Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 331 word(s) 331 2020-12-15 08:04:44

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Guo, L. PIGV Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/5761 (accessed on 27 April 2024).
Guo L. PIGV Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/5761. Accessed April 27, 2024.
Guo, Lily. "PIGV Gene" Encyclopedia, https://encyclopedia.pub/entry/5761 (accessed April 27, 2024).
Guo, L. (2020, December 25). PIGV Gene. In Encyclopedia. https://encyclopedia.pub/entry/5761
Guo, Lily. "PIGV Gene." Encyclopedia. Web. 25 December, 2020.
PIGV Gene
Edit

phosphatidylinositol glycan anchor biosynthesis class V

genes

1.Introduction

The PIGV gene provides instructions for making an enzyme called GPI mannosyltransferase 2. This enzyme takes part in a series of steps that produce a molecule called a glycosylphosphosphatidylinositol (GPI) anchor. Specifically, GPI mannosyltransferase 2 adds the second of three molecules of a complex sugar called mannose to the GPI anchor. This step takes place in the endoplasmic reticulum, which is a structure involved in protein processing and transport within cells. The complete GPI anchor attaches (binds) to various proteins in the endoplasmic reticulum. After the anchor and protein are bound, the anchor attaches itself to the outer surface of the cell membrane, ensuring that the protein will be available when it is needed.

2. Health Conditions Related to Genetic Changes

2.1. Mabry syndrome

At least 14 mutations in the PIGV gene have been found to cause Mabry syndrome, a condition characterized by intellectual disability, distinctive facial features, increased levels of an enzyme called alkaline phosphatase in the blood (hyperphosphatasia), and other signs and symptoms. These mutations change single protein building blocks (amino acids) in the GPI mannosyltransferase 2 enzyme. The altered protein is less able to add mannose to the forming GPI anchor. The incomplete GPI anchor cannot attach to proteins; without the anchor, the proteins cannot bind to the cell membrane and are released from the cell.

An enzyme called alkaline phosphatase is normally attached to a GPI anchor. However, when the anchor is impaired, alkaline phosphatase cannot be anchored to the cell membrane. Instead, alkaline phosphatase is released from the cell. This abnormal release of alkaline phosphatase is responsible for the hyperphosphatasia in Mabry syndrome. It is unclear how PIGV gene mutations lead to the other features of Mabry syndrome, but these signs and symptoms are likely due to a lack of proper GPI anchoring of proteins to cell membranes.

3. Other Names for This Gene

  • dol-P-Man dependent GPI mannosyltransferase
  • FLJ20477
  • GPI mannosyltransferase 2
  • GPI mannosyltransferase II
  • GPI-MT-II
  • HPMRS1
  • phosphatidylinositol glycan anchor biosynthesis, class V
  • PIG-V
  • PIGV_HUMAN

References

  1. Horn D, Krawitz P, Mannhardt A, Korenke GC, Meinecke P.Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expandedclinical spectrum. Am J Med Genet A. 2011 Aug;155A(8):1917-22. doi:10.1002/ajmg.a.34102.
  2. Krawitz PM, Schweiger MR, Rödelsperger C, Marcelis C, Kölsch U, Meisel C,Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, KerickM, Hecht J, Köhler S, Jäger M, Grünhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S,Robinson PN. Identity-by-descent filtering of exome sequence data identifies PIGVmutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010Oct;42(10):827-9. doi: 10.1038/ng.653.
  3. Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN,Karadimitris A, Maeda Y, Kinoshita T. Mechanism for release of alkalinephosphatase caused by glycosylphosphatidylinositol deficiency in patients withhyperphosphatasia mental retardation syndrome. J Biol Chem. 2012 Feb24;287(9):6318-25. doi: 10.1074/jbc.M111.331090.
  4. Thompson MD, Roscioli T, Marcelis C, Nezarati MM, Stolte-Dijkstra I, SharomFJ, Lu P, Phillips JA, Sweeney E, Robinson PN, Krawitz P, Yntema HG, Andrade DM, Brunner HG, Cole DE. Phenotypic variability in hyperphosphatasia with seizuresand neurologic deficit (Mabry syndrome). Am J Med Genet A. 2012Mar;158A(3):553-8. doi: 10.1002/ajmg.a.35202.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 497
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 25 Dec 2020
1000/1000