Topic Review
Applications of Wind Turbine Blade Recycling Materials
The rapid growth of the wind energy industry has resulted in a significant increase in Wind Turbine Blade (WTB) waste, posing challenges for recycling due to the composite materials used in their construction. Each recycling technique employs distinct approaches, all to reclaim the valuable fibres in these blades. Mechanical recycling yields resin-rich, fibre-rich, and other qualities of byproducts, while pyrolysis generates fibres, fillers, gas, and oil.
  • 201
  • 24 Nov 2023
Topic Review Peer Reviewed
Approaches to the Development of Advanced Alloys Based on Refractory Metals
The most promising directions of the development of heat-resistant alloys (HRAs) based on refractory metals are analyzed. The microstructures characteristic of HRAs, which it is advisable to form in promising alloys, are considered. The stability factors of the microstructure with respect to the diffusion coarsening of the hardening phases are discussed. Two groups of alloys are considered as the most promising HRAs based on refractory metals. First, the principles for design of HRAs based on (Pt, Ir)-Sc with heterophase γ-γ’ microstructure, where γ-matrix is a (Pt, Ir) solid solution with a FCC lattice, and γ’ is a strengthening phase with the structure L12 by analogy with Ni-base superalloys, are developed. The resistance of γ-γ’ microstructure in Ni, Pt and Ir alloys against the process of diffusion-limited coarsening is analyzed. It is shown that the diffusion permeability of Pt is several times less than that of Ni, so one should expect that Pt-based HRAs will not be inferior to Ni-based HRAs in terms of structural stability. The second group includes HRAs based on many not noble refractory metals. It is shown that solid solutions of the system (Ti, Zr, Hf, Ta, Nb) with a BCC lattice can be considered as a matrix of advanced refractory HRAs. The results of experimental studies of alloys based on (Ti, Zr, Hf, Ta, Nb) additionally alloyed with elements contributing to the formation of strengthening intermetallic and silicide phases are discussed. The issues of segregation of alloying elements at the grain boundaries of refractory alloys and the effect of segregation on the cohesive strength of the boundaries are considered.
  • 500
  • 13 Mar 2023
Topic Review
Bast-Fibre-Reinforced Hybrid Composites
Bast hybrid composites can be utilised in different applications, opening new platforms for developing novel products that compete with traditional hybrid composites. Various polymeric materials and processing techniques have been used to manufacture bast hybrid composites with attractive properties, such as renewability, low density, and cost-effectiveness. In most cases, the fibres were chemically modified in order to improve their adhesion with the host polymeric materials. 
  • 192
  • 22 Sep 2023
Topic Review
Bifacial Photovoltaics
In 2016 the first >2 MWp fixed tilt bifacial PV system (“La Hormiga”) was built by MegaCell in San Felipe, located in the region of Valparaiso in Chile, using nPERT BiSoN modules. The innovations in this system were the adapted mounting structures (which were not covering the rear side of the modules), as well as the enhancement of albedo using white quartz stones below them. The bifacial gain was about 15% with the natural albedo of ca. 28%, whereas the albedo enhancement to 75% provided by the white stones led to a bifacial gain of about 25%. After that, Sunpreme installed their SHJ (Silicon HeteroJunction) modules in a 10 MWp bifacial system on a US industrial rooftop, and large bifacial systems were installed in China in the TopRunner program, where the Chinese Government was supporting innovations to be introduced into the market. Yingli installed a fixed tilt 50 MWp system with bifacial nPERT Panda modules, followed by a 100 MWp “Panda PV system” in 2018. Since then large bifacial PV systems are entering the PV market. In 2021 bifacial PV became bankable and will become main-stream in the coming 5 years.
  • 1.0K
  • 08 May 2021
Topic Review
Binding Materials for MOF Monolith Shaping Processes
The fabrication of porous Metal Organic Framework materials within resistant structures is a key challenge impeding their wide commercial use for processes such as adsorptive separation. In fact, the integration of nano-scale Metal–organic frameworks (MOFs)  crystallic structures into bulk components that can maintain the desired characteristics, for example, size, shape, and mechanical stability, is a prerequisite for their wide practical use in many applications. At the same time, it requires sophisticated shaping techniques that can structure nano/micro-crystalline fine powders of MOFs into diverse types of macroscopic bodies such as monoliths.
  • 699
  • 01 Mar 2022
Topic Review
Bio-Based Polymers for Environmentally Friendly Phase Change Materials
Phase change materials (PCMs) have received increasing attention in recent years as they enable the storage of thermal energy in the form of sensible and latent heat, and they are used in advanced technical solutions for the conservation of sustainable and waste energy. Importantly, most of the currently applied PCMs are produced from non-renewable sources and their carbon footprint is associated with some environmental impact. However, novel PCMs can also be designed and fabricated using green materials without or with a slight impact on the environment.
  • 80
  • 07 Feb 2024
Topic Review
Biological and Therapeutical Properties of Silica-Based Nanoparticles
Nanoscience and nanotechnology explore the properties and application of particulate systems at the nanometric size. At this scale, materials exhibit properties and characteristics different from their bulk form due to the surface and quantum confinement effects. These effects are related to the increase in the area/volume ratio, which can improve textural properties, such as specific surface area and porosity. Additionally, quantum effects are involved with electronic and optical modifications. When considering their unique properties and characteristics, nanoparticles and nanomaterials have been widely used in water remediation, pesticide detection, and especially in biomedical applications. Despite their excellent properties, the toxicity of nanoparticles (NPs) is a common concern for the scientific community.
  • 408
  • 26 Oct 2022
Topic Review
Biomedical Applications of Electrospun Graphene Oxide
Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. 
  • 408
  • 22 Nov 2022
Topic Review
Biomedical Compositions Containing Hydroxyapatite
Regenerative medicine is becoming a rapidly evolving technique in today’s biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. 
  • 614
  • 08 May 2021
Topic Review
Bioplastic of Polyhydroxyalkanoates and Vegetal-Fibers as Biopackaging Alternatives
This is an overview of polyhydroxyalkanoate (PHA)–vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, the researchers searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
  • 786
  • 23 Mar 2022
  • Page
  • of
  • 22