List of Largest Stars: History
Please note this is an old version of this entry, which may differ significantly from the current revision.
Contributor:

Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi). The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed. Uncertainties remain with the membership and order of the list, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods. All the sizes stated in this list have various inaccuracies and may be disputed. This list is still a work in progress and various parameters are extremely disputed.

  • eclipsing binaries
  • luminosity
  • interferometry

1. Caveats

Comparison of the sizes of several stars. From left to right are Cygnus OB2#12 (blue hypergiant), V382 Carinae (yellow hypergiant), V915 Scorpii (orange hypergiant) and the extreme red supergiants UY Scuti and Stephenson 2-18. The orbits of Saturn and Neptune are also shown for comparison. https://handwiki.org/wiki/index.php?curid=1267235

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are within opaque dust shells, making their true effective temperatures and surfaces highly uncertain.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • In this list are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest-known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[1][2]

2. List

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[3] Notes
LGGS J004539.99+415404.1 1,980[4]–2,377[5] L/Teff Located in the Andromeda Galaxy
Orbit of Saturn 1,940–2,169   Reported for reference
MSX LMC 597 (W60 A27) 1,882–1,953[6] L/Teff Located in the Large Magellanic Cloud
LGGS J004520.67+414717.3 1,870[4]–2,510[5] L/Teff Located in the Andromeda Galaxy
UY Scuti 1,708 ± 192[7] AD This value was based on an angular diameter and distance of 2.9 kpc. Gaia Data Release 2 suggests a distance of 1.55 kpc and a consequently smaller radius of 755 R.[8] However, the Gaia parallax is considered unreliable (until further observations) due to a very high level of astrometric noise.[9]
LGGS J003919.11+404319.2 1,685[10] L/Teff Located in the Andromeda Galaxy
WOH S71 (LMC 23095) 1,662[11]–1,896[2] L/Teff Located in the Large Magellanic Cloud
HV 2242 (WOH S69) 1,645[2] L/Teff Located in the Large Magellanic Cloud
LGGS J013339.28+303118.8 1,565[12]–1,863[5] L/Teff Located in the Triangulum Galaxy
WOH G64 1,540 ± 77[13][14] L/Teff Located in the Large Magellanic Cloud
LGGS J013312.26+310053.3 1,537[12]–1,765[5] L/Teff Located in the Triangulum Galaxy
MSX LMC 1204 (WOH S72) 1,537–1,709[6] L/Teff Located in the Large Magellanic Cloud
W61 8-88 (WOH S465) 1,491[2] L/Teff Located in the Large Magellanic Cloud
HV 888 (WOH S140) 1,477[15]–1,974[16] L/Teff Located in the Large Magellanic Cloud. Another recent estimate gives 1,765 R.[2]
UCAC4 116-007944 (MSX LMC 810) 1,468[2] L/Teff Located in the Large Magellanic Cloud
W60 A78 (WOH S459) 1,445[2] L/Teff Located in the Large Magellanic Cloud
HV 12998 (WOH S369) 1,443[2] L/Teff Located in the Large Magellanic Cloud
W60 A72 (WOH S453) 1,441[2] L/Teff Located in the Large Magellanic Cloud
VY Canis Majoris 1,420 ± 120[17][18] AD Used to be described as the largest known star based on a radius of 1,800–2,100 R.[19] Older estimates gave the radius of VY CMa as above 3,000 R,[20] or as little as 600 R.[21] Matsuura et al. 2013 estimates 2,069 R based on a luminosity of 237,000 L and an assumed effective temperature of 2,800 K.[22][23]
WOH S286 1,417[2] L/Teff Located in the Large Magellanic Cloud
AH Scorpii 1,411 ± 124[7] AD AH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in luminosity. The variation in diameter is not clear because the temperature also varies.
LGGS J004428.48+415130.9 1,410[4]–1,504[5] L/Teff Located in the Andromeda Galaxy
MG73 46 (MSX LMC 891) 1,385[16]–1,838[2] L/Teff Located in the Large Magellanic Cloud
WOH S281 (IRAS 05261-6614) 1,376[24]–1,459[2] L/Teff Located in the Large Magellanic Cloud
IRAS 05280-6910 1,367[11]–1,738[25] L/Teff Located in the Large Magellanic Cloud
S Persei 1,364 ± 6[26] AD A red supergiant located in the Perseus Double Cluster. Levesque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[27] Older estimates gave up to 2,853 R based on higher luminosities.[28]
PHL 293B 1,348–1,463[29] L/Teff A luminous blue variable star located in the low metallicity galaxy PHL 293B. It is thought to have disappeared.
LGGS J013414.27+303417.7 1,342[12]–1,953[5] L/Teff Located in the Triangulum Galaxy
HV 5993 (WOH S464) 1,319[16]–1,531[2] L/Teff Located in the Large Magellanic Cloud
SW Cephei 1,308[30] AD  
Stephenson 2 DFK 2 1,301[31] L/Teff Located in the massive open cluster Stephenson 2.
Stephenson 2 DFK 49 1,300[31] L/Teff Located in the massive open cluster Stephenson 2.
LGGS J004312.43+413747.1 1,270[4]–1,630[5] L/Teff Located in the Andromeda Galaxy
LGGS J004514.91+413735.0 1,250[4]–1,575[5] L/Teff Located in the Andromeda Galaxy
LGGS J004428.12+415502.9 1,240[4]–1,259[5] L/Teff Located in the Andromeda Galaxy
IRAS 05346-6949 1,211[13]–2,064[6] L/Teff Located in the Large Magellanic Cloud
LGGS J004125.23+411208.9 1,200[4]–1,602[5] L/Teff Located in the Andromeda Galaxy
HD 90587 1,191[30] AD  
NML Cygni 1,183[32] L/Teff  
LGGS J004524.97+420727.2 1,170[4]–1,476[5] L/Teff Located in the Andromeda Galaxy
Westerlund 1-26 1,165–1,221[33] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.

