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Floral volatile terpenoids (FVTs) belong to a group of volatile organic compounds (VOC) that play important roles in

attracting pollinators, defending against pathogens and parasites and serving as signals associated with biotic and

abiotic stress responses. Although research on FVTs has been increasing, a systematic generalization is lacking.

Among flowering plants used mainly for ornamental purposes, a systematic study on the production of FVTs in

flowers with characteristic aromas is still limited.

floral volatile terpenoids  function  regulation

1. Introduction

Plant volatile compounds (VOCs) biosynthesis occurs in almost all plant organs, including the roots, stems, leaves,

flowers, fruits and seeds. They are widely used in perfumes, cosmetics and medicines, and seem promising for use

in therapeutic gardens because some possess anxiolytic properties . VOCs are lipophilic liquids with low

molecular weights and high vapor pressures at ambient temperatures. They include terpenoids,

phenylpropanoids/benzenoids, fatty acid derivatives and amino acid derivatives, in addition to a few species- and

genus-specific compounds not represented in these major classes. Floral volatile terpenoids (FVTs) are the most

dominant VOCs, followed by particular phenylpropanoids/benzenoids .

The main FVTs—released into the air because of their high vapor pressures—are the hemiterpenes (C5),

monoterpenes (C10), sesquiterpenes (C15) and a few diterpenes (C20) . In addition, irregular volatile

terpenoids with carbon skeletons ranging from C8 to C18 are derived from carotenoids. The homoterpenes that are

often emitted from night-scented flowers and aerial tissues upon herbivore attack form a small part of the FVTs .

Among these FVTs, monoterpenes, such as limonene, ocimene, myrcene and linalool, and sesquiterpenes, such

as farnesene, nerolidol and caryophyllene, are the most ubiquitous volatiles ( Table 1 ) . The FVTs identified so

far in flowering plants are detailed in Table 1 .

The mechanism of FVT production is complex, influenced by many environmental factors and associated with vital

biological functions.

Table 1. Major FVTs and genes associated with their biosynthesis in flowering plants.
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Latin Name Family Main FVT compounds Genes Ref.

Actinidia
deliciosa ‘Hayward’

Actinidiaceae (E,E)-α-farnesene, (E)-β-
ocimene, (+)-

  [9]
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Latin Name Family Main FVT compounds Genes Ref.
germacrene D

Albizia julibrissin Leguminosae
α-farnesene, (Z, E)-β-

farnesene
AjTPS2, AjTPS5, AjTPS7,

AjTPS9, AjTPS10

Camellia spp. Theaceae
linalool and its oxides,
geraniol, α-farnesene,

hedycaryol

CbTPS1, ChTPS1,
CbTPS18, CbTPS25,
CbTPS28, CbTPS33,
CbTPS35 CsTPS29,
CbTPS47, CbTPS48,
CbTPS51, CbTPS52

Cananga odorata
var. fruticosa

Annonaceae linalool
CoTPS1, CoTPS2, CoTPS3,

CoTPS4

Chimonanthus
praecox L.

Calycanthaceae
linalool, trans-β-

ocimene, β-
caryophyllene

CpTPS1, CpTPS9,
CpTPS10, CpTPS14,
CpTPS16, CpTPS4,
CpTPS9, CpTPS42

Datura wrightii Solanaceae
linalool and its
enantiomers

 

Eurya
japonica Thunb

Theaceae α-pinene, linalool  

Gardenia
jasminoides Rubiaceae

farnesene, Z-3-hexenyl
tiglate, indole

 

Gelsemium
sempervirens (L.) J.

St.-Hil.
Gelsemiaceae

(Z)-α-ocimene, α-
farnesene

 

Gossypium hirsutum Malvaceae (3S)-linalool GhTPS12

Jasminum spp. Oleaceae
?-farnesene, linalool, β-
ocimene, germacrene-D

 

Laurus nobilis Lauraceae
sesquiterpenes, γ-

cadinene, δ-cadinene
 

Lonicera japonica Caprifoliaceae linalool  

Magnolia champaca Magnoliaceae
(R)-linalool, linalool and

its oxides
 

Malus domestica Rosaceae (E)-linalool oxide  
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Latin Name Family Main FVT compounds Genes Ref.

