Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 Bee conservation strategies, such as the use of flower strips and hedgerows, should ensure to have key host plants for bees that offer pollen rich in nutrients, which help in proper growth of the larvae. + 1316 word(s) 1316 2020-04-02 17:42:29 |
2 Format correct -13 word(s) 1303 2020-10-30 10:18:19 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Filipiak, M. Pollen Quality Versus Quantity. Encyclopedia. Available online: https://encyclopedia.pub/entry/499 (accessed on 19 April 2024).
Filipiak M. Pollen Quality Versus Quantity. Encyclopedia. Available at: https://encyclopedia.pub/entry/499. Accessed April 19, 2024.
Filipiak, Michał. "Pollen Quality Versus Quantity" Encyclopedia, https://encyclopedia.pub/entry/499 (accessed April 19, 2024).
Filipiak, M. (2020, April 02). Pollen Quality Versus Quantity. In Encyclopedia. https://encyclopedia.pub/entry/499
Filipiak, Michał. "Pollen Quality Versus Quantity." Encyclopedia. Web. 02 April, 2020.
Pollen Quality Versus Quantity
Edit

Do bees really benefit from the conservation attempts made by us? A study performed recently showed that wild bees do not use plant species sown in wildflower seed mixtures as pollen sources, and it concluded that plant species currently promoted by agri-environmental schemes are not optimal for bees. I have taken a closer look at the factors that determined whether pollen was healthy food for the wild bee larvae or not and the results have led me to propose that a major shift in the perspective of what we considered as bee-friendly plants was definitely warranted.

bees wild bee osmia pollen nutrition conservation bee food quality quantity development ecological stoichiometry stoichiometry bee-friendly plants

1. What Are Bee-Friendly Plants?

Children, compared to adults, need more nutritious food for growth and development. A diet of cookies and chocolates would never do for a growing kid. Similarly, feeding bee larvae with nutritionally unbalanced diet would cause them to be underdeveloped and most often result in their death. Nectar is sugar rich and provides adult bees the energy required to perform their daily tasks and they can help themselves to a buffet of nectar and pollen served by the trees, shrubs and other flowering plants; however, pollen collected by the mother bee is the main source of food for the bee larvae.

For a baby bee to grow into a healthy adult, high-quality food, rich in non-sugar compounds, is essential. Bee-friendly plants grown for bee conservation purposes are chosen based on the quantity of food they produce and on the flower visitation rates by adult insects foraging for energy. Thus, due attention is not paid on their nutritional value for the young bees. Providing them pollen from such plants is like feeding them junk food. This is counterproductive to the actions undertaken to improve the nutritional base of wild bees.

2. How to Revive the Bee Population?

As a novel approach for addressing the issue of wild bee decline, I have developed effective strategies for bee conservation by considering the nutritional requirements of the larvae. By growing plants that supply the right food, we could ensure a revival in the bee population. As a start, plants that provide nutritionally balanced larval diet for a particular bee species (Osmia bicornis) were identified. This knowledge could be applied in the cultivation of bee-friendly plants as well as planting flower strips and hedgerows to act as pollen harvesting grounds for the bees.

Biological stoichiometry determines the proportions of various atoms that make up living organisms and their food sources and is used as an ideal framework for studying how food nutritional quality influences organisms  and shapes their environmental interactions .

3. Quality of Pollen and Bee Larval Growth: Unraveling the Connection Using Biological Stoichiometry

Every compound is made up of atoms in specific proportions; stoichiometry is the proportion of the atoms present in a compound. Organic compounds that act as substrates in the process of body-building in the bee larva can be converted into one another but one atom cannot be transformed into another. It is immutable. Sugar is made up of only three elements: carbon, hydrogen and oxygen. Pollen, however, is made of various organic substances, including sugars, fats, proteins, amino acids and vitamins, which are built from elements such as carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, zinc and approximately twenty others. Atoms of all these elements are incorporated into the bodies of growing bee larvae. Therefore, the proportion of atoms that build the bee’s body may be understood as bee nutritional demand and the proportion of atoms that build the bee’s food may be understood as nutritional supply.

