L.; Dumas, F. Tricyclic sesquiterpenes from marine origin. Chem. Rev. 2017, 117, 6110–6159.
  59. Qiu, Y.; Lan, W.J.; Li, H.J.; Chen, L.P. Linear triquinane sesquiterpenoids: Their isolation, structures, biological activities, and chemical synthesis. Molecules 2018, 23, 2095.
  60. Tabuchi, A.; Fukushima-Sakuno, E.; Osaki-Oka, K.; Futamura, Y.; Motoyama, T.; Osada, H.; Ishikawa, N.K.; Nagasawa, E.; Tokimoto, K. Productivity and bioactivity of enokipodins A-D of Flammulina rossica and Flammulina velutipes. Biosci. Biotechnol. Biochem. 2020, 84, 876–886.
  61. Liu, H.X.; Tan, H.B.; Chen, K.; Chen, Y.C.; Li, S.N.; Li, H.H.; Zhang, W.M. Cerrenins A-C, cerapicane and isohirsutane sesquiterpenoids from the endophytic fungus Cerrena sp. Fitoterapia 2018, 129, 173–178.
  62. Ding, J.H.; Li, Z.H.; Wei, K.; Dong, Z.J.; Ding, Z.H.; Feng, T.; Liu, J.K. Two new sesquiterpenoids from cultures of the basidiomycete Tremella foliacea. J. Asian Nat. Prod. Res. 2016, 18, 46–50.
  63. Chen, Z.M.; Wang, S.L. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat. Prod. Res. 2015, 29, 1985–1989.
  64. Huang, L.; Lan, W.J.; Li, H.J. Two new hirsutane-type sesquiterpenoids chondrosterins N and O from the marine fungus Chondrostereum sp. Nat. Prod. Res. 2018, 32, 1578–1582.
  65. Qi, Q.Y.; Ren, J.W.; Sun, L.W.; He, L.W.; Bao, L.; Yue, W.; Sun, Q.M.; Yao, Y.J.; Yin, W.B.; Liu, H.W. Stucturally diverse sesquiterpenes produced by a Chinese Tibet fungus Stereum hirsutum and their cytotoxic and immunosuppressant activities. Org. Lett. 2015, 17, 3098–3101.
  66. Liu, H.X.; Tan, H.B.; Chen, Y.C.; Li, S.N.; Li, H.H.; Zhang, W.M. Cytotoxic triquinane-type sesquiterpenoids from the endophytic fungus Cerrena sp. A593. Nat. Prod. Res. 2019, 34, 2430–2436.
  67. Huang, L.; Lan, W.J.; Deng, R.; Feng, G.K.; Xu, Q.Y.; Hu, Z.Y.; Zhu, X.F.; Li, H.J. Additional new cytotoxic triquinane-type sesquiterpenoids chondrosterins K-M from the marine fungus Chondrostereum sp. Mar. Drugs 2016, 14, 157.
  68. Chen, Z.M.; Chen, H.P.; Wang, F.; Li, Z.H.; Feng, T.; Liu, J.K. New triquinane and gymnomitrane sesquiterpenes from fermentation of the basidiomycete Antrodiella albocinnamomea. Fitoterapia 2015, 102, 61–66.
  69. Wang, M.; Du, J.X.; Yang, H.X.; Dai, Q.; Liu, Y.P.; He, J.; Wang, Y.; Li, Z.H.; Feng, T.; Liu, J.K. Sesquiterpenoids from cultures of the basidiomycetes Irpex lacteus. J. Nat. Prod. 2020, 83, 1524–1531.
  70. Wang, Y.Z.; Wang, Y.; Wu, A.A.; Zhang, L.; Hu, Z.Y.; Huang, H.Y.; Xu, Q.Y.; Deng, X.M. New 12,8-eudesmanolides from Eutypella sp. 1–15. J. Antibiot. 2017, 70, 1029–1032.
  71. Zhang, D.W.; Ge, H.L.; Zou, J.H.; Tao, X.Y.; Chen, R.D.; Dai, J.G. Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org. Lett. 2014, 16, 1410–1413.
  72. Liffert, R.; Linden, A.; Gademann, K. Total synthesis of the sesquiterpenoid periconianone A based on a postulated biogenesis. J. Am. Chem. Soc. 2017, 139, 16096–16099.
  73. Zhao, Z.Z.; Liang, X.B.; Feng, W.S.; Wu, Y.; Zhi, Y.L.; Xue, G.M.; Chen, H.P.; Liu, J.K. Unusual constituents from the medicinal mushroom Ganoderma lingzhi. RSC Adv. 2019, 9, 36931–36939.
  74. Binh, P.T.; Descoutures, D.; Dang, N.H.; Nguyen, N.P.; Dat, N.T. A new cytotoxic gymnomitrane sesquiterpene from Ganoderma lucidum fruiting bodies. Nat. Prod. Commun. 2015, 10, 1911–1912.
  75. Wang, J.F.; He, W.J.; Kong, F.D.; Tian, X.P.; Wang, P.; Zhou, X.J.; Liu, Y.H. Ochracenes A-I, humulane-derived sesquiterpenoids from the antarctic fungus Aspergillus ochraceopetaliformis. J. Nat. Prod. 2017, 80, 1725–1733.
Subjects: Chemistry, Organic
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 832
Revision: 1 time (View History)
Update Date: 06 Dec 2021
Video Production Service