Murraya paniculata Rutaceae
E-β-ocimene, linalool, α-

cubebene
 

Myrtus communis L. Myrtaceae
α-pinene, linalool, 1,8-

cineole
 

Osmanthus fragrans Oleaceae
linalool and its

derivatives, α-ionone, β-
ionone

OfTPS1, OfTPS2, OfTPS3

Paeonia spp. Paeoniaceae β-caryophyllene, linalool  

Psidium guajava Myrtaceae
α-cadinol, β-

caryophyllene, nerolidol
 

Rosa spp. Rosaceae
geraniol, linalool,

nerolidol, myrcene,
ocimene, citronellol

NEROLIDOL SYNTHASE
(NES), RcLIN-NERS1,

RcLIN-NERS2

Styrax
japonicas spp.

Styracaceae
linalool, α-pincnc,

gcrmacrcnc D
 

Syringa oblata Lindl. Oleaceae D-limonene  

Penstemon digitalis Plantaginaceae
linalool and its

enantiomers, cis-
and trans-β-ocimene

 

Alstroemeria spp. Alstroemeriaceae
(E)-caryophyllene, α-

caryophyllene
 

Anthurium ‘Mystral’ Araceae
eucalyptol, β/α-pinene,

β-phellandrene, β-
Myrcene

 

Antirhinum majus Plantaginaceae
nerolidol, linalool, (E)-β-

ocimene, myrcene
 

Arabidopsis thaliana Brassicaceae
α-copaene, α-

caryophyllene, β-
elemene

AtTPS21, AtTPS11, and
other 40 terpenoid synthase

genes
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Latin Name Family Main FVT compounds Genes Ref.

Aristolochia gigantea Aristolochiaceae
linalool, (Z,E)-α-

farnesene, geraniol
 

Caladenia plicata Orchidaceae β-citronellol  

Cannabis sativa Cannabaceae
(+)-α-pinene, (−)-

limonene, β-
caryophyllene

 

Chrysanthemum
indicum Asteraceae

1,8-cineole, germacrene
D, camphor

 

Citrus L. Rutaceae
linalool, β-myrcene, α-

myrcene, limonene
 

Clarkia breweri Onagraceae
S-linalool, Linalool,

linalool oxide
linalool synthase (LIS) gene

Clematis florida cv.
‘Kaiser’

Ranunculaceae
linalool, linalool oxide,

nerolidol
CfTPS1, CfTPS2, CfTPS3

Cymbidium spp. Orchidaceae
(E)-β-farrnesene,
nerolidol, linalool

CgTPS7

Dendrobium
officinale Orchidaceae

α-thujene, linalool, α-
terpineol

DoTPS10

Dianthus
caryophyllus L.

Caryophyllaceae
caryophyllene,

caryophyllene oxide,
linalool

 

Freesia
hybrida. “Shiny

Gold”
Iridaceae

linalool, β-ocimene, D-
limonene

FhTPS1, FhTPS2, FhTPS3,
FhTPS4, FhTPS5, FhTPS6,

FhTPS7, FhTPS8

Gymnadenia
conopsea (L.) R. Br.

Orchidaceae

β-myrcene, α-terpineol,
(+)-cyclosativene, α-
santalene, trans-α-

bergamotene, (Z,E)-α-
farnesene, (E,E)-α-

farnesene

 

Hedychium
coronarium Zingiberaceae

β-ocimene, 1,8-cineole,
linalool

HcTPS1, HcTPS3, HcTPS5,
HcTPS6, HcTPS7, HcTPS8,

HcTPS10, HcTPS11,
HcTPS21

Hippeastrum spp. Amaryllidaceae eucalyptol, (Z)-β-  
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Latin Name Family Main FVT compounds Genes Ref.
ocimene

Lathyrus odoratus Leguminosae
α-bergamotene, linalool,

(−)-α-cubebene
 

Lavandula spp. Lamiaceae
linalool acetate, linalool,
lavandulyl acetate, α/β-

Pinene
LaLIMS, LaLINS

Lilium spp. Liliaceae
linalool, myrcene, (E)-β-

ocimene, α-pinene,
limonene

LoTPS1, LoTPS2, LoTPS3,
LoTPS4

Maxillaria tenuifolia Orchidaceae
β-caryophyllene, α-

copaene, delta-
decalacton

 

Mentha citrata Lamiaceae
linalool and its
enantiomers

 

