You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 + 1997 word(s) 1997 2021-11-14 06:53:43 |
2 Format correct Meta information modification 1997 2021-11-26 10:25:00 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Yes No
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Qiao, Z. Floral Volatile Terpenoids. Encyclopedia. Available online: https://encyclopedia.pub/entry/16430 (accessed on 14 June 2025).
Qiao Z. Floral Volatile Terpenoids. Encyclopedia. Available at: https://encyclopedia.pub/entry/16430. Accessed June 14, 2025.
Qiao, Zhenglin. "Floral Volatile Terpenoids" Encyclopedia, https://encyclopedia.pub/entry/16430 (accessed June 14, 2025).
Qiao, Z. (2021, November 26). Floral Volatile Terpenoids. In Encyclopedia. https://encyclopedia.pub/entry/16430
Qiao, Zhenglin. "Floral Volatile Terpenoids." Encyclopedia. Web. 26 November, 2021.
Floral Volatile Terpenoids
Edit

Floral volatile terpenoids (FVTs) belong to a group of volatile organic compounds (VOC) that play important roles in attracting pollinators, defending against pathogens and parasites and serving as signals associated with biotic and abiotic stress responses. Although research on FVTs has been increasing, a systematic generalization is lacking. Among flowering plants used mainly for ornamental purposes, a systematic study on the production of FVTs in flowers with characteristic aromas is still limited.

floral volatile terpenoids function regulation

1. Introduction

Plant volatile compounds (VOCs) biosynthesis occurs in almost all plant organs, including the roots, stems, leaves, flowers, fruits and seeds. They are widely used in perfumes, cosmetics and medicines, and seem promising for use in therapeutic gardens because some possess anxiolytic properties [1][2]. VOCs are lipophilic liquids with low molecular weights and high vapor pressures at ambient temperatures. They include terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives and amino acid derivatives, in addition to a few species- and genus-specific compounds not represented in these major classes. Floral volatile terpenoids (FVTs) are the most dominant VOCs, followed by particular phenylpropanoids/benzenoids [3][4].

The main FVTs—released into the air because of their high vapor pressures—are the hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15) and a few diterpenes (C20) [5][6][7]. In addition, irregular volatile terpenoids with carbon skeletons ranging from C8 to C18 are derived from carotenoids. The homoterpenes that are often emitted from night-scented flowers and aerial tissues upon herbivore attack form a small part of the FVTs [3]. Among these FVTs, monoterpenes, such as limonene, ocimene, myrcene and linalool, and sesquiterpenes, such as farnesene, nerolidol and caryophyllene, are the most ubiquitous volatiles ( Table 1 ) [4][8]. The FVTs identified so far in flowering plants are detailed in Table 1 .

The mechanism of FVT production is complex, influenced by many environmental factors and associated with vital biological functions.

