1. Please check and comment entries here.
Table of Contents

    Topic review

    Mediterranean Diet and Cardiodiabesity

    View times: 12
    Contributors: ,
    Submitted by:

    Definition

    A growing body of scientific evidence shows that the Mediterranean Diet (MedDiet) has a beneficial effect on obesity, metabolic syndrome (MetS), cardiovascular disease (CVD), and type 2 diabetes mellitus (T2DM). These four diseases are so inherently linked that a new umbrella term, cardiodiabesity, has been adopted to reflect their coexistence and interrelationship .

    1. Introduction

    A growing body of scientific evidence shows that the Mediterranean Diet (MedDiet) has a beneficial effect on obesity, metabolic syndrome (MetS), cardiovascular disease (CVD), and type 2 diabetes mellitus (T2DM) [1][2][3][4]. These four diseases are so inherently linked that a new umbrella term, cardiodiabesity, has been adopted to reflect their coexistence and interrelationship [5][6] (Figure 1). According to the International Diabetes Federation, T2DM is expected to become the seventh leading cause of death by 2030 [7]. One of the main causes of T2DM is obesity, which is now a worldwide epidemic despite efforts by the World Health Organization (WHO) to meet the target of a 25% relative reduction in premature mortality from non-communicable diseases [7]. If the current trend continues, by 2025, approximately 18% of men and over 21% of women will be obese, up from the current rates of 10.8% and 14.9%, respectively [8]. The potential rise in the global incidence of cardiodiabesity is alarming, as central obesity and visceral adiposity have already been identified as causative agents of T2DM and CVD [8].
    Figure 1. Summary of cardiodiabesity and standard diagnostic criteria. Cardiodiabesity encompasses cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and obesity. Note: Reproduced with permission from García-Fernández et al. [6]. Abbreviations not previously defined: HDL-Chol, high-density lipoprotein cholesterol.
    The word diet comes from the original Greek term diaita (way of living), and the MedDiet [9]—describing traditional dietary and lifestyle habits in the Mediterranean region—has attracted international interest as a healthy, prudent dietary pattern [10] that can, as shown by extensive evidence, contribute to the prevention of chronic diseases [11].
    Dietary recommendations can play an important role in the prevention of certain diseases. Not all physicians, however, are willing to offer nutritional advice, as they feel that they lack the necessary knowledge to confidently discuss these issues with their patients [12]. The main reasons for this reluctance include a lack of time or information, the need for cultural adaptations to dietary patterns and guidelines, and the complexity and contradictions of existing recommendations [13][14][15]. Even physicians themselves do not have high levels of MedDiet adherence, probably due in part to away-from-home eating, which is associated with poor health outcomes [15]. Health professionals could benefit from clinical practice guidelines (CPGs), which have been defined as recommendations developed systematically to help professionals and patients make decisions about the most appropriate health care and to select the diagnostic or therapeutic options that are best suited to addressing a health problem or a specific clinical condition [15].
    According to the Appraisal of Guidelines for Research and Evaluation (AGREE) tool, the first step in drawing up CPGs is to define a clear set of clinical questions (CQs) using the Patient, Intervention, Comparison, and Outcome (PICO) criteria [16][17][18].

