Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Ver. Summary Created by Modification Content Size Created at Operation
1 + 2437 word(s) 2437 2021-06-17 06:09:12 |
2 format correct + 240 word(s) 2677 2021-06-22 04:00:11 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Checa-Fernandez, A. Chelating Agents in Soil Remediation. Encyclopedia. Available online: (accessed on 09 December 2023).
Checa-Fernandez A. Chelating Agents in Soil Remediation. Encyclopedia. Available at: Accessed December 09, 2023.
Checa-Fernandez, Alicia. "Chelating Agents in Soil Remediation" Encyclopedia, (accessed December 09, 2023).
Checa-Fernandez, A.(2021, June 21). Chelating Agents in Soil Remediation. In Encyclopedia.
Checa-Fernandez, Alicia. "Chelating Agents in Soil Remediation." Encyclopedia. Web. 21 June, 2021.
Chelating Agents in Soil Remediation

The Fenton process is an efficient treatment for removing many organics pollutants in aqueous systems at acidic pH (2.8-3.5). However, the in-situ application of this technology for soil remediation (where pHs around neutrality are required) presents important limitations, such as catalyst (iron) availability and oxidant (H2O2) stability. The addition of chelating agents (CAs) makes iron soluble at circumneutral pH by forming complexes with Fe, and thus, enabling Fenton reactions under these conditions. This strategy, called chelate-modified Fenton process (MF), can be employed to overcome the challenges identified in conventional Fenton.

chelating agents (CAs) modified Fenton (MF) soil remediation organic pollutants H2O2 stability reactive oxygen species (ROS) ligand


  1. TTeng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199.
  2. Chen, F.; Li, X.; Ma, J.; Qu, J.; Yang, Y.; Zhang, S. Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process. J. Hazard. Mater. 2019, 369, 448–455.
  3. Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55.
  4. Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 2011, 37, 1362–1375.
  5. Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851.
  6. Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2020, 246, 125726.
  7. Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598.
  8. Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50.
  9. Zhu, C.; Zhu, F.; Wang, F.; Gao, J.; Fan, G.; Zhou, D.; Fang, G. Comparison of Persulfate Activation and Fenton Reaction in Remediating an Organophosphorus Pesticides-Polluted Soil. Pedosphere 2017, 27, 465–474.
  10. Usman, M.; Hanna, K.; Haderlein, S. Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. Sci. Total Environ. 2016, 569–570, 179–190.
  11. Venny; Gan, S.; Ng, H.K. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem. Eng. J. 2012, 213, 295–317.
  12. Pignatello, J.J.; Oliveros, E.; Mackay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84.
  13. Pouran, S.R.; Aziz, A.A.; Daud, W.M.A.W. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69.
  14. Bello, M.M.; Abdul Raman, A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process. Saf. Environ. Prot. 2019, 126, 119–140.
  15. Watts, R.J.; Stanton, P.C.; Howsawkeng, J.; Teel, A. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res. 2002, 36, 4283–4292.
  16. Ahile, U.J.; Wuana, R.; Itodo, A.U.; Sha’Ato, R.; Dantas, R.F. A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. Sci. Total Environ. 2020, 710, 134872.
  17. Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2019, 362, 436–450.
  18. Leštan, D.; Luo, C.-L.; Li, X.-D. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 2008, 153, 3–13.
  19. Zhang, Y.; Klamerth, N.; El-Din, M.G. Degradation of a model naphthenic acid by nitrilotriacetic acid—Modified Fenton process. Chem. Eng. J. 2016, 292, 340–347.
  20. Gutteridge, J.M.C.; Maidt, L.; Poyer, L. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II). Biochem. J. 1990, 269, 169–174.
  21. Sutton, H.C. Efficiency of chelated iron compounds as catalysts for the Haber-Weiss reaction. J. Free. Radic. Biol. Med. 1985, 1, 195–202.
  22. Kwan, C.; Chu, W. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere 2007, 67, 1601–1611.
  23. Zhang, Y.; Klamerth, N.; Messele, S.A.; Chelme-Ayala, P.; El-Din, M.G. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N′-disuccinic acid-modified Fenton process. J. Hazard. Mater. 2016, 318, 371–378.