Based on this, the demand may be compared with the supply, thus raising the question: “Do all plants produce pollen that is rich in the necessary nutrients?” Apparently, they do not and that is the crux of the issue.

A difference can exist between the composition of atoms required for growth by the larvae and that of the pollen of plants in an area where bees visit. This is termed a stoichiometric mismatch [1]. The greater the stoichiometric mismatch between the proportions of atoms building the adult body of an organism and its larval food is, the stronger is the limiting effect posed on larval growth and development, resulting in an underdeveloped adult or death before maturation.

4. Bee Friendliness of Plants Related to Quality of Pollen

In this study, the atomic structure of the body of a wild bee was compared with the chemical composition of various pollen species. It turned out that the wild bee is particularly in need of nine atoms: phosphorous, sodium, manganese, magnesium, potassium, iron, calcium, zinc and copper.

What does this mean? Let’s imagine there’s Plant A and Plant B. Pollen A is rich in phosphorous, but lacking in sodium. The converse is true for Pollen B. Collecting pollen from only one plant would negatively affect the larva’s growth and development; however, combining pollen from both plants would give it a balanced meal. So, we should stop thinking about “bee-friendliness” of plants in terms of how much of nectar and pollen they produce but rather in terms of how high is the quality of the pollen they offer.

5. Quality vs. Quantity

Monoculture may hamper the bees’ development. For instance, pollen produced by sunflower and lavender contains very little phosphorus, an element crucial for synthesizing proteins in cells, which aids in the growth of the entire organism. Bees forced to live solely off these pollens would develop more slowly, into smaller adults and die more frequently. Examples of other plants producing low quality pollen are thistles, knapweed, dandelion, rapeseed and maize. So, specific plants with pollen rich in nutrition can be grown near monoculture plantations so that they can benefit the bees. For this, we need to know which plants produce pollen nutritionally balanced for wild bees. Do we have such a knowledge? Surprisingly… NO!

Therefore, based on the experimental and literature data, I estimated for the first time the supply of nutrients in pollen produced by 62 plant species within the context of nutritional demand of wild bee.

Of the 62 pollen taxa scrutinized, I found 30 to be highly limiting for the wild bee’s growth. Furthermore, I have indicated 14 native, alien and cultivated plants that can promote the nutritional balance of bee larval diet (e.g. some clover species, broad bean, St John’s wort, blackberry, walnut and common camelia). The complete list is presented in supplementary materials published along with the study [3].

The information in the above mentioned study [3] is only a drop in the ocean compared to the amount of data that is needed. A better understanding of the nutritional ecology of wild bees is crucial for the effectiveness of conservation efforts. More specific data are required in conservation strategies for wild bees, such as: (1) the nutritional requirements of larvae of various wild bees to understand bee nutritional demands and (2) the nutritional composition of pollen produced by different plants to understand the nutritional supply available in the environment. Understanding the relationship between (1) and (2) will allow us to develop effective management strategies for maintaining populations of wild bees.

6. Conservation Implications

Proper management of bee habitats does not currently exist because the nutritional ecology of wild bees is not understood and actions undertaken to improve their nutritional base are not effective as discussed above.

Conservation strategies, such as planting flower strips and hedgerows and producing seed mixes, should include key host plants that offer pollen rich in nutrients that are essential for bee larval development. In future, building a knowledge base of nutrition in pollen from different plants and that of nutritional demands of other species of bees would help in the conservation of the bee population.

This article describes results of the the research project financed by the National Science Centre, Poland (Grant No. 2016/21/B/NZ8/00318).

References

  1. Michał Filipiak; A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Bees—The Application of Ecological Stoichiometry. Insects 2018, 9, 85, 10.3390/insects9030085.
  2. Michał Filipiak; January Weiner; Plant–insect interactions: the role of ecological stoichiometry. Acta Agrobotanica 2017, 70, 1-16, 10.5586/aa.1710.
  3. Michał Filipiak; Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. Journal of Applied Ecology 2019, 56, 1410-1418, 10.1111/1365-2664.13383.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.2K
Revisions: 2 times (View History)
Update Date: 30 Oct 2020
1000/1000