    2. Current Insights on Mediterranean Diet and Cardiodiabesity

    The MedDiet is a well-known, prudent dietary pattern with health benefits supported by an exponentially increasing wealth of scientific evidence. Based on the most recent and accurate scientific evidence available, the aim of this entry was to shed light on the therapeutic and preventive effects of the MedDiet on diseases encompassed by the umbrella term cardiodiabesity, in order to inform and guide the development of CPGs for physicians and health professionals. The entry addressed five CQs containing key PICO components. The evidence for CQ 1 on the association between the MedDiet and improved health in overweight and obese individuals indicates that it is precisely this population that would benefit the most from the weight loss associated with the MedDiet, and from the additional benefits of a lower risk of CVD incidence and mortality. The evidence for CQ 2, regarding the potential effects of the MedDiet on T2DM incidence and prevention, was moderate. Although some studies provided solid evidence of an effect [19][20][21][22], there were discrepancies in relation to the impact of high MedDiet adherence on the risk of T2DM in healthy individuals, and to the reduction of symptoms in those who already had the disease. However, it should be noted that fewer studies have been conducted on the effect of the MedDiet—either through an intervention or simply by measuring adherence to it—on T2DM prevention or amelioration than on other cardiodiabesity outcomes. The evidence for CQ 3, on the association between the MedDiet and MetS, showed that, overall, high adherence was related to decreased risk factors for MetS. The level of evidence was moderate-to-high, although only two studies provided clear evidence of a protective effect in MetS patients. The findings relating to the risk of MetS in healthy individuals were conflicting. The answers to CQ 1 and CQ 4 indicated that overweight and obese individuals who adhered to the MedDiet were most likely to benefit from CVD prevention and disease course modulation. A reduction in CVD incidence and mortality was observed for high-risk individuals and the general population. Considering that CVD is one of the leading causes of morbidity and mortality in Western countries, a medium-term reduction in its incidence would be one of the main benefits of promoting MedDiet adherence. CQ 5 addressed the effect of the MedDiet on weight in non-overweight and non-obese individuals. The resulting evidence, graded as moderate-to-high, indicated an inverse relationship between MedDiet adherence and an increase in weight, BMI, and WC.
    The evidence used to answer the five CQs was found in 50 articles from the scientific and medical literature on the association between the MedDiet and cardiodiabesity. Twenty of the articles were new and 30 were from the previous review on this topic [6], which found strong evidence of the beneficial effects of MedDiet adherence in patients with CVD, T2DM, MetS, and obesity [6]. From the 37 articles included in the previous paper [6], seven were excluded as they did not meet the inclusion criteria defined in this analysis. Taken together, the 50 articles show strong evidence that the MedDiet plays therapeutic and preventive roles in cardiodiabesity. There was a high level of evidence showing that MedDiet adherence improves the health of overweight and obese patients by reducing weight and WC, and lowering CVD incidence and mortality [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43]. Moderate evidence of a preventive effect of the MedDiet on T2DM was found for patients with the disease, and in individuals with and without risk factors [19][20][21][22][44][45][46]. Evidence of the preventive and therapeutic roles of MedDiet adherence was moderate-to-high for MetS [28][47][48][49][50][51][52] and high for CVD risk. Individuals with risk factors and the general population benefited from a reduction in CVD incidence and mortality [32][34][35][36][37][39][40][41][42][43][53][54][55][56][57][58][59], thus supporting previous meta-analysis findings [57]. The association between MedDiet adherence and low weight gain, BMI, and WC in non-obese individuals was supported by low-to-high evidence [49][50][60][61][62][63][64]. Many mechanisms underlying the beneficial effects of the MedDiet have been described elsewhere and are mainly related to improvements in lipid profile, oxidative stress, inflammation status, glucose metabolism, vascular integrity, and effects on hormone status and gut microbiota-mediated metabolic health, amongst others [4].
    Regarding its beneficial effects on cardiovascular health, higher MedDiet adherence has been shown to improve complex processes relating to atherosclerosis, such as the atherogenicity of LDLs or the functionality of HDLs. In the latter case, this is particularly so when the MedDiet is supplemented with virgin olive oil. Epidemiological trials from the 1960s suggested that MedDiet adherence was associated with decreased rates of CVD. Many studies have demonstrated a mortality benefit from a Mediterranean or Mediterranean-like diet after MI. One example is the Lyon Diet Heart Study [65], which showed that a MedDiet reduced recurrent cardiovascular events by 50%–70% among MI patients. However, the role of the MedDiet in the primary prevention of CVD had not been well established until the PREDIMED trial. That trial randomized 7447 Spanish patients at high risk for CVD to one of three diets: (1) A MedDiet supplemented with extra-virgin olive oil; (2) a MedDiet supplemented with nuts; or (3) a control diet encouraging the intake of low-fat foodstuffs [30]. In both MedDiet groups, there was a statistically significant reduction in the rate of the composite primary outcome of MI, stroke, or cardiovascular death after more than four years. Regarding the strength of the association, there was a 30% absolute reduction in the incidence of major CVD events in the MedDiet groups. These findings were consistent with the previous large body of observational scientific evidence, and potential confounders as alternative explanations were discarded. A dose–response gradient was observed, whereby greater MedDiet adherence showed increased protection. Every two-point increase in adherence was associated with a 25% reduction in CVD. The results were consistent with the known facts and accepted paradigms for the natural history and biology of CVD. The beneficial effects on surrogate markers of CVD risk added to the consistency. The epidemiological evidence of low CHD rates in Mediterranean countries also supports a protective effect of the MedDiet. Regarding experimental evidence, the PREDIMED RCT was intensively scrutinized in 2018 after certain comments on the randomization procedures led to the study being retracted and republished by the same research group [30][66]. In the assessment of the quality of the RCT, inappropriate allocation concealment was among the reasons noted [67]. The authors performed several complicated analyses to attempt to control for these deficiencies, which all seemed to confirm the original findings of that study. Thus, the updated publication documented similar findings, but the authors were unable to confirm adherence to randomization schemes, given that documentation was missing (supplemental appendix of [30]). Other high-quality dietary patterns such as the Dietary Approaches to Stop Hypertension (DASH) diet [68] and the prudent healthy pattern measured by the Healthy Eating Index [69] have also been associated with a reduced incidence of CVD events. However, the evidence collected and analyzed for these patterns is not as robust as the evidence provided by PREDIMED.
