Topic Review
Zagros Fold and Thrust Belt
The Zagros fold and thrust belt (Zagros FTB) is an approximately 1,800-kilometre (1,100 mi) long zone of deformed crustal rocks, formed in the foreland of the collision between the Arabian Plate and the Eurasian Plate. It is host to one of the world's largest petroleum provinces, containing about 49% of the established hydrocarbon reserves in fold and thrust belts and about 7% of all reserves globally.
  • 1.1K
  • 08 Nov 2022
Topic Review
Debris Flow Hazard
Global climate change has increased severe torrential hazards, particularly debris flows in mountainous regions. After floods and earthquakes, debris flows are the most devastating natural hazard in the world. The effects of debris flow on human life and built environments necessitate reconsidering current infrastructure planning, engineering, and risk management practices. Hence, the vulnerability of elements at risk is critical for effective risk reduction systems.
  • 1.1K
  • 27 Dec 2022
Topic Review
Amin Beiranvand Pour
My scholarly interests range widely, from mineral exploration to environmental issues such as geo-hazard, structural mapping, geothermal and geomorphic and coastal geology investigations. Subsequently, I have conducted several research projects for geological mapping, disaster management and environmental modeling using a variety of satellite remote sensing data such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat Enhanced Thematic Mapper+ (ETM+), Landsat-8, Advanced Land Imager (ALI), Hyperion and Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite data in arid and semi-arid terrains, Antarctic, Arctic and tropical environments. 
  • 1.1K
  • 10 Nov 2020
Topic Review
DSGSDs on Mars
Deep-Seated Gravitational Slope Deformations (DSGSDs) are a set of slow and complex gravity-driven deformational processes, involving entire slopes (or large portions of them) over long time intervals. These phenomena have been identified on Mars since the early 2000s, and several detailed studies were conducted on them.
  • 1.1K
  • 29 Apr 2021
Topic Review
Fissure Ridges
Fissure ridges consist of elongated travertine masses with an apical fissure that follows the long axis of the body. Two symmetrical or asymmetrical walls made up of bedded travertine are typically dipping away from the central fissure. The internal part of the fissure is often cut by a network of sealed fractures, almost parallel to the long axis of the ridge, normally filled by banded Ca-carbonate (i.e., calcite and/or aragonite), almost parallel to the vein-walls (the so called “banded travertine” in). These veins developed within the fault zone and represent conduits along which geothermal fluids move towards the surface. Therefore, their analysis, in terms of geometry, age (using U/Th, U/Pb, and 14C geochronology), and geochemical properties, provides information about the structural features and timing of the fault system, and on the fluid path from depth to surface. Furthermore, travertine deposited in a fissure ridge is characterized by distinct petrographic and geochemical features preserving information on the parent fluids and ancient depositional conditions. The shape of the fissure ridge body depends on the flow rate, carbonate precipitation rate, and surface topography upon which deposition took place.
  • 1.0K
  • 13 Jul 2021
Topic Review
Iron Silicides
Iron silicide minerals (Fe-Si group) are found in terrestrial and solar system samples. These minerals tend to be more common in extraterrestrial rocks such as meteorites, and their existence in terrestrial rocks is limited due to a requirement of extremely reducing conditions to promote their formation. Such extremely reducing conditions can be found in fulgurites, which are glasses formed as cloud-to-ground lightning heats and fuses sand, soil, or rock. 
  • 1.0K
  • 19 Apr 2022
Topic Review
Applications of DAS in Linear Infrastructure Monitoring
Linear infrastructures, such as railways, tunnels, and pipelines, play essential roles in economic and social development worldwide. Distributed acoustic sensing (DAS) is an emerging sensing technology that has rapidly developed in recent years. Due to its unique advantages in long-distance, high-density, and real-time monitoring, DAS arrays have shown broad application prospects in many fields, such as oil and gas exploration, seismic observation, and subsurface imaging. In the field of linear infrastructure monitoring, DAS has gradually attracted the attention of researchers and practitioners. 