Table 1. Major FVTs and genes associated with their biosynthesis in flowering plants.
Latin Name Family Main FVT compounds Genes Ref.
Actinidia deliciosa ‘Hayward’ Actinidiaceae (E,E)-α-farnesene, (E)-β-ocimene, (+)-germacrene D   [9]
Albizia julibrissin Leguminosae α-farnesene, (ZE)-β-farnesene AjTPS2, AjTPS5, AjTPS7, AjTPS9, AjTPS10 [10]
Camellia spp. Theaceae linalool and its oxides, geraniol, α-farnesene, hedycaryol CbTPS1, ChTPS1, CbTPS18, CbTPS25, CbTPS28, CbTPS33, CbTPS35 CsTPS29, CbTPS47, CbTPS48, CbTPS51, CbTPS52 [11][12][13]
Cananga odorata var. fruticosa Annonaceae linalool CoTPS1, CoTPS2, CoTPS3, CoTPS4 [14]
Chimonanthus praecox L. Calycanthaceae linalool, trans-β-ocimene, β-caryophyllene CpTPS1, CpTPS9, CpTPS10, CpTPS14, CpTPS16, CpTPS4, CpTPS9, CpTPS42 [15][16][17][18]
Datura wrightii Solanaceae linalool and its enantiomers   [19]
Eurya japonica Thunb Theaceae α-pinene, linalool   [20]
Gardenia jasminoides Rubiaceae farnesene, Z-3-hexenyl tiglate, indole   [21]
Gelsemium sempervirens (L.) J. St.-Hil. Gelsemiaceae (Z)-α-ocimene, α-farnesene   [22]
Gossypium hirsutum Malvaceae (3S)-linalool GhTPS12 [23][24]
Jasminum spp. Oleaceae ?-farnesene, linalool, β-ocimene, germacrene-D   [25][26][27][28][29]
Laurus nobilis Lauraceae sesquiterpenes, γ-cadinene, δ-cadinene   [30]
Lonicera japonica Caprifoliaceae linalool   [31]
Magnolia champaca Magnoliaceae (R)-linalool, linalool and its oxides   [32]
Malus domestica Rosaceae (E)-linalool oxide   [33]
Murraya paniculata Rutaceae E-β-ocimene, linalool, α-cubebene   [34][35]
Myrtus communis L. Myrtaceae α-pinene, linalool, 1,8-cineole   [36]
Osmanthus fragrans Oleaceae linalool and its derivatives, α-ionone, β-ionone OfTPS1, OfTPS2, OfTPS3 [37][38][39][40]
Paeonia spp. Paeoniaceae β-caryophyllene, linalool   [41][42]
Psidium guajava Myrtaceae α-cadinol, β-caryophyllene, nerolidol   [43]
Rosa spp. Rosaceae geraniol, linalool, nerolidol, myrcene, ocimene, citronellol NEROLIDOL SYNTHASE (NES), RcLIN-NERS1, RcLIN-NERS2 [44][45][46][47][48][49]
Styrax japonicas spp. Styracaceae linalool, α-pincnc, gcrmacrcnc D   [50]
Syringa oblata Lindl. Oleaceae D-limonene   [51][52]
Penstemon digitalis Plantaginaceae linalool and its enantiomers, cis-and trans-β-ocimene   [53][54][55]
Alstroemeria spp. Alstroemeriaceae (E)-caryophyllene, α-caryophyllene   [56]
Anthurium ‘Mystral’ Araceae eucalyptol, β/α-pinene, β-phellandrene, β-Myrcene   [57]
Antirhinum majus Plantaginaceae nerolidol, linalool, (E)-β-ocimene, myrcene   [58][59]
Arabidopsis thaliana Brassicaceae α-copaene, α-caryophyllene, β-elemene AtTPS21AtTPS11, and other 40 terpenoid synthase genes [60][61][62][63][64]
Aristolochia gigantea Aristolochiaceae linalool, (Z,E)-α-farnesene, geraniol   [65]
Caladenia plicata Orchidaceae β-citronellol   [66]
Cannabis sativa Cannabaceae (+)-α-pinene, (−)-limonene, β-caryophyllene   [67]
Chrysanthemum indicum Asteraceae 1,8-cineole, germacrene D, camphor   [68][69]
Citrus L. Rutaceae linalool, β-myrcene, α-myrcene, limonene   [70]
Clarkia breweri Onagraceae S-linalool, Linalool, linalool oxide linalool synthase (LIS) gene [71][72]
Clematis florida cv. ‘Kaiser’ Ranunculaceae linalool, linalool oxide, nerolidol CfTPS1, CfTPS2, CfTPS3 [73]
Cymbidium spp. Orchidaceae (E)-β-farrnesene, nerolidol, linalool CgTPS7 [74][75]
Dendrobium officinale Orchidaceae α-thujene, linalool, α-terpineol DoTPS10 [76][77][78]
Dianthus caryophyllus L. Caryophyllaceae caryophyllene, caryophyllene oxide, linalool   [79][80][81]
Freesia hybrida. “Shiny Gold” Iridaceae linalool, β-ocimene, D-limonene FhTPS1, FhTPS2, FhTPS3, FhTPS4, FhTPS5, FhTPS6, FhTPS7, FhTPS8 [82][83][84]
Gymnadenia conopsea (L.) R. Br. Orchidaceae β-myrcene, α-terpineol, (+)-cyclosativene, α-santalene, trans-α-bergamotene, (Z,E)-α-farnesene, (E,E)-α-farnesene   [85]
Hedychium coronarium Zingiberaceae β-ocimene, 1,8-cineole, linalool HcTPS1, HcTPS3, HcTPS5, HcTPS6, HcTPS7, HcTPS8, HcTPS10, HcTPS11, HcTPS21 [86][87][88][89][90]
Hippeastrum spp. Amaryllidaceae eucalyptol, (Z)-β-ocimene   [91]
Lathyrus odoratus Leguminosae α-bergamotene, linalool, (−)-α-cubebene   [92]
Lavandula spp. Lamiaceae linalool acetate, linalool, lavandulyl acetate, α/β-Pinene LaLIMS, LaLINS [92][93][94][95][96]
Lilium spp. Liliaceae linalool, myrcene, (E)-β-ocimene, α-pinene, limonene LoTPS1, LoTPS2, LoTPS3, LoTPS4 [97][98][99]
Maxillaria tenuifolia Orchidaceae β-caryophyllene, α-copaene, delta-decalacton   [100]
Mentha citrata Lamiaceae linalool and its enantiomers   [101]
Mimulus spp. Phrymaceae (E)-β-ocimene, d-limonene, β-myrcene OCIMENE SYNTHASE (OS) gene [102][103][104]
Narcissus spp. Amaryllidaceae myrcene, eucalyptol, linalool   [105][106]
Nicotiana spp. Solanaceae (E)-α-bergamotene, (E)-β-ocimene, 1,8-cineole NaTPS25NaTPS38 [107][108][109][110][111]
Nymphaea subg. Hydrocallis Nymphaeaceae linalool, farnesene, nerolidol   [112]
Ocimum basilicum L. Lamiaceae linalool   [113]
Petunia hybrida Solanaceae germacrene D, β-cadinene PhTPS1, PhTPS2, PhTPS3, PhTPS4 [114]
Passiflora edulis Sims Passifloraceae linalool PeTPS2, PeTPS3, PeTPS4, PeTPS24 [115]
Phalaenopsis spp. Orchidaceae α-pinene, trans-β-ocimene, linalool, geraniol and their derivatives PbTPS5, PbTPS7, PbTPS9, PbTPS10, PbTPS3, PbTPS4 [116][117][118]
Plectranthus amboinicus (Lour.) Spreng Lamiaceae linalool, nerolidol   [119]
Polianthes tuberosa L. Amaryllidaceae germacrene D, 1, 8- cineole, α-terpineol   [120][121][122][123]
Rheum nobile Polygonaceae α-pinene   [124]
Salvia officinalis Labiatae myrcene, (+)-neomenthol, 1,8-cineole   [125]
Tanacetum vulgare Asteraceae α-pinene, 3-hexen-1-ol-acetate   [126]

2. Complexity of FVT Biosynthesis and Emission

The biosynthesis and emission of FVTs in flowering plants and cut flowers is complex and is not only regulated by the spatio–temporal expression of particular genes but is also affected by various environmental factors, such as light intensity, radiation, the composition of the atmosphere, ambient temperature and relative humidity [79][104]. The mechanisms that influence the biosynthesis and emission of FVTs in response to specific environmental factors are still to be studied [80].

2.1. Spatio–Temporal Regulation

The release of FVTs follows a spatio–temporal pattern. Generally, each flowering plant has a unique composition of FVTs and coordinates the rhythm of FVT emission with the activity of its pollinators [64][84][127][128]. When flowers are ready to be pollinated, they emit elevated levels of volatile compounds. Successful pollination leads to fertilization and decreases in the emission of floral scents, resulting in decreases in unproductive visits from pollinators [128][129]. For example, the emission of linalool from P. lemonei ‘High noon’ flowers appears highest—accounting for 40% of total volatiles—at the fully opened stage and decreases as the flower wilts [40]. The diel emission of FVTs and the composition of FVTs produced by fragrant orchid G. conopsea is consistent with the spatial variation of nocturnal and diurnal pollinators in southern Sweden [84]. Meanwhile, the emission of particular FVTs varies during the different stages of flower development. The monoterpenes and relatively few sesquiterpenes mainly form in buds. The proportion of terpenes is greatly reduced in open flowers. This phenomenon occurs in the flowers of most fragrant plants, including Plumeria rubra flowers [130], lemon basil (O. citriodorum Vis) [131], roses [48]J. auriculatum [25]J. grandiflorum flowers [27], styrax flowers [49]M. tenuifolia [99]C. sativa [66] and C. goeringii [73]. Moreover, the circadian rhythm strongly influences the release of FVTs including (Z)-β-ocimene and (+/−)-linalool from lilium ‘Siberia’ [98], myrcene and (E)-β-ocimene from snapdragon flowers, 1,8-cineole from N. suaveolens [110] and linalool and its enantiomers from Jasminum spp. (J. auriculatum, J. grandiflorum, J. multiflorum and J. malabaricum) [132]. The molecular mechanism linking the emission of particular FVTs to the circadian rhythm remains unknown.
Different plants release FVTs from various tissues and organs to serve specific biological functions. The maximum amounts of FVTs are synthesized at the top of the petunia flower tube directly below the unexpanded corolla, close to the developing stigma. This arrangement allows the stigma to absorb the most FVTs for resistance [113]. In Lilium ‘Siberia’ flowers, the expression of the TPS genes was prominent in flowering parts, especially in sepals and petals [98]. Specifically, LoTPS1 and LoTPS3 were localized to plastids and mitochondria, respectively [98]. The bisexual dimorphism of floral aromas reflects the evolution of flowering plants from hermaphroditic to dioecious plants. Researchers have found that the constituents and release of FVTs differ in pistils and stamens. In E. japonica flowers, α-pinene and linalool were identified as the major components of floral scents in females, hermaphrodites and males. The males emit particularly high levels of α-pinene relative to females and hermaphrodites. The emissions from males generally decrease as flowers senescence. In contrast, the emissions from females and hermaphrodites do not change significantly during senescence [19].