    The aim of this study was to analyze the effects of the MedDiet as a diet and lifestyle, and not the effects of specific types of food. Studies focusing on the benefits of specific food groups in patients with cardiodiabesity were therefore excluded, even though some showed evidence of very strong preventive and therapeutic effects. Consumption of dairy fat, for instance, has been linked to a low incidence of MetS, while that of whole and skimmed cheese has been linked to a higher risk of MetS, and that of whole yogurt to a decrease in all the risk factors for MetS [70]. Indeed, while there have been concerns about a diet’s fat content since the last century, a number of reviews have shown that a low-fat diet is not effective at preventing cardiometabolic disease [71]. A direct association has also been observed between the consumption of tea and coffee and a lower incidence of MetS within the context of the MedDiet [72]. In another study of individuals with a moderate cardiovascular risk, moderate consumers of red wine had a lower risk of MetS than non-drinkers [73]. Interestingly, this effect was more pronounced in women. The consumption of sugary drinks has been linked to increased WC [74][75]. Mozaffarian et al. [76] conducted an in-depth review of the role of the main components of the MedDiet and other widely consumed foods in relation to health status. Their findings supported the widely agreed beneficial effects of fruit, nuts, fish, vegetables, vegetable oils, whole grains, beans, and yogurt, and the harmful effects of refined grains, starches, sugars, processed meats, high-sodium foods, and trans-fat foodstuffs. Foodstuffs for which there are still no proven beneficial or harmful effects include cheese, eggs, poultry, milk, butter, and unprocessed red meat. Albeit indirectly, the findings of this entry show the benefits of the main components of the MedDiet. As called for by previous studies, the relative effects of specific food groups need further investigation [6][55][58][77][78].
    Our study has some limitations. Although some of the studies analyzed in the entry did not find a strong association between MedDiet adherence and the main outcomes analyzed, they did find positive links to intermediate risk factors. Certain discrepancies could be due to numerous aspects relating to the inherent limitations of the different studies.
    In addition, when analyzing the literature, it is necessary to be aware of the different confounders and indices to ensure appropriate quantitative and/or qualitative measures [79]. The likelihood of heterogeneous measures of cause and effect should also be taken into account when interpreting the association between the MedDiet and the different health outcomes, as has been done in two recent meta-analyses that corroborate the results of the PICO analysis [80]. The level of heterogeneity of the included studies is also our concern.
    This study is based on the 2014 study of the association between the MedDiet and cardiodiabesity by García-Fernández et al. [6]. The literature review was updated using the same search and a similar methodology to address a series of CQs based on scientific evidence on the association between the MedDiet and cardiodiabesity, with a view to informing future CPGs on how to treat and prevent obesity, MetS, T2DM, and CVD. The evidence uncovered provides solid support of an inverse relationship between MedDiet adherence and cardiodiabesity outcomes.

