Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 512 word(s) 512 2020-12-15 07:50:05

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Li, V. DCX Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/4535 (accessed on 18 April 2024).
Li V. DCX Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/4535. Accessed April 18, 2024.
Li, Vivi. "DCX Gene" Encyclopedia, https://encyclopedia.pub/entry/4535 (accessed April 18, 2024).
Li, V. (2020, December 23). DCX Gene. In Encyclopedia. https://encyclopedia.pub/entry/4535
Li, Vivi. "DCX Gene." Encyclopedia. Web. 23 December, 2020.
DCX Gene
Edit

Doublecortin: The DCX gene provides instructions for producing a protein called doublecortin. 

genes

1. Normal Function

This protein is involved in the movement of nerve cells (neurons) to their proper locations in the developing brain, a process called neuronal migration. Doublecortin attaches (binds) to microtubules, which are rigid, hollow fibers that make up the cell's structural framework (the cytoskeleton). The binding of doublecortin promotes the stability of microtubules. Microtubules help propel neurons by forming scaffolding within the cell that elongates in a specific direction, altering the cytoskeleton and moving the neuron.

2. Health Conditions Related to Genetic Changes

2.1 Isolated Lissencephaly Sequence

More than 70 mutations in the DCX gene have been found to cause isolated lissencephaly sequence (ILS). This condition is characterized by abnormal brain development that results in the brain having a smooth surface (lissencephaly) instead of its normal folds and grooves. Individuals with ILS have severe neurological problems, including severe intellectual disability and recurrent seizures (epilepsy) that begin in infancy. Most of the DCX gene mutations that cause ILS change a single protein building block (amino acid) in doublecortin and usually result in a protein with little or no function. A lack of normal doublecortin affects the stability and organization of microtubules, impairing their ability to move neurons. Neurons in the developing brain are particularly affected, resulting in the neurological problems associated with ILS.

2.2 Subcortical Band Heterotopia

More than 100 mutations in the DCX gene have been found to cause subcortical band heterotopia. This condition causes abnormal brain development that is less severe than ILS (described above). In people with subcortical band heterotopia, some neurons that should be part of a certain region of the brain do not reach their destination. The neurons stop their migration process in areas of the brain where they are not supposed to be and form band-like clusters of tissue. The signs and symptoms of subcortical band heterotopia can vary from severe intellectual disability and seizures that begin early in life to normal intelligence with mild seizures that occur later in life.

Mutations in the DCX gene are the most common cause of subcortical band heterotopia. Most of these mutations change single amino acids in the doublecortin protein. DCX gene mutations that cause subcortical band heterotopia can impair the protein's function or alter the protein's structure or stability. As a result, the doublecortin protein has a reduced ability to bind to microtubules, impairing their ability to move neurons during neuronal migration. Without proper neuronal migration, neurons in the developing brain can be misplaced, leading to the neurological problems that occur in subcortical band heterotopia.

Females with a mutation in one copy of the DCX gene in each cell usually develop subcortical band heterotopia, while males with one DCX gene mutation generally have ILS. Females can develop ILS and males can develop subcortical band heterotopia, but these instances are rare. Most males with subcortical band heterotopia have a DCX gene mutation in only some of the body's cells, a situation known as mosaicism.

3. Other Names for This Gene

  • DBCN

  • DC

  • DCX_HUMAN

  • doublecortex

  • doublecortex; lissencephaly, X-linked (doublecortin)

  • lissencephalin-X

  • LISX

  • XLIS

References

  1. Bahi-Buisson N, Souville I, Fourniol FJ, Toussaint A, Moores CA, Houdusse A,Lemaitre JY, Poirier K, Khalaf-Nazzal R, Hully M, Leger PL, Elie C, Boddaert N,Beldjord C, Chelly J, Francis F; SBH-LIS European Consortium. New insights intogenotype-phenotype correlations for the doublecortin-related lissencephalyspectrum. Brain. 2013 Jan;136(Pt 1):223-44. doi: 10.1093/brain/aws323.
  2. Friocourt G, Marcorelles P, Saugier-Veber P, Quille ML, Marret S, Laquerrière A. Role of cytoskeletal abnormalities in the neuropathology and pathophysiologyof type I lissencephaly. Acta Neuropathol. 2011 Feb;121(2):149-70. doi:10.1007/s00401-010-0768-9.
  3. Fry AE, Cushion TD, Pilz DT. The genetics of lissencephaly. Am J Med Genet CSemin Med Genet. 2014 Jun;166C(2):198-210. doi: 10.1002/ajmg.c.31402.
  4. González-Morón D, Vishnopolska S, Consalvo D, Medina N, Marti M, Córdoba M,Vazquez-Dusefante C, Claverie S, Rodríguez-Quiroga SA, Vega P, Silva W, Kochen S,Kauffman MA. Germline and somatic mutations in cortical malformations: Molecular defects in Argentinean patients with neuronal migration disorders. PLoS One. 2017Sep 27;12(9):e0185103. doi: 10.1371/journal.pone.0185103.
  5. Liu JS. Molecular genetics of neuronal migration disorders. Curr NeurolNeurosci Rep. 2011 Apr;11(2):171-8. doi: 10.1007/s11910-010-0176-5. Review.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 269
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 23 Dec 2020
1000/1000