 

W60 B90 (WOH S264) 1,149[24]–2,555[2] L/Teff Located in the Large Magellanic Cloud
HD 62745 1,145[30] AD  
LGGS J004047.22+404445.5 1,140[4]–1,379[5] L/Teff Located in the Andromeda Galaxy
LGGS J004035.08+404522.3 1,140[4]–1,354[5] L/Teff Located in the Andromeda Galaxy
MY Cephei 1,134[34]–2,061[35] L/Teff Not to be confused with Mu Cephei (see below). Older estimates have given up to 2,440 R based on much cooler temperatures.[36]
LGGS J004124.80+411634.7 1,130[4]–1,423[5] L/Teff Located in the Andromeda Galaxy
ST Cephei 1,109[30] AD  
HD 102115 1,100[30] AD  
LGGS J004107.11+411635.6 1,100[4]–1,207[5] L/Teff Located in the Andromeda Galaxy
LGGS J004031.00+404311.1 1,080[4]–1,383[5] L/Teff Located in the Andromeda Galaxy
V366 Andromedae 1,076[30] AD  
Trumpler 27-1 1,073[8] L/Teff Located in the massive possible open cluster Trumpler 27
LGGS J004531.13+414825.7 1,070[4]–1,420[5] L/Teff Located in the Andromeda Galaxy
IM Cassiopeiae 1,068[30] AD  
Orbit of Jupiter 1,064–1,173   Reported for reference

 

HR 5171 Aa (V766 Centauri Aa) 1,060–1,160[37] L/Teff  
SU Persei 1,048[30] AD

 

 


Template:List of largest stars row[38]

 