    3. Conclusions

    Recent scientific evidence has shown that the MedDiet, which is listed as a UNESCO (United Nations Educational, Scientific and Cultural Organization) Intangible Cultural Heritage of Humanity [81][82] and referred to in the 2015–2020 American dietary guidelines [83] as an example of a healthy eating pattern, has a beneficial effect on health and sustainability. It also has an important social component [84][85]. The scientific basis for developing evidence-based CPGs consistent with international standards, such as those promoted by the Scottish Intercollegiate Guidelines Network (SIGN) and the United Kingdom’s National Institute for Health and Care Excellence (NICE), has been provided. The reviewed studies show strong evidence of an association between MedDiet adherence and outcomes in cardiodiabesity, which encompasses CVD, T2DM, MetS, and obesity. The MedDiet plays a role in obesity and MetS prevention in healthy or at-risk individuals, and in mortality risk reduction in overweight or obese individuals. Furthermore, it decreases the incidence of T2DM and CVD in healthy individuals, and reduces the severity of symptoms in individuals that already have those diseases. The scientific evidence seems to support the conclusion that MedDiet adherence is a preventive and therapeutic tool for cardiodiabesity.

    This entry is adapted from 10.3390/nu11030655

    References

    1. Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-Analysis. BMJ 2008, 337, a1344.
    2. Martinez-Gonzalez, M.A.; Bes-Rastrollo, M.; Serra-Majem, L.; Lairon, D.; Estruch, R.; Trichopoulou, A. Mediterranean food pattern and the primary prevention of chronic disease: Recent developments. Nutr. Rev. 2009, 67, S111–S116.
    3. Trichopoulou, A. From research to education: The Greek experience. Nutrition 2000, 16, 528–531.
    4. Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326.
    5. Robertson, D. Cardiodiabetes—Is a joint approach the way forward? Br. J. Cardiol. 2008, 15, S8–S10.
    6. Garcia-Fernandez, E.; Rico-Cabanas, L.; Rosgaard, N.; Estruch, R.; Bach-Faig, A. Mediterranean diet and cardiodiabesity: A review. Nutr. Rev. 2014, 6, 3474–3500.
    7. International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017; Available online: http://www.diabetesatlas.org (accessed on 30 January 2018).
    8. Di Cesare, M.; Bentham, J.; Stevens, G.; Zhou, B.; Danaei, G.; Lu, Y.; Bixby, H.; Cowan, M.J.; Riley, L.M.; Hajifathalian, K.; et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396.
    9. Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284.
    10. Millen, B.E.; Abrams, S.; Adams-Campbell, L.; Anderson, C.A.; Brenna, J.T.; Campbell, W.W.; Clinton, S.; Hu, F.; Nelson, M.; Neuhouser, M.L.; et al. The 2015 Dietary Guidelines Advisory Committee Scientific Report: Development and Major Conclusions. Adv. Nutr. 2016, 7, 438–444.
    11. Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomized trials. Eur. J. Clin. Nutr. 2018, 72, 30–43.
    12. Popkin, B.M. The nutrition transition in the developing world. Dev. Policy. Rev. 2003, 21, 581–597.
    13. Popkin, B.M.; Gordon-Larsen, P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int. J. Obes. 2004, 28, s2.
    14. Sentenach-Carbo, A.; Batlle, C.; Franquesa, M.; García-Fernandez, E.; Rico, L.; Shamirian-Pulido, L.; Pérez, M.; Deu-Valenzuela, E.; Ardite, E.; Funtikova, A.N.; et al. Adherence of Spanish Primary Physicians and Clinical Practise to the Mediterranean Diet. Eur. J. Clin. Nutr. 2018.
    15. Popkin, B.M.; Duffey, K.; Gordon Larsen, P. Environmental influences on food choice, physical activity and energy balance. Physiol. Behav. 2005, 86, 603–613.
    16. Institute of Medicine (US) Committee to Advise the Public Health Service on Clinical Practice Guidelines. Clinical Practice Guidelines: Directions for a New Program; Field, M.J., Lohr, K.N., Eds.; National Academies Press: Washington, DC, USA, 1990. Available online: https://www.ncbi.nlm.nih.gov/books/NBK235751/doi:10.17226/1626 (accessed on 20 July 2017).