  24. Huang, W.; Brigante, M.; Wu, F.; Mousty, C.; Hanna, K.; Mailhot, G. Assessment of the Fe(III)–EDDS Complex in Fenton-Like Processes: From the Radical Formation to the Degradation of Bisphenol A. Environ. Sci. Technol. 2013, 47, 1952–1959.
  25. Wang, X.; Brusseau, M. Effect of pyrophosphate on the dechlorination of tetrachloroethene by the Fenton reaction. Environ. Toxicol. Chem. 1998, 17, 1689–1694.
  26. Venny; Gan, S.; Ng, H.K. Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Chem. Eng. J. 2012, 180, 1–8.
  27. Ma, X.-H.; Zhao, L.; Dong, Y.-H.; Chen, H.; Zhong, M. Enhanced Fenton degradation of polychlorinated biphenyls in capacitor-oil-contaminated soil by chelating agents. Chem. Eng. J. 2018, 333, 370–379.
  28. Shih, Y.-J.; Binh, N.T.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 2016, 150, 294–303.
  29. Bennedsen, L.R.; Krischker, A.; Jørgensen, T.H.; Søgaard, E.G. Mobilization of metals during treatment of contaminated soils by modified Fenton’s reagent using different chelating agents. J. Hazard. Mater. 2012, 199–200, 128–134.
  30. Sun, Y.; Zhao, L.; Teng, Y. Effect of soil type on the degradation of polychlorinated biphenyls in a pyrophosphate-chelated Fenton-like reaction. Chem. Eng. J. 2020, 390, 124574.
  31. Richter, Y.; Fischer, B. Nucleotides and inorganic phosphates as potential antioxidants. JBIC J. Biol. Inorg. Chem. 2006, 11, 1063–1074.
  32. Khasawneh, F.; Hashimoto, I.; Sample, E. Reactions of ammonium ortho- and polyphosphate fertilizers in soil: II. Hydrolysis and reactions with soil. Soil Sci. Soc. Am. J. 1979, 43, 52–58.
  33. Winterbourn, C.C. Chapter One—The Biological Chemistry of Hydrogen Peroxide. In Methods in Enzymology; Cadenas, E., Packer, L., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 3–25.
  34. Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572.
  35. Sychev, A.Y.; Isak, V.G. Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ. Chem. Rev. 1995, 64, 1105–1129.
  36. Wang, Z.; Qiu, W.; Pang, S.; Jiang, J. Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes. Water Res. 2019, 164, 114957.
  37. Rachmilovich-Calis, S.; Masarwa, A.; Meyerstein, N.; Meyerstein, D. The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction. J. Inorg. Biochem. 2011, 105, 669–674.
  38. Rush, J.; Maskos, Z.; Koppenol, W. Reactions of iron(II) nucleotide complexes with hydrogen peroxide. FEBS Lett. 1990, 261, 121–123.
  39. Park, J.S.B.; Wood, P.M.; Davies, M.J.; Gilbert, B.C.; Whitwood, A.C. A Kinetic and ESR Investigation of Iron(II) Oxalate Oxidation by Hydrogen Peroxide and Dioxygen as a Source of Hydroxyl Radicals. Free. Radic. Res. 1997, 27, 447–458.
  40. Melton, J.D.; Bielski, B.H. Studies of the kinetic, spectral and chemical properties of Fe(IV) pyrophosphate by pulse radiolysis. Int. J. Radiat. Appl. Instrumentation. Part. C Radiat. Phys. Chem. 1990, 36, 725–733.
  41. Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886.
  42. Zeng, B.; Zhang, P.; Zheng, M.; Xiao, N.; Han, J.; Wang, C.; Wang, Z.; Zhao, Z. Detection and identification of the oxidizing species generated from the physiologically important Fenton-like reaction of iron(II)-citrate with hydrogen peroxide. Arch. Biochem. Biophys. 2019, 668, 39–45.
  43. Miller, C.J.; Rose, A.L.; Waite, T.D. Importance of Iron Complexation for Fenton-Mediated Hydroxyl Radical Production at Circumneutral pH. Front. Mar. Sci. 2016, 3, 134.