LGGS J004114.18+403759.8 1,040[4]–1,249[5] L/Teff Located in the Andromeda Galaxy
AS Cephei 1,026[30] AD  
LGGS J004125.72+411212.7 1,020[4]–1,359[5] L/Teff Located in the Andromeda Galaxy
LGGS J004059.50+404542.6 1,020[4]–1,367[5] L/Teff Located in the Andromeda Galaxy
HD 167861 1,016[30] AD  
HV 986 (WOH S368) 1,010[39] L/Teff Located in the Large Magellanic Cloud
The following stars with sizes below 1,000 solar radii are shown for comparison.
CZ Hydrae 986[40] L/Teff One of the coolest stars at 2000 K.[40]
Mu Cephei (Herschel's "Garnet Star") 972 ± 228[41] L/Teff Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[42] Other estimates have given as high as 1,650 R based on angular diameter.[43]
V602 Carinae 932[8]–1,151[30] AD  
Betelgeuse (Alpha Orionis) 764+116
−62
[44]
AD Star with the third largest apparent size after R Doradus and the Sun. Brightest red supergiant in the night sky. Another estimate gives 955±217 R[45]
Antares A (Alpha Scorpii A) 707[30] AD Antares was originally calculated to be over 850 R,[46][47] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[48]
V354 Cephei 685[8] L/Teff  
KY Cygni 672[8]–1,420[27][49] L/Teff  
Orbit of Ceres 595 (550–641)   Reported for reference
119 Tauri (CE Tauri) 587–593[50] AD Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
CW Leonis 580–686[51] L/Teff Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
Mira A (Omicron Ceti) 541[32] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[32]
VV Cephei A 516[52]–1,000[53] EB VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R[27]
V382 Carinae (x Carinae) 485 ± 40[54] AD Yellow hypergiant, one of the rarest types of a star.
Pistol Star 435[55] AD Blue hypergiant, among the most massive and luminous stars known.
HD 179821 400–450[37] DSKE V1427 Aquilae may be a yellow hypergiant or a much less luminous star.
V509 Cassiopeiae 390–910[56] AD Yellow hypergiant, one of the rarest types of a star.
Inner limits of the asteroid belt 380   Reported for reference
IRC +10420 380[57] L/Teff A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[32]
V688 Monocerotis 372[40] L/Teff Also one of the coolest stars at 2000 K.[40]
R Doradus 298 ± 21[58] AD Star with the second largest apparent size after the Sun.
Orbit of Mars 297–358   Reported for reference
La Superba (Y Canum Venaticorum) 289[30]–352[59] AD and L/Teff Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Sun's red giant phase 256[60]   At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[61][62] Reported for reference
Rho Cassiopeiae 242[30] AD Yellow hypergiant, one of the rarest types of a star.
Eta Carinae A ~240[63]   Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[64] η Car is calculated to be between 60 R and 881 R.[65]
Orbit of Earth 215(211–219)   Reported for reference
Solar System Habitable Zone 200–520[66] (uncertain)   Reported for reference
Orbit of Venus 154–157   Reported for reference
Epsilon Aurigae A (Almaaz A) 143–358[67] AD ε Aurigae was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[68] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
Deneb (Alpha Cygni) 99.84[30] AD Prototype Alpha Cygni variable.
Peony Star 92[69] AD Candidate for most luminous star in the Milky Way.
Canopus (Alpha Carinae) 71[70] AD Second brightest star in the night sky.
Orbit of Mercury 66–100   Reported for reference
LBV 1806-20 46–145[71] L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[72] but the luminosity has been revised later only 2 million L.[73][74]
Aldebaran (Alpha Tauri) 44.13 ± 0.84[75] AD Fourteenth brightest star in the night sky
R136a1 39.2[76] L/Teff Also on record as one of the most massive and luminous stars known (215 M and 6.2 million L).
Polaris (Alpha Ursae Minoris) 37.5[77] AD The current northern pole star.
Arcturus (Alpha Boötis) 24.25[30] AD Brightest star in the northern celestial hemisphere.
HDE 226868 20–22[78]   The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
Sun 1   The largest object in the Solar System.
Reported for reference
  1. Methods for calculating the radius:
    • AD: radius determined from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
    • DSKE: radius calculated using the disk emission
    • EB: radius determined from observations of the eclipsing binary

The content is sourced from: https://handwiki.org/wiki/Astronomy:List_of_largest_stars