    17. Brouwers, M.C.; Kho, M.E.; Browman, G.P.; Burgers, J.S.; Cluzeau, F.; Feder, G.; Fervers, B.; Graham, I.D.; Grimshaw, J.; Hanna, S.E.; et al. AGREE II: Advancing guideline development, reporting and evaluation in healthcare. Can. Med. Assoc. 2010, 182, 839–842.
    18. Working Group for CPG Updates. Updating Clinical Practice Guidelines in the National Health System: Methodology Handbook. National Health System Quality Plan of the Spanish Ministry of Health and Social Policy. Aragon Health Sciences Institute (I+CS) Clinical Practice Guidelines in the National Health System: I+CS No.2007/02-01. 2009. Available online: http://www.guiasalud.es/emanuales/traduccion/ingles/manual_actualizacion/documentos/MMA_VersionEnglish_DEFINITIVA_10122_FIN.pdf (accessed on 20 July 2017).
    19. Panagiotakos, D.B.; Pitsavost, C.; Chrysohoou, C.; Stefanadis, C. The epidemiology of Type 2 diabetes mellitus in adults Greek: The ATTICA study. Diabet. Med. 2005, 22, 1581–1588.
    20. Martínez-González, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean diet and risk of developing diabetes: Prospective cohort study. BMJ 2008, 336, 1348–1351.
    21. Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19.
    22. Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analysis. BMJ Open 2015, 5, e008222.
    23. Andreoli, A.; Lauro, S.; di Daniele, N.; Sorge, R.; Celi, M.; Volpe, S.L. Effect of a moderately hypoenergetic Mediterranean diet and exercise program on body cell mass and cardiovascular risk factors in obese women. Eur. J. Clin. Nutr. 2008, 62, 892–897.
    24. Hadžiabdić, M.O.; Vitali Cepo, D.; Rahelić, D.; Božikov, V. The Effect of the Mediterranean Diet on Serum Total Antioxidant Capacity in Obese Patients: A Randomized Controlled Trial. J. Am. Coll. Nutr. 2015, 35, 224–351.
    25. Ruiz-Canela, M.; Zazpe, I.; Shivappa, N.; Hébert, J.R.; Sanchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Fito, M.; Lamuela-Raventos, R.M.; Rekondo, J.; et al. Dietary inflammatory index and anthropometric measures of obesity in a population sample at high cardiovascular risk from the PREDIMED (PREvención con DIeta MEDiterránea) trial. Br. J. Nutr. 2015, 113, 984–995.
    26. Álvarez-Pérez, J.; Sánchez-Villegas, A.; Díaz-Benítez, E.M.; Ruano-Rodríguez, C.; Corella, D.; Martínez-González, M.Á.; Estruch, R.; Salas-Salvadó, J.; Serra-Majem, L. Influence of a Mediterranean Dietary Pattern on Body Fat Distribution: Results of the PREDIMED-Canarias Intervention Randomized Trial. J. Am. Coll. Nutr. 2016, 35, 568–580.
    27. Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martínez-González, M.A.; Castañer, O.; Bulló, M.; Corella, D.; Arós, F.; Gómez-Gracia, E.; et al. Mediterranean diets and metabolic syndrome status PREDIMED in the randomized trial. CMAJ 2014, 186, 649–657.
    28. Gómez-Huelgas, R.; Short-Jansen, S.; Baca-Osorio, A.J.; Mancera-Romero, J.; Tinahones, F.J.; Bernal-Lopez, M.R. Effects of long-term lifestyle intervention with Mediterranean diet and exercise program for the Management of Patients with metabolic syndrome in a primary care setting. Eur. J. Intern. Med. 2015, 26, 317–323.
    29. US Department of Health and Human Services; US Department of Agriculture. Nutrition and Your Health: Dietary Guidelines for Americans . 1st Edition. 1980. Available online: http://health.gov/dietaryguidelines/1980thin.pdf (accessed on 1 August 2017).
    30. Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2018, 368, 1279–1290, Retraction and republication in 2018, 378, 2441–2442.
    31. Nissensohn, M.; Viñas-Román, B.; Sánchez-Villegas, A.; Piscopo, S.-; Serra-Majem, L. The Effect of the Mediterranean Diet on Hypertension: A Systematic Review and Meta-Analysis. J. Nutr. Educ. Behav. 2016, 48, 42–53.