Mimulus spp. Phrymaceae
(E)-β-ocimene, d-

limonene, β-myrcene
OCIMENE SYNTHASE

(OS) gene

Narcissus spp. Amaryllidaceae
myrcene, eucalyptol,

linalool
 

Nicotiana spp. Solanaceae
(E)-α-bergamotene, (E)-
β-ocimene, 1,8-cineole

NaTPS25, NaTPS38

Nymphaea subg.
Hydrocallis

Nymphaeaceae
linalool, farnesene,

nerolidol
 

Ocimum basilicum L. Lamiaceae linalool  

Petunia hybrida Solanaceae
germacrene D, β-

cadinene
PhTPS1, PhTPS2, PhTPS3,

PhTPS4

Passiflora
edulis Sims

Passifloraceae linalool
PeTPS2, PeTPS3, PeTPS4,

PeTPS24

Phalaenopsis spp. Orchidaceae

α-pinene, trans-β-
ocimene, linalool,
geraniol and their

derivatives

PbTPS5, PbTPS7, PbTPS9,
PbTPS10, PbTPS3, PbTPS4
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2. Complexity of FVT Biosynthesis and Emission

The biosynthesis and emission of FVTs in flowering plants and cut flowers is complex and is not only regulated by

the spatio–temporal expression of particular genes but is also affected by various environmental factors, such as

light intensity, radiation, the composition of the atmosphere, ambient temperature and relative humidity . The

mechanisms that influence the biosynthesis and emission of FVTs in response to specific environmental factors are

still to be studied .

2.1. Spatio–Temporal Regulation

The release of FVTs follows a spatio–temporal pattern. Generally, each flowering plant has a unique composition of

FVTs and coordinates the rhythm of FVT emission with the activity of its pollinators . When flowers are

ready to be pollinated, they emit elevated levels of volatile compounds. Successful pollination leads to fertilization

and decreases in the emission of floral scents, resulting in decreases in unproductive visits from pollinators 

. For example, the emission of linalool from P. lemonei  ‘High noon’ flowers appears highest—accounting for

40% of total volatiles—at the fully opened stage and decreases as the flower wilts . The diel emission of FVTs

and the composition of FVTs produced by fragrant orchid G. conopsea  is consistent with the spatial variation of

nocturnal and diurnal pollinators in southern Sweden . Meanwhile, the emission of particular FVTs varies during

the different stages of flower development. The monoterpenes and relatively few sesquiterpenes mainly form in

buds. The proportion of terpenes is greatly reduced in open flowers. This phenomenon occurs in the flowers of

most fragrant plants, including  Plumeria rubra  flowers , lemon basil (O. citriodorum  Vis) , roses ,  J.

auriculatum  , J. grandiflorum flowers , styrax flowers , M. tenuifolia  , C. sativa   and C. goeringii  .

Moreover, the circadian rhythm strongly influences the release of FVTs including (Z)-β-ocimene and (+/−)-linalool

from lilium ‘Siberia’ , myrcene and (E)-β-ocimene from snapdragon flowers, 1,8-cineole from N. suaveolens 

and linalool and its enantiomers from  Jasminum  spp. (J. auriculatum, J. grandiflorum, J. multiflorum  and  J.

Latin Name Family Main FVT compounds Genes Ref.

Plectranthus
amboinicus (Lour.)

Spreng
Lamiaceae linalool, nerolidol  

Polianthes
tuberosa L.

Amaryllidaceae
germacrene D, 1, 8-
cineole, α-terpineol

 

Rheum nobile Polygonaceae α-pinene  

Salvia officinalis Labiatae
myrcene, (+)-

neomenthol, 1,8-cineole
 

Tanacetum vulgare Asteraceae
α-pinene, 3-hexen-1-ol-

acetate
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malabaricum) . The molecular mechanism linking the emission of particular FVTs to the circadian rhythm

remains unknown.

Different plants release FVTs from various tissues and organs to serve specific biological functions. The maximum

amounts of FVTs are synthesized at the top of the petunia flower tube directly below the unexpanded corolla, close

to the developing stigma. This arrangement allows the stigma to absorb the most FVTs for resistance .

In Lilium ‘Siberia’ flowers, the expression of the TPS genes was prominent in flowering parts, especially in sepals

and petals . Specifically, LoTPS1 and LoTPS3 were localized to plastids and mitochondria, respectively . The

bisexual dimorphism of floral aromas reflects the evolution of flowering plants from hermaphroditic to dioecious

plants. Researchers have found that the constituents and release of FVTs differ in pistils and stamens. In  E.

japonica  flowers, α-pinene and linalool were identified as the major components of floral scents in females,

hermaphrodites and males. The males emit particularly high levels of α-pinene relative to females and

hermaphrodites. The emissions from males generally decrease as flowers senescence. In contrast, the emissions

from females and hermaphrodites do not change significantly during senescence .