2.2. Luminous Intensity

Light directly affects floral scent emission, changing the qualities and quantities of light-induced fluctuations in the FVTs emitted from Lilium ‘siberia’ flowers [133]P. bellinaP. violacea and Phalaenopsis hybrid flowers [118]Narcissus sp. cut flowers [104] and C. sinensis leaves [134]. One study indicated that light intensity and the circadian clock influenced a Ca2+ signal that contributed to the biosynthesis and emission of monoterpenes in Lilium ‘siberia’ tepals [135].

2.3. Radiation

γ radiation greatly influences the biosynthesis and emission of FVTs. The concentration of linalool in the floral scent bouquet from J. auriculatum was increased twofold in 10 Gy gamma-irradiated variants relative to the control [24]. In addition, the researchers observed a significant increase in the expression of FVT biosynthetic pathway genes and enzymes in particular plants that were irradiated with ultraviolet (UV) light [136]. These data provide evidence that UV-B light affects FVT biosynthesis.

2.4. Composition of the Atmosphere

VOCs form the floral scent trails that are essential for plant–insect interactions. Tropospheric ozone (O3) chemically degrades the floral scent trails, thus reducing the distance, specificity and efficiency of the VOC signal [137][138]. Moreover, elevated levels of O3, carbon dioxide (CO2), diesel exhaust and nitrogen inputs (e.g., atmospheric NOx, N deposition and soil N enrichment) contribute to the production of O3—and have recently been reported to rapidly degrade floral volatiles [138][139][140]. Thus, these environmental factors decrease the distance of scent trails and negatively affect the orientation of pollinators toward floral sources [138].

2.5. Ambient Temperature and Relative Humidity

With global climate change, temperature and humidity are increasingly threatening floral maturation and the size, nectar volume, floral scent and pollinator visitation rates associated with it, and thus, the composition of the pollinator community for some flowering plants [25][140][141][142][143]. The enhancement of temperature and humidity have a significant effect on the amounts of floral scent components, especially FVTs from the O. fragrans cultivars [37]P. axillaris [144]J. auriculatum [25]Lilium ‘Siberia’ [145] and seven common Mediterranean species [146]. As a result, the attractive characteristics of the floral fragrances are diminished due to the changed compositions of FVTs and the release rates of particular FVTs, such as (E)-β-ocimene, (E,E)-α-farnesene and α- and β-pinene [143][147][148][149].

3. Conclusions and Perspectives

The availability of whole genome sequences for many plants and the recent progress in -omics technology has led to a new genomics and -omics era in plant biology research that has contributed to a novel understanding of regulatory mechanisms involved in the biosynthesis of FVTs. The progress achieved in our understanding of VOCs and FVTs highlights the importance of floral volatile terpenes in natural ecosystems, plant reproduction, plant defense, pollination and signal transduction. Recent breakthroughs in the identification of TPS genes, associated TFs, the supplementation of terpene biosynthetic pathways and its derivatives demonstrate that we have reliable genetic techniques and methods that can be used to improve floral fragrance, such as modifying the emissions of FVTs, to greatly facilitate the recruitment of pollinators and control pests and improve the production of targeted FVTs and essential oils. Moreover, growing metabolically and genetically engineered plants in different natural conditions will allow us to determine the species-specific functions of different FVTs.
Generally speaking, the study of flower fragrance has seen considerable progress in recent years, but there are still many gaps in our knowledge. There is a connection between the biosynthetic pathways that produce FVTs and pigments, but the details of the connection remain unclear. Although our knowledge of FVT biosynthesis is substantial, the transcriptional and post-translational regulation of these pathways requires further study. Meanwhile, our understanding of the influence of hormones, such as auxin, ABA and GA, on FVTs is still limited. In addition, the transport of FVTs remains to be explored. To date, the transmembrane transporters of FVTs and their biosynthetic precursors remain unknown. However, we can speculate that ATP-binding cassette (ABC) transporters transport FVTs across membranes because previous research indicates that an ABC transporter transports phenylpropanoid/benzenoid volatiles across the plasma membrane [150][151].
Moreover, extraction and isolation methods of FVTs, especially specific volatile terpenoids, remain ambiguous. There are significant prospects in investigating the extraction technology of specific terpenes due to the chemical and physical properties of FVTs and their promising applications.