  • 1.0K
  • 01 Dec 2022
Topic Review
Pyrolysis of Technogenic-Redeposited Coal-Bearing Rocks
Hydrocarbon products formed under high-temperature and low-temperature pyrolysis of coal-bearing rocks were studied by using a chromatography-mass spectrometer GCMS-QP2010NC Plus (made by Shimadzu Company). The average temperature of low-temperature natural pyrolysis does not exceed 120°C, and its average speed is approximately 2 m/year. In this case, three pyrolysis zones gradually built metamorphic rock mass (from bottom to top) are clearly established: heating (focal) activated and enriched. The average temperature of high-temperature pyrolysis reaches 850°C, and its average speed is approximately 20 m/year. Unlike low-temperature pyrolysis, high-temperature pyrolysis is accompanied by the presence of two major zones (from bottom to top): pyrogenic (focal) and enriched (coke). The chemical composition of the enriched pyrolysis zone was studied in detail. It has been established that hydrocarbon compounds in samples of the pyrolysis zone are presented by six classes: asphaltic-resinous substances; polycyclic aromatic hydrocarbons, heterocyclic compounds, organic sulphur compounds; pyrolytic hydrocarbon and heavy hydrocarbon residue. Quantitative content of hydrocarbon compounds in the analyzed samples varies from 0.35% to 41.88%.   Based on the materials of fieldwork, we created a video film that can be seen on the website https://youtu.be/Tqs6YiKfDdE
  • 1.0K
  • 29 Oct 2020
Topic Review
Crystal Mush
A crystal mush is a magmatic body which contains a significant amount of crystals (up to 50% of the volume) suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids. Within a single crystal mush, there is grading to a higher solid fraction towards the margins of the pluton while the liquid fraction increases towards the uppermost portions, forming a liquid lens at the top. Furthermore, depending on depth of placement crystal mushes are likely to contain a larger portion of crystals at greater depth in the crust than at shallower depth, as melting occurs from the adiabatic decompression of the magma as it rises, this is particularly the case for mid-oceanic ridges. Seismic investigation offers strong evidence for the existence of crystal mushes rather than fully liquid magmatic bodies. Crystal mushes can have a wide range of chemical and mineralogical compositions, from mafic (SiO2-poor, MgO-rich) to felsic (SiO2-rich, MgO-poor).
  • 984
  • 01 Dec 2022
Topic Review
Core-Mantle Differentiation
Core-mantle differentiation is the set of processes that took place during the accretion stage of Earth's evolution (or more generally, of rocky planets) that results in the separation of iron-rich materials that eventually would conform a metal core, surrounded by a rocky mantle. According to the Safronov's model, protoplanets formed as the result of collisions of smaller bodies (planetesimals), which previously condensed from solid debris present in the original nebula. Planetesimals contained iron and silicates either already differentiated or mixed together. Either way, after impacting the Proto-Earth their materials very likely became homogenized. At this stage, the Proto-Earth was probably the size of Mars. Next followed the separation and stratification of the Proto-Earth's constituents, chiefly driven by their density contrasts. Factors such as pressure, temperature, and impact bodies in the primordial magma ocean have been involved in the differentiation process. The differentiation process is driven by the higher density of iron compared to silicate rocks, but the lower melting point of the former constitutes an important factor. In fact, once iron has melted, differentiation can take place whether silicate rocks are completely melted or not. On the premises of these plausible scenarios, several models have been proposed to account for the core-mantle differentiation following the stage of nebular formation of the solar system. They can be summarized into three mechanisms: 1) Percolation of iron alloy through silicate crystals; 2) Separation of metal from rock in a primordial magma ocean; 3) Migration of iron diapirs or dikes through the mantle.
  • 981
  • 08 Nov 2022
  • Page
  • of
  • 12
ScholarVision Creations