    32. Martínez-González, M.A.; García-López, M.; Bes-Rastrollo, M.; Toledo, E.; Martínez-Lapiscina, E.H.; Delgado-Rodriguez, M.; Vazquez, Z.; Benito, S.; Beunza, J.J. Mediterranean diet and the incidence of cardiovascular disease: A Spanish cohort. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 237–244.
    33. Menotti, A.; Alberti-Fidanza, A.; Fidanza, F.; Lantian, M.; Fruttini, D. Factor analysis in the identification of dietary patterns and their predictive role in morbid and fatal events. Public Health Nutr. 2012, 15, 1232–1239.
    34. Guallar-Castillón, P.; Rodríguez-Artalejo, F.; Tormo, M.J.; Sánchez, M.J.; Rodríguez, L.; Quirós, J.R.; Navarro, C.; Molina, E.; Martínez, C.; Marín, P.; et al. Major dietary patterns and risk of coronary heart disease in middle-aged persons from a Mediterranean country: The EPIC-Spain cohort study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 192–199.
    35. Gardener, H.; Wright, C.B.; Gu, Y.; Demmer, R.T.; Boden-Albala, B.; Elkind, M.S.; Sacco, R.L.; Scarmeas, N. Mediterranean-style diet and risk of ischemic stroke, myocardial infarction, and vascular death: The Northern Manhattan Study. Am. J. Clin. Nutr. 2011, 94, 1458–1464.
    36. Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100.
    37. Buckland, G.; González, C.A.; Agudo, A.; Vilardell, M.; Berenguer, A.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Basterretxea, M.; et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am. J. Epidemiol. 2009, 170, 1518–1529.
    38. Trichopoulou, A.; Naska, A.; Orfanos, P.; Trichopoulos, D. Mediterranean diet in relation to body mass index and waist-to-hip ratio: The Greek European Prospective Investigation into Cancer and Nutrition Study. Am. J. Clin. Nutr. 2005, 82, 935–940.
    39. Kastorini, C.-M.; Panagiotakos, D.B.; Chrysohoou, C.; Georgousopoulou, E.; Pitaraki, E.; Puddu, P.E.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C. Metabolic syndrome, adherence to the Mediterranean diet and 10-year cardiovascular disease incidence: The ATTICA study. Atherosclerosis 2016, 246, 87–93.
    40. Turati, F.; Dilis, V.; Rossi, M.; Lagiou, P.; Benetou, V.; Katsoulis, M.; Naska, A.; Trichopoulos, D.; La Vecchia, C.; Trichopoulou, A. Glycemic load and coronary heart disease in a Mediterranean population: The Greek EPIC cohort study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 336–342.
    41. Stewart, R.A.; Wallentin, L.; Benatar, J.; Danchin, N.; Hagström, E.; Held, C.; Husted, S.; Lonn, E.; Stebbins, A.; Chiswell, K.; et al. Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk Patients with stable coronary heart disease. Eur. Heart J. 2016, 37, 1993–2001.
    42. Bonaccio, M.M.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Donati, M.B.; De Gaetano, G.; Iacoviello, L. Adherence to the Mediterranean diet is associated with reduced overall mortality in subjects with diabetes. Prospective results from the Moli-sani study. Eur. J. Cardiol. Prev. 2014, 21, S55.
    43. Stefler, D.; Malyutina, S.; Kubinova, R.; Pajak, A.; Peasey, A.; Pikhart, H.; Brunner, E.J.; Bobak, M. Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: The HAPIEE study. Eur. J. Nutr. 2015, 56, 421–429.
    44. Sleiman, D.; Al-Badri, M.R.; Azar, S.T. Effect of Mediterranean diet in diabetes control and cardiovascular risk modification: A systematic review. Front. Public Health 2015, 3, 69.
    45. Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the Mediterranean dietary pattern with insulin resistance and diabetes incidence in the Multi-Ethnic Study of Atherosclerosis (MESA). Br. J. Nutr. 2013, 109, 1490–1497.
