Summary

Sample preparation is the most crucial step in the analytical procedure designed for implementation in any analytical application (food analysis, bionalysis, forensics, toxicology, environmental monitoring etc). It is the limiting factor in chemical analysis since it is time consuming and it can potentially introduce errors. No one can doubt that the best approach would be the direct introduction of the sample to the instrument; however, this is rarely feasible. Efficient sample pretreatment is inevitably required as the instrument technology has produced highly sophisticated and sensitive analytical equipment. Hence, the analytical scientists have to develop and apply a suitable sample preparation protocol that ensures that the composition of the sample remains unchanged, no impurities are introduced during handling, all interferences have been left back, and the analytes’ concentration is not only at detectable levels, but it can also be quantified precisely and accurately and that the matrix of the sample is compatible with the analytical technique. Extraction techniques are the most powerful tool available to analytical chemists and lab practitioners. Whether sorbent-based or solvent-based, extraction techniques provide the necessary tools to handle the sample in a way that can reveal all the important information. All advantages in instrumentation have been exploited to the fullest and the lifetime of the instrument is prolonged in a seamless operation mode. This entry collection aims to highlight some applications of extraction techniques in sample preparation.

Expand All
Entries
Topic Review
MNPs@QDs
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis.
  • 861
  • 22 Apr 2022
Topic Review
Fluorescence Microscopy to Aanalyze Lignin
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, fluorescence microscopy methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers through lignocellulosic biomass.
  • 1.2K
  • 21 Mar 2022
Topic Review
Lemon Verbena (Aloysia citrodora)
Aloysia citrodora (Verbenaceae), an acknowledged medicinal plant, is traditionally used to treat various diseases, including bronchitis, insomnia, anxiety, digestive, and heart problems.
  • 1.1K
  • 21 Mar 2022
Topic Review
Effect of Temperatures on Polyphenols during Extraction
Polyphenols are a set of bioactive compounds commonly found in plants. These compounds are of great interest, as they have shown high antioxidant power and are correlated to many health benefits. Hence, traditional methods of extraction such as solvent extraction, Soxhlet extraction and novel extraction technologies such as ultrasound-assisted extraction and subcritical water extraction (SWE) have been investigated for the extraction of polyphenols.
  • 4.6K
  • 09 Mar 2022
Topic Review
Digalloyl Glycoside: A Potential Inhibitor of Trypanosomal PFK
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. A phytochemical investigation of the methanolic extract of E. abyssinica was carried out. Twelve compounds, including two triterpenes (1, 2); one sterol-glucoside (4); three ellagic acid derivatives (3, 9, 11); three gallic acid derivatives (5, 6, 10); and three flavonoids (7, 8, 12), were isolated. Compound (10) was obtained for the first time from genus Euphorbia while all other compounds except compound (4), were firstly reported in E. abyssinica. Consequently, an in silico study was used to estimate the anti-trypanosomal activity of the isolated compounds. Several compounds displayed interesting activity where 1,6-di-O-galloyl-d-glucose (10) appeared as the most potent inhibitor of trypanosomal phosphofructokinase (PFK). Moreover, molecular dynamics (MD) simulations and ADMET calculations were performed for 1,6-di-O-galloyl-d-glucose. In conclusion, 1,6-di-O-galloyl-d-glucose revealed high binding free energy, desirable molecular dynamics, and pharmacokinetic properties; therefore, it could be suggested for further in vitro and in vivo studies for trypanosomiasis.
  • 567
  • 04 Mar 2022
Topic Review
Silicon Nanoparticles from Sugarcane Bagasse Ash
The silica comes from the soil in the form of silicic acid, which the sugarcane plant absorbs and collects around the cellulose micro-compartments.
  • 1.9K
  • 12 Mar 2022
Topic Review
Arthrocnemum indicum (Willd.) Moq. Extracts
Aromatic medicinal plants (AMP) with multiple targets might play a role in drug discovery and development due to their potential health-promoting effects and are a source of new pharmaceutical substances.
  • 1.3K
  • 30 Jan 2022
Topic Review
Techniques for Extraction of Phytochemicals from Medical Cannabis
Cannabis is a rich source of phytochemicals with over 125 types of cannabinoids and 400 non-cannabinoids like flavonoids, alkaloids, phenols, and terpenes. These phytochemicals have been linked to various health benefits. Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. 
  • 1.2K
  • 27 Jan 2022
Topic Review
Deep Eutectic Solvents as Promising Green Solvents
Deep eutectic solvents (DESs) have recently attracted attention as a promising green alternative to conventional hazardous solvents by virtue of their simple preparation, low cost, and biodegradability. Even though the application of DESs in analytical chemistry is still in its early stages, the number of publications on this topic is growing. Analytical procedures applying dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFOD) are among the more appealing approaches where DESs have been found to be applicable.
  • 1.1K
  • 20 Jan 2022
Topic Review
Red Seaweed Pigments
Algae taxa are notably diverse regarding pigment diversity and composition, red seaweeds (Rhodophyta) being a valuable source of phycobiliproteins (phycoerythrins, phycocyanin, and allophycocyanin), carotenes (carotenoids and xanthophylls), and chlorophyll a. These pigments have a considerable biotechnological potential, which has been translated into several registered patents and commercial applications. 
  • 2.0K
  • 20 Jan 2022
  • Page
  • of
  • 7
>>