References

  1. Lu, X.; Tang, K.; Li, P. Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front. Plant Sci. 2016, 7, 1647.
  2. Sabitov, A.; Gaweł-Bęben, K.; Sakipova, Z.; Strzępek-Gomółka, M.; Hoian, U.; Satbayeva, E.; Głowniak, K.; Ludwiczuk, A. Rosa platyacantha schrenk from Kazakhstan-Natural source of bioactive compounds with cosmetic significance. Molecules 2021, 26, 2578.
  3. Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32.
  4. Farré-Armengol, G.; Fernández-Martínez, M.; Filella, I.; Junker, R.R.; Peñuelas, J. Deciphering the biotic and climatic factors that influence floral scents: A systematic review of floral volatile emissions. Front. Plant Sci. 2020, 11, 1154.
  5. Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120.
  6. Raguso, R.A. More lessons from linalool: Insights gained from a ubiquitous floral volatile. Curr. Opin. Plant Biol. 2016, 32, 31–36.
  7. Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702.
  8. Brokl, M.; Fauconnier, M.L.; Benini, C.; Lognay, G.; Jardin, P.d.; Focant, J.F. Improvement of ylang-ylang essential oil characterization by GC × GC-TOFMS. Molecules 2013, 18, 1783–1797.
  9. Nieuwenhuizen, N.J.; Wang, M.Y.; Matich, A.J.; Green, S.A.; Chen, X.; Yauk, Y.K.; Beuning, L.L.; Nagegowda, D.A.; Dudareva, N.; Atkinson, R.G. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J. Exp. Bot. 2009, 60, 3203–3219.
  10. Liu, G.; Yang, M.; Yang, X.; Ma, X.; Fu, J. Five TPSs are responsible for volatile terpenoid biosynthesis in Albizia julibrissin. J. Plant Physiol. 2021, 258–259, 153358.
  11. Hattan, J.; Shindo, K.; Ito, T.; Shibuya, Y.; Watanabe, A.; Tagaki, C.; Ohno, F.; Sasaki, T.; Ishii, J.; Kondo, A.; et al. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. Planta 2016, 243, 959–972.
  12. Hattan, J.I.; Shindo, K.; Sasaki, T.; Ohno, F.; Tokuda, H.; Ishikawa, K.; Misawa, N. Identification of novel sesquiterpene synthase genes that mediate the biosynthesis of valerianol, which was an unknown ingredient of tea. Sci. Rep. 2018, 8, 12474.
  13. Zhou, H.C.; Shamala, L.F.; Yi, X.K.; Yan, Z.; Wei, S. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci. Rep. 2020, 10, 933.
  14. Jin, J.; Kim, M.J.; Dhandapani, S.; Tjhang, J.G.; Yin, J.L.; Wong, L.; Sarojam, R.; Chua, N.H.; Jang, I.C. The floral transcriptome of ylang ylang (Cananga odorata var fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J. Exp. Bot. 2015, 66, 3959–3975.
  15. Tian, J.P.; Ma, Z.Y.; Zhao, K.G.; Zhang, J.; Xiang, L.; Chen, L.Q. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiol. Plant 2019, 166, 478–493.
  16. Shang, J.; Tian, J.; Cheng, H.; Yan, Q.; Li, L.; Jamal, A.; Xu, Z.; Xiang, L.; Saski, C.A.; Jin, S.; et al. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome. Biol. 2020, 21, 200.
  17. Kamran, H.M.; Hussain, S.B.; Junzhong, S.; Xiang, L.; Chen, L.Q. Identification and molecular characterization of geranyl diphosphate synthase (GPPS) genes in wintersweet flower. Plants 2020, 9, 666.
  18. Aslam, M.Z.; Lin, X.; Li, X.; Yang, N.; Chen, L. Molecular cloning and functional characterization of CpMYC2 and CpBHLH13 transcription factors from wintersweet (Chimonanthus praecox L.). Plants 2020, 9, 785.
  19. Reisenman, C.E.; Riffell, J.A.; Bernays, E.A.; Hildebrand, J.G. Antagonistic effects of floral scent in an insect-plant interaction. Proc. Biol. Sci. 2010, 277, 2371–2379.
  20. Wang, H.; Zheng, P.; Aoki, D.; Miyake, T.; Yagami, S.; Matsushita, Y.; Fukushima, K.; Nakagawa, M. Sexual and temporal variations in floral scent in the subdioecious shrub Eurya japonica Thunb. Ecol. Evol. 2018, 8, 8266–8272.
  21. Kanlayavattanakul, M.; Lourith, N. Volatile profile and sensory property of Gardenia jasminoides aroma extracts. J. Cosmet. Sci. 2015, 66, 371–377.
  22. Obi, J.B.; Golonka, A.M.; Blackwell, A.; Vazquez, I.; Wolfram, N. Floral scent variation in the heterostylous species Gelsemium sempervirens. Molecules 2019, 24, 2818.
  23. Huang, X.Z.; Xiao, Y.T.; Köllner, T.G.; Jing, W.X.; Kou, J.F.; Chen, J.Y.; Liu, D.F.; Gu, S.H.; Wu, J.X.; Zhang, Y.J.; et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ. 2018, 41, 261–274.
  24. Huang, M.; Fan, R.; Ye, X.; Lin, R.; Luo, Y.; Fang, N.; Zhong, H.; Chen, S. The transcriptome of flower development provides insight into floral scent formation in Freesia hybrida. Plant Growth Regul. 2018, 86, 93–104.
  25. Barman, M.; Kotamreddy, J.N.R.; Agarwal, A.; Mitra, A. Enhanced emission of linalool from floral scent volatile bouquet in Jasminum auriculatum variants developed via gamma irradiation. Ind. Crops. Prod. 2020, 152, 112545.
  26. Barman, M.; Mitra, A. Floral maturation and changing air temperatures influence scent volatiles biosynthesis and emission in Jasminum auriculatum Vahl. Environ. Exp. Bot. 2021, 181, 104296.
  27. Bera, P.; Mukherjee, C.; Mitra, A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci. 2017, 256, 25–38.
  28. Pragadheesh, V.S.; Chanotiya, C.S.; Rastogi, S.; Shasany, A.K. Scent from Jasminum grandiflorum flowers: Investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods. Phytochem. 2017, 140, 83–94.
  29. Joulain, D. Jasminum grandiflorum flowers-phytochemical complexity and its capture in extracts: A review. Flavour Fragr. J. 2021, 36, 526–553.
  30. Yahyaa, M.; Matsuba, Y.; Brandt, W.; Doron-Faigenboim, A.; Bar, E.; McClain, A.; Davidovich-Rikanati, R.; Lewinsohn, E.; Pichersky, E.; Ibdah, M. Identification, functional characterization, and evolution of terpene synthases from a basal dicot. Plant Physiol. 2015, 169, 1683–1697.
  31. Miyake, T.; Yamaoka, R.; Yahara, T. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant Res. 1998, 111, 199–205.
  32. Dhandapani, S.; Jin, J.; Sridhar, V.; Sarojam, R.; Chua, N.H.; Jang, I.C. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genom. 2017, 18, 463.