References

  1. Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal 645 (2): 1102–1117. doi:10.1086/504417. Bibcode: 2006ApJ...645.1102L.  https://dx.doi.org/10.1086%2F504417
  2. Ren, Yi; Jiang, Bi-Wei (2020-07-20). "On the Granulation and Irregular Variation of Red Supergiants" (in en). The Astrophysical Journal 898 (1): 24. doi:10.3847/1538-4357/ab9c17. ISSN 1538-4357. Bibcode: 2020ApJ...898...24R.  https://dx.doi.org/10.3847%2F1538-4357%2Fab9c17
  3. Methods for calculating the radius: AD: radius determined from angular diameter and distance L/Teff: radius calculated from bolometric luminosity and effective temperature DSKE: radius calculated using the disk emission EB: radius determined from observations of the eclipsing binary
  4. Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal 826 (2): 224. doi:10.3847/0004-637X/826/2/224. Bibcode: 2016ApJ...826..224M.  https://dx.doi.org/10.3847%2F0004-637X%2F826%2F2%2F224
  5. Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J. (July 2016). "Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution" (in en). The Astrophysical Journal 825 (1): 50. doi:10.3847/0004-637X/825/1/50. ISSN 0004-637X. Bibcode: 2016ApJ...825...50G.  https://dx.doi.org/10.3847%2F0004-637X%2F825%2F1%2F50
  6. Jones, O. C.; Woods, P. M.; Kemper, F.; Kraemer, K. E.; Sloan, G. C.; Srinivasan, S.; Oliveira, J. M.; van Loon, J. Th. et al. (2017-05-08). "The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III". Monthly Notices of the Royal Astronomical Society 470 (3): 3250–3282. doi:10.1093/mnras/stx1101. Bibcode: 2017MNRAS.470.3250J.  https://dx.doi.org/10.1093%2Fmnras%2Fstx1101
  7. Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (6 June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics 554: A76. doi:10.1051/0004-6361/201220920. Bibcode: 2013A&A...554A..76A.  https://dx.doi.org/10.1051%2F0004-6361%2F201220920
  8. Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal 158 (1): 20. doi:10.3847/1538-3881/ab1cbd. Bibcode: 2019AJ....158...20M.  https://dx.doi.org/10.3847%2F1538-3881%2Fab1cbd
  9. Brown, A. G. A. (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics 616: A1. doi:10.1051/0004-6361/201833051. Bibcode: 2018A&A...616A...1G.  Gaia DR2 record for this source at VizieR. http://vizier.u-strasbg.fr/viz-bin/VizieR-S?Gaia%20DR2%204152993273702130432
  10. Massey, Philip; Kathryn F., Neugent; Levesque, Emily M.; Drout, Maria R.; Courteau, Stéphane (February 2021). "The Red Supergiant Content of M31 and M33". The Astronomical Journal 161 (2): 79. doi:10.3847/1538-3881/abd01f. Bibcode: 2021AJ....161...79M.  https://dx.doi.org/10.3847%2F1538-3881%2Fabd01f
  11. Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society 465 (1): 403–433. doi:10.1093/mnras/stw2708. Bibcode: 2017MNRAS.465..403G.  https://dx.doi.org/10.1093%2Fmnras%2Fstw2708
  12. Maria R. Drout; Philip Massey; Georges Meynet (2012). "The yellow and red supergiants of M33". The Astrophysical Journal 750 (2): 97. doi:10.1088/0004-637X/750/2/97. Bibcode: 2012ApJ...750...97D.  https://dx.doi.org/10.1088%2F0004-637X%2F750%2F2%2F97
  13. University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University. https://eprints.keele.ac.uk/4258/
  14. Levesque, E. M.; Massey, P.; Plez, B.; Olsen, K. A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal 137 (6): 4744. doi:10.1088/0004-6256/137/6/4744. Bibcode: 2009AJ....137.4744L.  https://dx.doi.org/10.1088%2F0004-6256%2F137%2F6%2F4744
  15. Kamath, D.; Wood, P. R.; Van Winckel, H. (December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society 454 (2): 1468–1502. doi:10.1093/mnras/stv1202. Bibcode: 2015MNRAS.454.1468K.  https://dx.doi.org/10.1093%2Fmnras%2Fstv1202