    46. Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; Scappaticcio, L.; Giugliano, D.; Esposito, K. Anti-inflammatory Effect of Mediterranean Diet in Type 2 Diabetes Is Durable: 8-Year Follow-up of a Controlled Trial. Diabetes Care 2016, 39, 44–45.
    47. Salas-Salvado, J.; Martin, M.; Ruiz-Gutie, V. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status. Arch. Inter. Med. 2013, 168, 2449–2458.
    48. Alvarez León, E.; Henríquez, P.; Serra-Majem, L. Mediterranean diet and metabolic syndrome: A cross-sectional study in the Canary Islands. Public Health Nutr. 2006, 9, 1089–1098.
    49. Steffen, L.M.; Van Horn, L.; Daviglus, M.L.; Zhou, X.; Reis, J.P.; Loria, C.M.; Jacobs, D.R.; Duffey, K.J. A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: The CARDIA (Coronary Artery Risk Development in Young Adults) study. Br. J. Nutr. 2014, 112, 1654–1661.
    50. Rumawas, M.E.; Meigs, J.B.; Dwyer, J.T.; McKeown, N.M.; Jacques, P.F. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2009, 90, 1608–1614.
    51. Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 677–683.
    52. Mirmiran, P.; Moslehi, N.; Mahmoudof, H.; Sadeghi, M.; Azizi, F. A Longitudinal Study of Adherence to the Mediterranean Dietary Pattern and Metabolic Syndrome in a Mediterranean Non-Population. Int. J. Endocrinol. Metab. 2015, 13, 1–8.
    53. Panagiotakos, D.B.; Polystipioti, A.; Papairakleous, N.; Polychronopoulos, E. Long-Term adoption of a Mediterranean diet is associated with a better health status in elderly people; a cross-sectional survey in Cyprus. Asia Pac. J. Clin. Nutr. 2007, 16, 331–337.
    54. Eguaras, S.; Toledo, E.; Buil-Cosiales, P.; Salas-Salvadó, J.; Corella, D.; Gutierrez-Bedmar, M.; Santos-Lozano, J.M.; Arós, F.; Fiol, M.; Fitó, M.; et al. Does the Mediterranean diet counteract the adverse effects of abdominal adiposity? Nutr. Metabo. Cardiovasc. Dis. 2015, 25, 569–574.
    55. Casas, R.; Sacanella, E.; Urpí-Sardà, M.; Chiva-Blanch, G.; Ros, E.; Martínez-González, M.A.; Covas, M.I.; Lamuela-Raventos, R.M.; Salas-Salvadó, J.; Fiol, M.; et al. The effects of the Mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE 2014, 9, e100084.
    56. Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2015, 57, 3218–3232.
    57. Menotti, A.; Alberti-Fidanza, A.; Fidanza, F. The association of the Mediterranean Adequacy Index with fatal coronary events in an Italian middle-aged male population followed for 40 years. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 369–375.
    58. Menotti, A.; Puddu, P.E.; Maiani, G.; Catasta, G. Lifestyle behaviour and lifetime incidence of heart diseases. Int. J. Cardiol. 2015, 201, 293–299.
    59. Knoops, K.T.; de Groot, L.C.; Kromhout, D.; Perrin, A.E.; Moreiras-Varela, O.; Menotti, A.; van Staveren, W.A. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: The HALE project. JAMA 2004, 292, 1433–1439.
    60. Romaguera, D.; Norat, T.; Vergnaud, A.C.; Mouw, T.; May, A.M.; Agudo, A.; Buckland, G.; Slimani, N.; Rinaldi, S.; Couto, E.; et al. Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am. J. Clin. Nutr. 2010, 92, 912–921.
    61. Schröder, H.; Marrugat, J.; Vila, J.; Covas, M.I.; Elosua, R. Adherence to the traditional Mediterranean diet is inversely associated with body mass index and obesity in a Spanish population. J. Nutr. 2004, 134, 3355–3361.
    62. Goulet, J.; Lamarche, B.; Nadeau, G.; Lemieux, S. Effect of a nutritional intervention promoting the Mediterranean food pattern on plasma lipids, lipoproteins and body weight in healthy French-Canadian women. Atherosclerosis 2003, 170, 115–124.