  33. Rachersberger, M.; Cordeiro, G.D.; Schäffler, I.; Dötterl, S. Honeybee pollinators use visual and floral scent cues to find apple (Malus domestica) flowers. J. Agric. Food Chem. 2019, 67, 13221–13227.
  34. Paul, I.; Chatterjee, A.; Maiti, S.; Bhadoria, P.B.S.; Mitra, A. Dynamic trajectories of volatile and non-volatile specialised metabolites in ‘overnight’ fragrant flowers of Murraya paniculata. Plant Biol. 2019, 21, 899–910.
  35. Paul, I.; Mitra, A.; Bhadoria, P. Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (linn.) Jack flowers are contributed by separate volatile components. Biochem. Syst. Ecol. 2020, 89, 104004.
  36. Bouzabata, A.; Cabral, C.; Gonçalves, M.J.; Cruz, M.T.; Bighelli, A.; Cavaleiro, C.; Casanova, J.; Tomi, F.; Salgueiro, L. Myrtus communis L. as source of a bioactive and safe essential oil. Food Chem. Toxicol. 2015, 75, 166–172.
  37. Zeng, X.; Liu, C.; Zheng, R.; Cai, X.; Luo, J.; Zou, J.; Wang, C. Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Osmanthus fragrans lour. Front. Plant Sci. 2016, 6, 1–16.
  38. Fu, J.; Hou, D.; Zhang, C.; Bao, Z.; Zhao, H.; Hu, S. The emission of the floral scent of four Osmanthus fragrans cultivars in response to different temperatures. Molecules 2017, 22, 430.
  39. Ding, W.; Ouyang, Q.; Li, Y.; Shi, T.; Li, L.; Yang, X.; Ji, K.; Wang, L.; Yue, Y. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiol. 2020, 40, 557–572.
  40. Zheng, R.; Zhu, Z.; Wang, Y.; Hu, S.; Xi, W.; Xiao, W.; Qu, X.; Zhong, L.; Fu, Q.; Wang, C. UGT85A84 catalyzes the glycosylation of aromatic monoterpenes in Osmanthus fragrans Lour. flowers. Front. Plant Sci. 2019, 10, 1376.
  41. Zhao, J.; Hu, Z.H.; Leng, P.S.; Cheng, F.Y. Developmental and diurnal change of fragrance emission from ‘High noon’ flowers (Paeonia×lemonei ‘High noon’). In Proceedings of the Third Conference on Horticulture Science and Technology (CHST) 2012, Thika, Kenya, 31 July–3 August 2012; pp. 54–61.
  42. Song, C.; Wang, Q.; da Silva, J.A.T.; Yu, X. Identification of floral fragrances and analysis of fragrance patterns in Herbaceous peony cultivars. J. Am. Soc. Hort. Sci. 2018, 143, 248–258.
  43. Fernandes, C.C.; Rezende, J.L.; Silva, E.A.J.; Silva, F.G.; Stenico., L.; Crotti, A.E.M.; Esperandim, V.R.; Santiago, M.B.; Martins, C.H.G.; Miranda, M.L.D. Chemical composition and biological activities of essential oil from flowers of Psidium guajava (Myrtaceae). Braz. J. Biol. 2021, 81, 728–736.
  44. Feng, L.; Chen, C.; Li, T.; Wang, M.; Tao, J.; Zhao, D.; Sheng, L. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.). Plant Physiol. Biochem. 2014, 75, 80–88.
  45. Magnard, J.L.; Roccia, A.; Caissard, J.C.; Vergne, P.; Sun, P.; Hecquet, R.; Dubois, A.; Hibrand-Saint Oyant, L.; Jullien, F.; Baudino, S.; et al. Plant volatiles. Biosynthesis of monoterpene scent compounds in roses. Science 2015, 349, 81–83.
  46. Magnard, J.L.; Bony, A.R.; Bettini, F.; Campanaro, A.; Blerot, B.; Baudino, S.; Jullien, F. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Plant Physiol. Biochem. 2018, 127, 74–87.
  47. Xu, Q.; Liu, Z.J. The genomic floral language of rose. Nat. Genet. 2018, 50, 770–771.
  48. Raymond, O.; Gouzy, J.; Just, J.; Badouin, H.; Verdenaud, M.; Lemainque, A.; Vergne, P.; Moja, S.; Choisne, N.; Pont, C.; et al. The rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777.
  49. Dani, K.G.S.; Fineschi, S.; Michelozzi, M.; Trivellini, A.; Pollastri, S.; Loreto, F. Diversification of petal monoterpene profiles during floral development and senescence in wild roses: Relationships among geraniol content, petal colour, and floral lifespan. Oecologia 2020, 1–3.
  50. Chen, C.; Cao, Y.; Chen, H.; Ni, M.; Yu, F. Floral scent compounds and emission patterns of three styrax species. Dendrobiology 2021, 85, 30–38.
  51. Zheng, J.; Hu, Z.; Guan, X.; Dou, D.; Bai, G.; Wang, Y.; Guo, Y.; Li, W.; Leng, P. Transcriptome analysis of Syringa oblata Lindl. inflorescence identifies genes associated with pigment biosynthesis and scent metabolism. PLoS ONE 2015, 10, e0142542.
  52. Yan, Z.; Ying, Q.; Zheng, J.; Leng, P.; Hu, Z. Gene cloning and expression analysis of limonene synthase in Syringa oblata and S. oblata var. alba. J. For. Res. 2019, 30, 1301–1309.
  53. Parachnowitsch, A.L.; Raguso, R.A.; Kessler, A. Phenotypic selection to increase floral scent emission, but not flower size or color in bee-pollinated Penstemon digitalis. New Phytol. 2012, 195, 667–675.
  54. Burdon, R.C.F.; Raguso, R.A.; Gegear, R.J.; Pierce, E.C.; Kessler, A.; Parachnowitsch, A.L. Scented nectar and the challenge of measuring honest signals in pollination. J. Ecol. 2020, 108, 2132–2144.
  55. Burdon, R.C.F.; Junker, R.R.; Scofield, D.G.; Parachnowitsch, A.L. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology 2018, 28, 11–19.
  56. Aros, D.; Gonzalez, V.; Allemann, R.K.; Müller, C.T.; Rosati, C.; Rogers, H.J. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 2012, 63, 2739–2752.
  57. Wei, Q.; Xia, Q.; Wang, Y.; Chen, W.; Liu, C.; Zeng, R.; Xie, L.; Yi, M.; Guo, H. Profiling of volatile compounds and associated gene expression in two Anthurium cultivars and their F1 hybrid progenies. Molecules 2021, 26, 2902.
  58. Dudareva, N.; Martin, D.; Kish, C.M.; Kolosova, N.; Gorenstein, N.; Fäldt, J.; Miller, B.; Bohlmann, J. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 2003, 15, 1227–1241.
  59. Nagegowda, D.A.; Gutensohn, M.; Wilkerson, C.G.; Dudareva, N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J. 2008, 55, 224–239.
  60. Huang, M.; Sanchez-Moreiras, A.M.; Abel, C.; Sohrabi, R.; Lee, S.; Gershenzon, J.; Tholl, D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012, 193, 997–1008.