  16. Groenewegen, M. A. T.; Sloan, G. C. (2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics 609: A114. doi:10.1051/0004-6361/201731089. Bibcode: 2018A&A...609A.114G.  https://dx.doi.org/10.1051%2F0004-6361%2F201731089
  17. Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart et al. (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal 157 (2): 57. doi:10.3847/1538-3881/aaf5cb. Bibcode: 2019AJ....157...57G.  https://dx.doi.org/10.3847%2F1538-3881%2Faaf5cb
  18. Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics 540: L12. doi:10.1051/0004-6361/201219126. Bibcode: 2012A&A...540L..12W.  https://dx.doi.org/10.1051%2F0004-6361%2F201219126
  19. Humphreys, Roberta M. (2006). "VY Canis Majoris: The Astrophysical Basis of Its Luminosity". pp. astro–ph/0610433. arXiv:astro-ph/0610433. //arxiv.org/abs/astro-ph/0610433
  20. Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G et al. (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal 605 (1): 436–461. doi:10.1086/382218. Bibcode: 2004ApJ...605..436M.  https://dx.doi.org/10.1086%2F382218
  21. Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal 646 (2): 1203–1208. doi:10.1086/505025. Bibcode: 2006ApJ...646.1203M.  https://dx.doi.org/10.1086%2F505025
  22. Matsuura, Mikako; Yates, J. A.; Barlow, M. J.; Swinyard, B. M.; Royer, P.; Cernicharo, J.; Decin, L.; Wesson, R. et al. (2013-10-30). "Herschel SPIRE and PACS observations of the red supergiant VY CMa: analysis of the molecular line spectra". Monthly Notices of the Royal Astronomical Society 437 (1): 532–546. doi:10.1093/mnras/stt1906. ISSN 0035-8711.  https://dx.doi.org/10.1093%2Fmnras%2Fstt1906
  23. Neufeld, David A.; Menten, Karl M.; Durán, Carlos; Güsten, Rolf; Kaufman, Michael J.; Kraus, Alex; Mazumdar, Parichay; Melnick, Gary J. et al. (2020-11-03). "Terahertz Water Masers: II. Further SOFIA/GREAT Detections toward Circumstellar Outflows, and a Multitransition Analysis". The Astrophysical Journal 907: 42. doi:10.3847/1538-4357/abc628.  https://dx.doi.org/10.3847%2F1538-4357%2Fabc628
  24. Groenewegen, Martin A. T.; Sloan, Greg C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants". Astronomy & Astrophysics 609: A114. doi:10.1051/0004-6361/201731089. ISSN 0004-6361. Bibcode: 2018A&A...609A.114G.  https://dx.doi.org/10.1051%2F0004-6361%2F201731089
  25. Matsuura, Mikako; Sargent, B.; Swinyard, Bruce; Yates, Jeremy; Royer, P.; Barlow, M. J.; Boyer, Martha; Decin, L. et al. (2016). "The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society 462 (3): 2995. doi:10.1093/mnras/stw1853. Bibcode: 2016MNRAS.462.2995M.  https://dx.doi.org/10.1093%2Fmnras%2Fstw1853
  26. Norris, Ryan P. (2019). Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants (PDF) (PhD). Georgia State University. https://core.ac.uk/download/pdf/225164189.pdf
  27. Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal 628 (2): 973–985. doi:10.1086/430901. Bibcode: 2005ApJ...628..973L.  https://dx.doi.org/10.1086%2F430901
  28. De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series 72: 259. ISSN 0365-0138. Bibcode: 1988A&AS...72..259D.  http://www.worldcat.org/issn/0365-0138
  29. Allan, Andrew P.; Groh, Jose H.; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J.; Andrews, Jennifer E. (2020). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society 496 (2): 1902. doi:10.1093/mnras/staa1629. Bibcode: 2020MNRAS.496.1902A.  https://dx.doi.org/10.1093%2Fmnras%2Fstaa1629
  30. Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H. et al. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society 490 (3): 3158–3176. doi:10.1093/mnras/stz2803. Bibcode: 2019MNRAS.490.3158C.  https://dx.doi.org/10.1093%2Fmnras%2Fstz2803
  31. Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal 160 (3): 145. doi:10.3847/1538-3881/abab15. Bibcode: 2020AJ....160..145H.  https://dx.doi.org/10.3847%2F1538-3881%2Fabab15