  44. Zepp, R.G.; Faust, B.C.; Hoigne, J. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: The photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313–319.
  45. Shih, Y.-J.; Chen, K.-H.; Huang, Y.-H. Mineralization of organic acids by the photo-electrochemical process in the presence of chloride ions. J. Taiwan Inst. Chem. Eng. 2014, 45, 962–966.
  46. Jeong, J.; Yoon, J. pH effect on OH radical production in photo/ferrioxalate system. Water Res. 2005, 39, 2893–2900.
  47. Sedlak, D.L.; Hoigné, J. The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos. Environ. Part. A Gen. Top. 1993, 27, 2173–2185.
  48. Xue, X.; Hanna, K.; Despas, C.; Wu, F.; Deng, N. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J. Mol. Catal. A Chem. 2009, 311, 29–35.
  49. Lati, J.; Meyerstein, D. Oxidation of first-row bivalent transition-metal complexes containing ethylenediaminetetra-acetate and nitrilotriacetate ligands by free radicals: A pulse-radiolysis study. J. Chem. Soc. Dalton Trans. 1978, 1978, 1105–1118.
  50. De Laat, J.; Dao, Y.H.; El Najjar, N.H.; Daou, C. Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water. Water Res. 2011, 45, 5654–5664.
  51. Lutze, H.V.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; Von Sonntag, C.; Schmidt, T.C. Degradation of Chlorotriazine Pesticides by Sulfate Radicals and the Influence of Organic Matter. Environ. Sci. Technol. 2015, 49, 1673–1680.
  52. Yang, B.; Cheng, X.; Zhang, Y.; Li, W.; Wang, J.; Tian, Z.; Du, E.; Guo, H. Staged assessment for the involving mechanism of humic acid on enhancing water decontamination using H2O2-Fe(III) process. J. Hazard. Mater. 2021, 407, 124853.
  53. Katsumata, H.; Kaneco, S.; Suzuki, T.; Ohta, K.; Yobiko, Y. Photo-Fenton degradation of alachlor in the presence of citrate solution. J. Photochem. Photobiol. A Chem. 2006, 180, 38–45.
  54. Xu, J.; Xin, L.; Huang, T.; Chang, K. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation. J. Environ. Sci. 2011, 23, 1873–1879.
  55. Georgi, A.; Schierz, A.; Trommler, U.; Horwitz, C.; Collins, T.; Kopinke, F.-D. Humic acid modified Fenton reagent for enhancement of the working pH range. Appl. Catal. B Environ. 2007, 72, 26–36.
  56. Evangelou, M.W.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003.
  57. Sherwood, M.K.; Cassidy, D.P. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron. Chemosphere 2014, 113, 56–61.
  58. Ouriache, H.; Arrar, J.; Namane, A.; Bentahar, F. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation. Chemosphere 2019, 232, 377–386.
  59. Jorfi, S.; Rezaee, A.; Moheb-Ali, G.-A.; Jaafarzadeh, N.A. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J. Environ. Health Sci. Eng. 2013, 11, 17.
  60. Innocenti, I.; Verginelli, I.; Massetti, F.; Piscitelli, D.; Gavasci, R.; Baciocchi, R. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process. Sci. Total Environ. 2014, 485–486, 726–738.
  61. Piscitelli, D.; Zingaretti, D.; Verginelli, I.; Gavasci, R.; Baciocchi, R. The fate of MtBE during Fenton-like treatments through laboratory scale column tests. J. Contam. Hydrol. 2015, 183, 99–108.
  62. Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Res. 2009, 43, 684–694.
  63. Xu, X.; Thomson, N.R. An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids. Chemosphere 2007, 69, 755–762.
  64. Oviedo, C.; Rodríguez, J. EDTA: The chelating agent under environmental scrutiny. Química Nova 2003, 26, 901–905.
  65. Rämö, J.; Sillanpää, M. Degradation of EDTA by hydrogen peroxide in alkaline conditions. J. Clean. Prod. 2001, 9, 191–195.