  61. Aubourg, S.; Lecharny, A.; Bohlmann, J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genomics 2002, 267, 730–745.
  62. Chen, F.; Tholl, D.; D’Auria, J.C.; Farooq, A.; Pichersky, E.; Gershenzon, J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell. 2003, 15, 481–494.
  63. Tholl, D.; Chen, F.; Petri, J.; Gershenzon, J.; Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 2005, 42, 757–771.
  64. Hong, G.J.; Xue, X.Y.; Mao, Y.B.; Wang, L.J.; Chen, X.Y. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 2012, 24, 2635–2648.
  65. Martin, K.R.; More, M.; Hipolito, J.; Charlemagne, S.; Schlumpberger, B.O.; Raguso, R.A. Spatial and temporal variation in volatile composition suggests olfactory division of labor within the trap flowers of Aristolochia gigantea. Flora 2016, 232, 153–168.
  66. Wong, D.C.J.; Pichersky, E.; Peakall, R. The biosynthesis of unusual floral volatiles and blends involved in orchid pollination by deception: Current progress and future prospects. Front. Plant Sci. 2017, 8, 1955.
  67. Booth, J.K.; Yuen, M.M.S.; Jancsik, S.; Madilao, L.L.; Page, J.E.; Bohlmann, J. Terpene synthases and terpene variation in Cannabis sativa. Plant Physiol. 2020, 184, 130–147.
  68. Hwang, E.S.; Kim, G.H. Safety evaluation of Chrysanthemum indicum L. flower oil by assessing acute oral toxicity, micronucleus abnormalities, and mutagenicity. Prev. Nutr. Food Sci. 2013, 18, 111–116.
  69. Zhou, Z.; Xian, J.; Wei, W.; Xu, C.; Yang, J.; Zhan, R.; Ma, D. Volatile metabolic profiling and functional characterization of four terpene synthases reveal terpenoid diversity in different tissues of Chrysanthemum indicum L. Phytochemistry 2021, 185, 112687.
  70. Jabalpurwala, F.A.; Smoot, J.M.; Rouseff, R.L. A comparison of citrus blossom volatiles. Phytochemistry 2009, 70, 1428–1434.
  71. Dudareva, N.; Cseke, L.; Blanc, V.M.; Pichersky, E. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the Clarkia breweri flower. Plant Cell 1996, 8, 1137–1148.
  72. Lavy, M.; Zuker, A.; Lewinsohn, E.; Larkov, O.; Ravid, U.; Vainstein, A.; Weiss, D. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 2002, 9, 103–111.
  73. Jiang, Y.; Qian, R.; Zhang, W.; Wei, G.; Ma, X.; Zheng, J.; Köllner, T.G.; Chen, F. Composition and biosynthesis of scent compounds from sterile flowers of an ornamental plant Clematis florida cv. ‘Kaiser’. Molecules 2020, 25, 1711.
  74. Ramya, M.; Jang, S.; An, H.R.; Lee, S.Y.; Park, P.M.; Park, P.H. Volatile organic compounds from orchids: From synthesis and function to gene regulation. Int. J. Mol. Sci. 2020, 21, 1160.
  75. Kim, S.M.; Jang, E.J.; Hong, J.W.; Song, S.H.; Pak, C.H. A comparison of functional fragrant components of Cymbidium (Oriental Orchid) Species. Hortic. Sci. 2016, 34, 331–341.
  76. Li, N.; Dong, Y.; Lv, M.; Qian, L.; Sun, X.; Liu, L.; Cai, Y.; Fan, H. Combined analysis of volatile terpenoid metabolism and transcriptome reveals transcription factors related to terpene synthase in two cultivars of Dendrobium officinale flowers. Front. Genet. 2021, 12, 661296.
  77. Zhao, C.; Yu, Z.; Silva, J.A.T.D.; He, C.; Wang, H.; Si, C.; Zhang, M.; Zeng, D.; Duan, J. Functional characterization of a Dendrobium officinale geraniol synthase DoGES1 involved in floral scent formation. Int. J. Mol. Sci. 2020, 21, 7005.
  78. Yu, Z.; Zhao, C.; Zhang, G.; da Silva, J.A.T.; Duan, J. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis. Int. J. Mol. Sci. 2020, 21, 5419.
  79. Kishimoto, K.; Nakayama, M.; Yagi, M.; Onozaki, T.; Oyama-Okubo, N. Evaluation of wild Dianthus species as genetic resources for fragrant carnation breeding based on their floral scent composition. J. Jpn. Soc. Hortic. Sci. 2011, 80, 175–181.
  80. Kishimoto, K.; Inamoto, K.; Ymaguchi, H. Component analysis and sensory evaluation of scent emitted from cut carnation flowers. Bull NARO Veg. & Flor. Sci. 2019, 3, 29–40.
  81. Kishimoto, K.; Shibuya, K. Scent emissions and expression of scent emission-related genes: A comparison between cut and intact carnation flowers. Sci. Hortic. 2021, 281, 109920.
  82. Gao, F.; Liu, B.; Li, M.; Gao, X.; Fang, Q.; Liu, C.; Ding, H.; Wang, L.; Gao, X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida. J. Exp. Bot. 2018, 69, 4249–4265.
  83. Srinivasan, A.; Ahn, M.S.; Jo, G.S.; Suh, J.N.; Seo, K.H.; Kim, W.H.; Kang, Y.I.; Lee, Y.R.; Choi, Y.J. Analysis of relative scent intensity, volatile compounds and gene expression in Freesia “Shiny Gold”. Plants 2020, 9, 1597.
  84. Yang, Z.; Li, Y.; Gao, F.; Jin, W.; Li, S.; Kimani, S.; Yang, S.; Bao, T.; Gao, X.; Wang, L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 4140–4158.
  85. Chapurlat, E.; Anderson, J.; Ågren, J.; Friberg, M.; Sletvold, N. Diel pattern of floral scent emission matches the relative importance of diurnal and nocturnal pollinators in populations of Gymnadenia conopsea. Ann. Bot. 2018, 121, 711–721.
  86. Yue, Y.; Yu, R.C.; Fan, Y.P. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 2014, 240, 745–762.
  87. Li, X.Y.; Zheng, S.Y.; Yu, R.C.; Fan, Y.P. Promoters of HcTPS1 and HcTPS2 genes from Hedychium coronarium direct floral-specific, developmental-regulated and stress-inducible gene expression in transgenic tobacco. Plant Mol. Biol. Rep. 2014, 32, 864–880.
  88. Yue, Y.; Yu, R.C.; Fan, Y.P. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom. 2015, 16, 470.
  89. Abbas, F.; Ke, Y.; Zhou, Y.; Yu, Y.; Waseem, M.; Ashraf, U.; Wang, C.; Wang, X.; Li, X.; Yue, Y.; et al. Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. Front. Plant Sci. 2021, 12, 623742.
  90. Ke, Y.; Abbas, F.; Zhou, Y.; Yu, R.; Fan, Y. Auxin-responsive R2R3-MYB transcription factors HcMYB1 and HcMYB2 activate volatile biosynthesis in Hedychium coronarium flowers. Front. Plant Sci. 2021, 12, 710826.
