Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
NETs and Cardiovascular Diseases
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). 
  • 1.2K
  • 02 Aug 2021
Topic Review
Exosome binding/uptake mediated by Integrin
Exosomes are a type of extracellular vesicle (EV) of endocytic origin that are released by virtually all cells in multicellular organisms and carry out important intercellular communication functions through the transfer of their biomolecular cargo, which includes lipids, proteins, nucleic acids and metabolites, between the producing and the recipient/target cells [1]. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis, such as tumor cell proliferation and invasion, angiogenesis, tumor microenvironment promotion and remodelling, chemotherapy resistance, and immune suppression (recently reviewed in [2,3,4]).
  • 1.2K
  • 22 Sep 2021
Topic Review
Indicaxanthin Bioactivity in Health and Disease
Indicaxanthin is a dietary, highly bioavailable phytochemical from cactus pear fruit, with nutraceutical potential. Studies in healthy, transformed cells and whole organisms suggest health-promoting activities, particularly in counteracting inflammation and regulating mechanisms that control cell growth and longevity. In vitro evidence to date does not provide a unified picture of the molecular mechanisms mediating the action of Indicaxanthin; rather different mechanisms have emerged in relation to different stimuli and conditions in both healthy and transformed cells. Many of the activities appear to be geared toward restoring cellular redox homeostasis, correcting dysfunction generated by oxidative stress, and modulating signaling pathways that control vital processes in healthy cells; other activities, apparently independent of cellular redox balance, have also been observed.
  • 1.2K
  • 28 Dec 2022
Topic Review
Sirtuins in Kidney Diseases
Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.
  • 1.2K
  • 22 Sep 2020
Topic Review
A-FABP in Metabolic Diseases
Adipocyte fatty acid-binding protein (A-FABP), which is also known as ap2 or FABP4, is a fatty acid chaperone that has been further defined as a fat-derived hormone. It regulates lipid homeostasis and is a key mediator of inflammation. Circulating levels of A-FABP are closely associated with metabolic syndrome and cardiometabolic diseases with imminent diagnostic and prognostic significance. Numerous animal studies have elucidated the potential underlying mechanisms involving A-FABP in these diseases. Recent studies demonstrated its physiological role in the regulation of adaptive thermogenesis and its pathological roles in ischemic stroke and liver fibrosis. Due to its implication in various diseases, A-FABP has become a promising target for the development of small molecule inhibitors and neutralizing antibodies for disease treatment. This review summarizes the clinical and animal findings of A-FABP in the pathogenesis of cardio-metabolic diseases in recent years.
  • 1.2K
  • 22 Sep 2021
Topic Review
Polymer- and Lipid-Based siRNA Nanoparticles
The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases.
  • 1.2K
  • 17 Nov 2022
Topic Review
Glaucoma Pathophysiology
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness.
  • 1.2K
  • 31 May 2021
Topic Review
Protein-based Subunit Nanovaccine
Protein-based subunit nanovaccines are typically composed of native or altered protein antigens that can self-assemble into nanoparticles, or antigens associated with nanoparticles through covalent or noncovalent interactions. Characteristically, nanovaccines are 1 to 1000 nm in size which generally facilitates the induction of stronger immune responses.
  • 1.2K
  • 18 Oct 2021
Topic Review
Insulin-like Growth Factor 1 Receptor
Insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase that regulates cell growth and proliferation. Upregulation of the IGF1R pathway constitutes a common paradigm shared with other receptor tyrosine kinases such as EGFR, HER2, and MET in different cancer types, including colon cancer. The main IGF1R signaling pathways are PI3K-AKT and MAPK-MEK. However, different processes, such as post-translational modification (SUMOylation), epithelial-to-mesenchymal transition (EMT), and microenvironment complexity, can also contribute to intrinsic and acquired resistance.
  • 1.2K
  • 12 Oct 2021
Topic Review
Mechanisms of Alcohol-Mediated Toxicity
Alcohol is one of the commonly used drugs. Ethanol, together with its derivatives and metabolites, exhibits diverse direct and indirect toxic effects, which are responsible for damage to many organs. This toxicity depends on many factors, such as dose, gender, associated comorbidities, or genetic predisposition.
  • 1.2K
  • 26 Nov 2021
Topic Review
Long Non-Coding RNA Epigenetics
Long noncoding RNAs exceeding a length of 200 nucleotides play an important role in ensuring cell functions and proper organism development by interacting with cellular compounds such as miRNA, mRNA, DNA and proteins. However, there is an additional level of lncRNA regulation, called lncRNA epigenetics, in gene expression control.