    63. Paletas, K.; Athanasiadou, E.; Sarigianni, M.; Paschos, P.; Kalogirou, A.; Hassapidou, M.; Tsapas, A. The protective role of the Mediterranean diet on the prevalence of metabolic syndrome in a population of Greek obese subjects. J. Am. Coll. Nutr. 2010, 29, 41–45.
    64. Romaguera, D.; Norat, T.; Mouw, T.; May, A.M.; Bamia, C.; Slimani, N.; Travier, N.; Besson, H.; Luan, J.; Wareham, N. Adherence to the Mediterranean diet is associated with lower abdominal adiposity in European men and women. J. Nutr. 2009, 139, 1728–1737.
    65. De Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: Final report of the Lyon Diet Heart Study. Circulation 1999, 99, 779–785.
    66. Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34.
    67. Jüni, P.; Altman, D.G.; Egger, M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. BMJ 2001, 323, 42–46.
    68. Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Mejia, S.B.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338.
    69. Onvani, S.; Haghighatdoost, F.; Surkan, P.J.; Larijani, B.; Azadbakht, L. Adherence to the healthy eating index and alternative healthy eating index patterns and mortality from all causes, cardiovascular disease and cancer: A meta-analysis of observational studies. J. Hum. Nutr. Diet. 2017, 30, 216–226.
    70. Babio, N.; Becerra-Tomás, N.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Sayón-Orea, C.; Fitó, M.; Serra-Majem, L.; Arós, F.; et al. Consumption of Yogurt, Low-Fat Milk, and Other Low-Fat Dairy Products Is Associated with Lower Risk of Metabolic Syndrome Incidence in an Elderly Mediterranean Population. J. Nutr. 2015, 145, 2308–2316.
    71. Billingsley, H.E.; Carbone, S.; Lavie, C.J. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385.
    72. Grosso, G.; Marventano, S.; Galvano, F.; Pajak, A.; Mistretta, A. factors associated with metabolic syndrome in a Mediterranean population: Role of caffeinated beverages. J. Epidemiol. 2014, 24, 327–333.
    73. Tresserra-Rimbau, A.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Bulló, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Gea, A.; Gómez-Gracia, E.; Lapetra, J.; et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br. J. Nutr. 2015, 113, S121–S130.
    74. Ros, E.; Santos-lozano, M. Frequent Consumption of Sugar- and Artificially Sweetened Beverages and Natural and Bottled Fruit Juices Is Associated with an Increased Risk of Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Disease. J. Nutr. 2016, 46, 1528–1536.
    75. Funtikova, A.N.; Subirana, I.; Gomez, S.F.; Fitó, M.; Elosua, R.; Benítez-Arciniega, A.A.; Schröder, H. Soft Drink Consumption Is Positively Associated with Increased Waist Circumference and 10-Year Incidence of Abdominal Obesity in Spanish Adults. J. Nutr. 2014, 145, 328–334.
    76. Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225.
    77. Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608.
    78. Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2013, 29, 1–14.
    79. Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033.
    80. Malmir, H.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2018, 57, 2147–2160.
    81. Serra-Majem, L.; Medina, F.X. The Mediterranean Diet as an Intangible and Sustainable Food Culture. In The Mediterranean Diet: An Evidence-Based Approach, 1st ed.; Preedy, V.R., Watson, D.R., Eds.; Academic Press-Elsevier: London, UK, 2015; pp. 37–46.
    82. Medina, F.X. Mediterranean Diet, Culture and Heritage: Challenges for a New Conception. Public Health Nutr. 2009, 12, 1618–1620.
    83. 2015–2020 Dietary Guidelines. Healthy Mediterranean-Style Eating Pattern . Available online: https://health.gov/dietaryguidelines/2015/guidelines/chapter-1/examples-of-other-healthy-eating-patterns/ (accessed on 1 February 2019).
    84. Dernini, S.; Berry, E.; Serra-Majem, L.; La Vecchia, C.; Capone, R.; Medina, F.X.; Trichopoulou, A. Med Diet 4.0: The Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017, 20, 1322–1330.
    85. Medina, F.X.; Aguilar, A.; Solé-Sedeno, J.M. Aspectos sociales y culturales sobre la obesidad: Reflexiones necesarias desde la salud pública. Nutr. Clin. Diet. Hosp. 2014, 34, 67–71.
    More