  91. Meerow, A.W.; Reed, S.T.; Dunn, C.; Schnell, E. Fragrance analysis of two scented Hippeastrum species. HortScience 2017, 52, 1853–1860.
  92. Bao, T.; Shadrack, K.; Yang, S.; Xue, X.; Li, S.; Wang, N.; Wang, Q.; Wang, L.; Gao, X.; Cronk, Q. Functional characterization of terpene synthases accounting for the volatilized-terpene heterogeneity in Lathyrus odoratus cultivar flowers. Plant Cell Physiol. 2020, 61, 1733–1749.
  93. Wilson, T.M.; Poulson, A.; Packer, C.; Carlson, R.E.; Buch, R.M. Essential oil profile and yield of corolla, calyx, leaf, and whole flowering top of cultivated Lavandula angustifolia Mill. (Lamiaceae) from Utah. Molecules 2021, 26, 2343.
  94. Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799.
  95. Adal, A.M.; Sarker, L.S.; Malli, R.P.N.; Liang, P.; Mahmoud, S.S. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). Planta 2019, 249, 271–290.
  96. Guitton, Y.; Nicole, F.; Jullien, F.; Jean-Claude, C.; Saint-Marcoux, D.; Legendre, L.; Pasquier, B.; Moja, S. A comparative study of terpene composition in different clades of the genus Lavandula. Bot. Lett. 2018, 165, 494–505.
  97. Du, F.; Wang, T.; Fan, J.M.; Liu, Z.Z.; Zong, J.X.; Fan, W.X.; Han, Y.H.; Grierson, D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Hortic. Res. 2019, 6, 110.
  98. Abbas, F.; Ke, Y.; Zhou, Y.; Ashraf, U.; Li, X.; Yu, Y.; Yue, Y.; Ahmad, K.W.; Yu, R.; Fan, Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia’. Phytochemistry 2020, 173, 112294.
  99. Abbas, F.; Ke, Y.; Yu, R.; Fan, Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93.
  100. Kim, S.Y.; Ramya, M.; An, H.R.; Park, P.M.; Lee, S.Y.; Park, S.Y.; Park, P.H. Floral volatile compound accumulation and gene expression analysis of Maxillaria tenuifolia. Korean J. Hortic. Sci. Technol. 2019, 37, 756–766.
  101. Crowell, A.L.; Williams, D.C.; Davis, E.M.; Wildung, M.R.; Croteau, R. Molecular cloning and characterization of a new linalool synthase. Arch. Biochem. Biophys. 2002, 405, 112–121.
  102. Peng, F.; Byers, K.J.R.P.; Bradshaw, H.D., Jr. Less is more: Independent loss-of-function OCIMENE SYNTHASE alleles parallel pollination syndrome diversification in monkeyflowers (Mimulus). Am. J. Bot. 2017, 104, 1055–1059.
  103. Byers, K.J.; Vela, J.P.; Peng, F.; Riffell, J.A.; Bradshaw, H.D., Jr. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus). Plant J. 2014, 80, 1031–1042.
  104. Reddy, V.A.; Wang, Q.; Dhar, N.; Kumar, N.; Venkatesh, P.N.; Rajan, C.; Panicker, D.; Sridhar, V.; Mao, H.Z.; Sarojam, R. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU). Plant Biotechnol. J. 2017, 15, 1105–1119.
  105. Terry, M.I.; Ruiz-Hernández, V.; Águila, D.J.; Weiss, J.; Egea-Cortines, M. The effect of post-harvest conditions in Narcissus sp. cut flowers scent profile. Front. Plant Sci. 2021, 11, 540821.
  106. Yang, J.; Ren, Y.; Zhang, D.; Chen, X.; Huang, J.; Xu, Y.; Aucapiña, C.B.; Zhang, Y.; Miao, Y. Transcriptome-based WGCNA analysis reveals regulated metabolite fluxes between floral color and scent in Narcissus tazetta flower. Int. J. Mol. Sci. 2021, 22, 8249.
  107. Zhou, W.; Kügler, A.; McGale, E.; Haverkamp, A.; Knaden, M.; Guo, H.; Beran, F.; Yon, F.; Li, R.; Lackus, N.; et al. Tissue-specific emission of (E)-α-Bergamotene helps resolve the dilemma when pollinators are also herbivores. Curr. Biol. 2017, 27, 1336–1341.
  108. Henry, L.K.; Thomas, S.T.; Widhalm, J.R.; Lynch, J.H.; Davis, T.C.; Kessler, S.A.; Bohlmann, J.; Noel, J.P.; Dudareva, N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat. Plants 2018, 4, 721–729.
  109. Xu, S.; Kreitzer, C.; McGale, E.; Lackus, N.D.; Guo, H.; Köllner, T.G.; Schuman, M.C.; Baldwin, I.T.; Zhou, W. Allelic differences of clustered terpene synthases contribute to correlated intraspecific variation of floral and herbivory-induced volatiles in a wild tobacco. New Phytol. 2020, 228, 1083–1096.
  110. Heiling, S.; Llorca, L.C.; Li, J.; Gase, K.; Schmidt, A.; Schäfer, M.; Schneider, B.; Halitschke, R.; Gaquerel, E.; Baldwin, I.T. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. Plant Cell. 2021, 33, 1748–1770.
  111. Roeder, S.; Hartmann, A.M.; Effmert, U.; Piechulla, B. Regulation of simultaneous synthesis of floral scent terpenoids by the 1, 8-cineole synthase of Nicotiana suaveolens. Plant Mol. Biol. 2007, 65, 107–124.
  112. Maia, A.C.D.; de Lima, C.T.; Navarro, D.M.D.A.F.; Chartier, M.; Giulietti, A.M.; Machado, I.C. The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. Phytochemistry 2014, 103, 67–75.
  113. Filip, S.; Vidovi, S.; Vladi, J.; Pavli, B.; Zekovi, Z. Chemical composition and antioxidant properties of Ocimum basilicum L. extracts obtained by supercritical carbon dioxide extraction: Drug exhausting method. J. Supercrit. Fluids 2015, 109, 20–25.
  114. Boachon, B.; Lynch, J.H.; Ray, S.; Yuan, J.; Caldo, K.M.P.; Junker, R.R.; Kessler, S.A.; Morgan, J.A.; Dudareva, N. Natural fumigation as a mechanism for volatile transport between flower organs. Nat. Chem. Biol. 2019, 15, 583–588.
  115. Xia, Z.; Huang, D.; Zhang, S.; Wang, W.; Ma, F.; Wu, B.; Xu, Y.; Xu, B.; Chen, D.; Zou, M.; et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Hortic. Res. 2021, 8, 14.
  116. Chuang, Y.C.; Hung, Y.C.; Tsai, W.C.; Chen, W.H.; Chen, H.H. Pbbhlh4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. J. Exp. Bot. 2018, 69, 4363–4377.
  117. Huang, H.; Kuo, Y.W.; Chuang, Y.C.; Yang, Y.P.; Huang, L.M.; Jeng, M.F.; Chen, W.H.; Chen, H.H. Terpene synthase-b and terpene synthase-e/f genes produce monoterpenes for Phalaenopsis bellina floral scent. Front. Plant Sci. 2021, 12, 700958.
  118. Chuang, Y.C.; Lee, M.C.; Chang, Y.L.; Chen, W.H.; Chen, H.H. Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids. Bot. Stud. 2017, 58, 50.