  • 1.2K
  • 25 Jun 2021
Topic Review
Cofilin Signaling
Three ADF/cofilin family members are expressed in mammals: ADF, cofilin-1, and cofilin-2. The first member ADF (also known as destrin), encoded by the gene DSTN in humans, was initially identified in the chick brain. Cofilin was discovered as an actin-interacting protein in the porcine brain. Later, Ono et al. identified two mammalian variants of cofilin, non-muscle type (also known as cofilin-1 and n-cofilin) and muscle type (also known as cofilin-2 and m-cofilin). In humans, cofilin-1 and cofilin-2 are encoded by the genes CFL1 and CFL2, respectively. Different isoforms of ADF/cofilin have qualitatively similar but quantitatively different effects on actin dynamics. To be noted, both ADF and cofilin show cooperative binding with actin filaments. Interestingly, cofilin-1 comprises almost 90% of the total ADF/cofilin family in CNS. Cofilin can bind to both G-actin and F-actin, exhibiting stronger affinities for the ADP-bound actins than the ATP- or ADP-Pi-bound forms. Cofilin binding to F-actin induces actin subunit rotation, enhances Pi release along the filament, and promotes filament severing in a concentration-dependent manner.
  • 1.2K
  • 28 Oct 2021
Topic Review
Advanced Microsamples
Although the application of microsamples in metabolic phenotyping exists, it is still in its infancy, with whole blood being overwhelmingly the primary biofluid collected through the collection method of dried blood spots. Research into the metabolic phenotyping of microsamples is limited; however, with advances in commercially available microsampling devices, common barriers such as volumetric inaccuracies and the ‘haematocrit effect’ in dried blood spot microsampling can be overcome.
  • 1.2K
  • 02 Aug 2022
Topic Review
Alternative Splicing and Isoforms
Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is an essential process in post-transcriptional mRNA processing, and produces various mature mRNAs with different structures and functions.
  • 1.2K
  • 10 Mar 2022
Topic Review
Ras Isoforms
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades.  The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras).
  • 1.2K
  • 29 Jun 2021
Topic Review
Evaluating Enzymatic Productivity
Kinetic productivity analysis is critical to the characterization of enzyme catalytic performance and capacity. Enzymatic productivity is a measure of product formation or substrate disappearance over time, at a prescribed temperature under specified reaction conditions. It is the only measure which reliably summarizes the durability and reaction yield (a measure of the conversion of substrate) of an enzymatic process. Kinetic productivity analysis can be employed to assess the catalytic capacity of genetically and chemically modified variants, whole cells, the effect of immobilization carriers on productivity, difference between isoforms isolated from a range of organisms or tissues, and the effect of reaction solution additives.
  • 1.2K
  • 08 Jul 2022
Topic Review
Extracellular vesicles in embryo–maternal communication
The establishment of proper conceptus–endometrial communication is essential for conceptus implantation and subsequent successful placentation in mammals including ruminants. Extracellular vesicles (EVs) present in uterine lumen are now considered to play a role in conceptus–endometrial interactions during the preimplantation period. In fact, EV transport a variety of bioactive molecules, including soluble and membrane-bound proteins, lipids, DNA, and RNAs, into target cells. EVs thus regulate gene expression and elicit biological effects including increased cell proliferation, migration, and adhesion in recipient cells. EVs of conceptus as well as endometrial origins are interactive in the uterine microenvironment for improved pregnancy success.
  • 1.2K
  • 06 Aug 2020
Topic Review
Approaches to Microsample Collections
Although the application of microsamples in metabolic phenotyping exists, it is still in its infancy, with whole blood being overwhelmingly the primary biofluid collected through the collection method of dried blood spots. 
  • 1.2K
  • 19 Jul 2022
Topic Review
Irisin and Autophagy: First Update
Aging and sedentary life style are considered independent risk factors for many disorders. Under these conditions, accumulation of dysfunctional and damaged cellular proteins and organelles occurs, resulting in a cellular degeneration and cell death. Autophagy is a conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This process is a part of the molecular underpinnings by which exercise promotes healthy aging and mitigate age-related pathologies. Irisin is a myokine released during physical activity and acts as a link between muscles and other tissues and organs. Its main beneficial function is the change of subcutaneous and visceral adipose tissue into brown adipose tissue, with a consequential increase in thermogenesis. Irisin modulates metabolic processes, acting on glucose homeostasis, reduces systemic inflammation, maintains the balance between resorption and bone formation, and regulates the functioning of the nervous system. Recently, some of its pleiotropic and favorable properties have been attributed to autophagy induction, posing irisin as an important regulator of autophagy by exercise.
  • 1.2K
  • 29 Oct 2020
Topic Review
Mitochondrial Ribosomal Proteins
Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors.
  • 1.2K
  • 16 Dec 2020
  • Page
  • of
  • 133
Academic Video Service