2.2. Luminous Intensity

Light directly affects floral scent emission, changing the qualities and quantities of light-induced fluctuations in the

FVTs emitted from  Lilium  ‘siberia’ flowers ,  P. bellina,  P. violacea  and  Phalaenopsis  hybrid flowers

, Narcissus  sp. cut flowers  and C. sinensis  leaves . One study indicated that light intensity and the

circadian clock influenced a Ca   signal that contributed to the biosynthesis and emission of monoterpenes

in Lilium ‘siberia’ tepals .

2.3. Radiation

γ radiation greatly influences the biosynthesis and emission of FVTs. The concentration of linalool in the floral scent

bouquet from J. auriculatum was increased twofold in 10 Gy gamma-irradiated variants relative to the control . In

addition, the researchers observed a significant increase in the expression of FVT biosynthetic pathway genes and

enzymes in particular plants that were irradiated with ultraviolet (UV) light . These data provide evidence that

UV-B light affects FVT biosynthesis.

2.4. Composition of the Atmosphere

VOCs form the floral scent trails that are essential for plant–insect interactions. Tropospheric ozone (O ) chemically

degrades the floral scent trails, thus reducing the distance, specificity and efficiency of the VOC signal .

Moreover, elevated levels of O , carbon dioxide (CO ), diesel exhaust and nitrogen inputs (e.g., atmospheric NOx,

N deposition and soil N enrichment) contribute to the production of O —and have recently been reported to rapidly

degrade floral volatiles . Thus, these environmental factors decrease the distance of scent trails and

negatively affect the orientation of pollinators toward floral sources .

2.5. Ambient Temperature and Relative Humidity
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With global climate change, temperature and humidity are increasingly threatening floral maturation and the size,

nectar volume, floral scent and pollinator visitation rates associated with it, and thus, the composition of the

pollinator community for some flowering plants . The enhancement of temperature and humidity

have a significant effect on the amounts of floral scent components, especially FVTs from the O. fragrans cultivars

, P. axillaris  , J. auriculatum  , Lilium  ‘Siberia’  and seven common Mediterranean species . As a

result, the attractive characteristics of the floral fragrances are diminished due to the changed compositions of

FVTs and the release rates of particular FVTs, such as (E)-β-ocimene, (E,E)-α-farnesene and α- and β-pinene 

.

3. Conclusions and Perspectives

The availability of whole genome sequences for many plants and the recent progress in -omics technology has led

to a new genomics and -omics era in plant biology research that has contributed to a novel understanding of

regulatory mechanisms involved in the biosynthesis of FVTs. The progress achieved in our understanding of VOCs

and FVTs highlights the importance of floral volatile terpenes in natural ecosystems, plant reproduction, plant

defense, pollination and signal transduction. Recent breakthroughs in the identification of TPS genes, associated

TFs, the supplementation of terpene biosynthetic pathways and its derivatives demonstrate that we have reliable

genetic techniques and methods that can be used to improve floral fragrance, such as modifying the emissions of

FVTs, to greatly facilitate the recruitment of pollinators and control pests and improve the production of targeted

FVTs and essential oils. Moreover, growing metabolically and genetically engineered plants in different natural

conditions will allow us to determine the species-specific functions of different FVTs.

Generally speaking, the study of flower fragrance has seen considerable progress in recent years, but there are

still many gaps in our knowledge. There is a connection between the biosynthetic pathways that produce FVTs and

pigments, but the details of the connection remain unclear. Although our knowledge of FVT biosynthesis is

substantial, the transcriptional and post-translational regulation of these pathways requires further study.

Meanwhile, our understanding of the influence of hormones, such as auxin, ABA and GA, on FVTs is still limited. In

addition, the transport of FVTs remains to be explored. To date, the transmembrane transporters of FVTs and their

biosynthetic precursors remain unknown. However, we can speculate that ATP-binding cassette (ABC) transporters

transport FVTs across membranes because previous research indicates that an ABC transporter transports

phenylpropanoid/benzenoid volatiles across the plasma membrane .

Moreover, extraction and isolation methods of FVTs, especially specific volatile terpenoids, remain ambiguous.

There are significant prospects in investigating the extraction technology of specific terpenes due to the chemical

and physical properties of FVTs and their promising applications.
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