  119. Ashaari, N.S.; Ab Rahim, M.H.; Sabri, S.; Lai, K.S.; Song, A.A.; Abdul Rahim, R.; Wan Abdullah, W.M.A.N.; Ong Abdullah, J. Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS ONE 2020, 15, e0235416.
  120. Fan, R.; Chen, Y.; Ye, X.; Wu, J.; Lin, B.; Zhong, H. Transcriptome analysis of Polianthes tuberosa during floral scent formation. PLoS ONE 2018, 13, e0199261.
  121. Kutty, N.N.; Mitra, A. Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. Phytochemistry 2019, 162, 10–20.
  122. Kutty, N.N.; Ghissing, U.; Mitra, A. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. Plant Mol. Biol. 2021, 106, 533–554.
  123. Maiti, S.; Mitra, A. Elucidation of headspace volatilome in Polianthes tuberosa flower for identifying non-invasive biomarkers. Hortic. Environ. Biotech. 2019, 60, 269–280.
  124. Song., B.; Chen, G.; Stöcklin, J.; Peng, D.L.; Niu, Y.; Li, Z.M.; Sun, H. A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol. 2014, 203, 1109–1118.
  125. Ali, M.; Li, P.; She, G.; Chen, D.; Wan, X.; Zhao, J. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci. Rep. 2017, 7, 16074.
  126. Eilers, E.J.; Kleine, S.; Eckert, S.; Waldherr, S.; Müller, C. Flower production, headspace volatiles, pollen nutrients, and florivory in Tanacetum vulgare chemotypes. Front. Plant Sci. 2021, 11, 611877.
  127. Dötterl, S.; Jahreiß, K.; Jhumur, U.S.; Jürgens, A. Temporal variation of flower scent in Silene otites (Caryophyllaceae): A species with a mixed pollination system. Bot. J. Linn. Soc. 2012, 169, 447–460.
  128. Rodriguez-Saona, C.; Parra, L.; Quiroz, A.; Isaacs, R. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: Implications for flower visitation by bees. Ann. Bot. 2011, 107, 1377–1390.
  129. Muhlemann, J.K.; Waelti, M.O.; Widmer, A.; Schiestl, F.P. Postpollination changes in floral odor in Silene latifolia: Adaptive mechanisms for seed-predator avoidance? J. Chem. Ecol. 2006, 32, 1855–1860.
  130. Dhandapani, S.; Jin, J.; Sridhar, V.; Chua, N.H.; Jang, I.C. CYP79D73 Participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiol. 2019, 180, 171–184.
  131. Al-Kateb, H.; Mottram, D.S. The relationship between growth stages and aroma composition of lemon basil Ocimum citriodorum Vis. Food Chem. 2014, 152, 440–446.
  132. Barman, M.; Mitra, A. Temporal relationship between emitted and endogenous floral scent volatiles in summer-and winter-blooming Jasminum species. Physiol. Plant. 2019, 166, 946–959.
  133. Zhang, H.X.; Leng, P.S.; Hu, Z.H.; Zhao, J.; Wang, W.H.; Xu, F. The floral scent emitted from Lilium ‘Siberia’ at different flowering stages and diurnal variation. Acta. Hortic. Sin. 2013, 40, 693–702.
  134. Fu, X.; Chen, Y.; Mei, X.; Katsuno, T.; Kobayashi, E.; Dong, F.; Watanabe, N.; Yang, Z. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci. Rep. 2015, 5, 16858.
  135. Hu, Z.; Li, T.; Zheng, J.; Yang, K.; He, X.; Leng, P. Ca2+ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium ‘siberia’. Plant Physiol. Biochem. 2015, 91, 1–9.
  136. Shamala, L.F.; Zhou, H.C.; Han, Z.X.; Wei, S. UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis. Front. Plant Sci. 2020, 11, 234.
  137. Blande, J.D.; Holopainen, J.K.; Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 2014, 37, 1892–1904.
  138. Farré-Armengol, G.; Peñuelas, J.; Li, T.; Yli-Pirilä, P.; Filella, I.; Llusia, J.; Blande, J.D. Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol. 2016, 209, 152–160.
  139. Girling, R.D.; Lusebrink, I.; Farthing, E.; Newman, T.A.; Poppy, G.M. Diesel exhaust rapidly degrades floral odours used by honeybees. Sci. Rep. 2013, 3, 2779.
  140. Jamieson, M.A.; Burkle, L.A.; Manson, J.S.; Runyon, J.B.; Trowbridge, A.M.; Zientek, J. Global change effects on plant-insect interactions: The role of phytochemistry. Curr. Opin. Insect Sci. 2017, 23, 70–80.
  141. Burkle, L.A.; Runyon, J.B. Drought and leaf herbivory influence floral volatiles and pollinator attraction. Glob. Chang. Biol. 2016, 22, 1644–1654.
  142. Gallagher, M.K.; Campbell, D.R. Shifts in water availability mediate plant-pollinator interactions. New Phytol. 2017, 215, 792–802.
  143. Glenny, W.R.; Runyon, J.B.; Burkle, L.A. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. New Phytol. 2018, 220, 785–798.
  144. Sagae, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008, 72, 110–115.
  145. Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. The emission of floral scent from Lilium “siberia” in response to light intensity and temperature. Acta Physiologiae Plantarum 2013, 35, 1691–1700.
  146. Farré-Armengol, G.; Filella, I.; Llusià, J.; Niinemets, Ü.; Peñuelas, J. Changes in floral bouquets from compound-specific responses to increasing temperatures. Glob. Chang. Biol. 2014, 20, 3660–3669.
  147. Campbell, D.R.; Sosenski, P.; Raguso, R.A. Phenotypic plasticity of floral volatiles in response to increasing drought stress. Ann. Bot. 2019, 123, 601–610.
  148. Rering, C.C.; Franco, J.G.; Yeater, K.M.; Mallinger, R.E. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020, 11, e03254.
  149. Kuppler, J.; Kotowska, M.M. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. Glob. Chang. Biol. 2021, 27, 3095–3108.
  150. Adebesin, F.; Widhalm, J.R.; Boachon, B.; Lefèvre, F.; Pierman, B.; Lynch, J.H.; Alam, I.; Junqueira, B.; Benke, R.; Ray, S.; et al. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 2017, 356, 1386–1388.
  151. Liao., P.; Ray, S.; Boachon, B.; Lynch, J.H.; Deshpande, A.; McAdam, S.; Morgan, J.A.; Dudareva, N. Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nat. Chem. Biol. 2021, 17, 138–145.
More
Upload a video for this entry
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 549
Revisions: 2 times (View History)
Update Date: 26 Nov 2021
1000/1000
Hot Most Recent
Academic Video Service