  66. Pinto, I.S.S.; Neto, I.F.F.; Soares, H. Biodegradable chelating agents for industrial, domestic, and agricultural applications—A review. Environ. Sci. Pollut. Res. 2014, 21, 11893–11906.
  67. Kołodyńska, D. Green complexing agent—EDDS in removal of heavy metal ions on strongly basic anion exchangers. Desalination 2011, 280, 44–57.
  68. Han, D.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M.; Chen, Y.; Li, D.; Guan, Z.; Li, Y. Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine. Chem. Eng. J. 2014, 256, 316–323.
  69. Han, D.; Wan, J.; Ma, Y.; Wang, Y.; Li, Y.; Li, D.; Guan, Z. New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 2015, 269, 425–433.
  70. Zingaretti, D.; Lombardi, F.; Baciocchi, R. Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites. Sci. Total Environ. 2018, 619–620, 1366–1374.
  71. Xu, J.; Fan, X.; Huang, F.; Li, X. Iron bound to soil organic matter catalyzes H2O2 to oxidize crude oil in soil. J. Hazard. Mater. 2017, 322, 516–524.
  72. Vicente, F.; Rosas, J.; Santos, A.; Romero, A. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chem. Eng. J. 2011, 172, 689–697.
  73. Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils by Fenton’s Reagent: A Multivariate Evaluation of the Importance of Soil Characteristics and PAH Properties. J. Hazard. Mater. 2007, 149, 86–96.
  74. Rosas, J.; Vicente, F.; Santos, A.; Romero, A. Enhancing p-cresol extraction from soil. Chemosphere 2011, 84, 260–264.
  75. Vicente, F.; Santos, A.; Sagüillo, E.G.; Martínez-Villacorta, Á.M.; Rosas, J.; Romero, A. Diuron abatement in contaminated soil using Fenton-like process. Chem. Eng. J. 2012, 183, 357–364.
  76. Peluffo, M.; Mora, V.C.; Morelli, I.S.; Rosso, J.A. Persulfate treatments of phenanthrene-contaminated soil: Effect of the application parameters. Geoderma 2018, 317, 8–14.
  77. Han, L.; Siekmann, F.; Zetzsch, C. Rate Constants for the Reaction of OH Radicals with Hydrocarbons in a Smog Chamber at Low Atmospheric Temperatures. Atmosphere 2018, 9, 320.
  78. Rosenfeldt, E.J.; Linden, K.G. Degradation of Endocrine Disrupting Chemicals Bisphenol A, Ethinyl Estradiol, and Estradiol during UV Photolysis and Advanced Oxidation Processes. Environ. Sci. Technol. 2004, 38, 5476–5483.
  79. Mandal, S. Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes. J. Adv. Oxid. Technol. 2018, 21, 178–195.
  80. Haag, W.R.; Yao, C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005–1013.
  81. Lee, C.; Sedlak, D.L. A novel homogeneous Fenton-like system with Fe(III)–phosphotungstate for oxidation of organic compounds at neutral pH values. J. Mol. Catal. A Chem. 2009, 311, 1–6.
  82. Zhang, C.; Li, T.; Zhang, J.; Yan, S.; Qin, C. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals. Appl. Catal. B Environ. 2019, 259, 118030.
  83. Deng, F.; Qiu, S.; Zhu, Y.; Zhang, X.; Yang, J.; Ma, F. Tripolyphosphate-assisted electro-Fenton process for coking wastewater treatment at neutral pH. Environ. Sci. Pollut. Res. 2019, 26, 11928–11939.
  84. Yehia, F.; Eshaq, G.; ElMetwally, A. Enhancement of the working pH range for degradation of p-nitrophenol using Fe2+–aspartate and Fe2+–glutamate complexes as modified Fenton reagents. Egypt. J. Pet. 2016, 25, 239–245.
  85. Li, Y.C.; Bachas, L.; Bhattacharyya, D. Kinetics Studies of Trichlorophenol Destruction by Chelate-Based Fenton Reaction. Environ. Eng. Sci. 2005, 22, 756–771.
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 1261
Entry Collection: Environmental Sciences
Revisions: 2 times (View History)
Update Date: 09 Aug 2021