  32. De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics 523: A18. doi:10.1051/0004-6361/200913771. Bibcode: 2010A&A...523A..18D.  https://dx.doi.org/10.1051%2F0004-6361%2F200913771
  33. Arévalo, Aura (2019). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (Thesis). doi:10.11606/D.14.2019.tde-12092018-161841. https://doi.org/10.11606%2FD.14.2019.tde-12092018-161841
  34. Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J et al. (2018). "The evolution of red supergiant mass-loss rates". Monthly Notices of the Royal Astronomical Society 475 (1): 55. doi:10.1093/mnras/stx3174. Bibcode: 2018MNRAS.475...55B.  https://dx.doi.org/10.1093%2Fmnras%2Fstx3174
  35. Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants" (in en). The Astronomical Journal 160 (3): 145. doi:10.3847/1538-3881/abab15. Bibcode: 2020AJ....160..145H.  https://dx.doi.org/10.3847%2F1538-3881%2Fabab15
  36. Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60375". Astrophysical Journal 193: 367. doi:10.1086/153171. Bibcode: 1974ApJ...193..367F.  https://dx.doi.org/10.1086%2F153171
  37. van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics 631: A48. doi:10.1051/0004-6361/201834358. Bibcode: 2019A&A...631A..48V.  https://dx.doi.org/10.1051%2F0004-6361%2F201834358
  38. McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (2012). "Fundamental Parameters and Infrared Excesses of Hipparcos Stars". Monthly Notices of the Royal Astronomical Society 427 (1): 343–57. doi:10.1111/j.1365-2966.2012.21873.x. Bibcode: 2012MNRAS.427..343M.  https://dx.doi.org/10.1111%2Fj.1365-2966.2012.21873.x
  39. Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand (20 September 2007). "Late‐Type Red Supergiants: Too Cool for the Magellanic Clouds?". The Astrophysical Journal 667 (1): 202–212. doi:10.1086/520797. Bibcode: 2007ApJ...667..202L.  https://dx.doi.org/10.1086%2F520797
  40. Siderud, Emelie (2020). Dust emission modelling of AGB stars. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423949. 
  41. Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P. et al. (2019). "NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society 485 (2): 2417–2430. doi:10.1093/mnras/stz397. Bibcode: 2019MNRAS.485.2417M.  https://dx.doi.org/10.1093%2Fmnras%2Fstz397
  42. Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". https://groups.google.com/forum/?hl=en#!topic/uk.sci.astronomy/9nKaTsFHw6w. 
  43. "Jim Kaler-Garnet star". http://stars.astro.illinois.edu/sow/garnet.html. 
  44. Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'Ichi (2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal 902 (1): 63. doi:10.3847/1538-4357/abb8db. Bibcode: 2020ApJ...902...63J.  https://dx.doi.org/10.3847%2F1538-4357%2Fabb8db
  45. Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. Bibcode: 2010ASPC..425..103L.  http://adsabs.harvard.edu/abs/2010ASPC..425..103L
  46. Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal 145 (2): 38. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256. Bibcode: 2013AJ....145...38P.  https://dx.doi.org/10.1088%2F0004-6256%2F145%2F2%2F38
  47. Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics 474 (1): 229–237. doi:10.1051/0004-6361:20077308. ISSN 0004-6361. Bibcode: 2007A&A...474..229B.  https://dx.doi.org/10.1051%2F0004-6361%3A20077308
  48. Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics 555: A24. doi:10.1051/0004-6361/201321063. Bibcode: 2013A&A...555A..24O.  https://dx.doi.org/10.1051%2F0004-6361%2F201321063
  49. Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Neugent, Kathryn F.; Davenport, James R. A.; Morris, Brett M.; Gootkin, Keyan (2020). "Short Term Variability of Evolved Massive Stars with TESS II: A New Class of Cool, Pulsating Supergiants". The Astrophysical Journal 902 (1): 24. doi:10.3847/1538-4357/abb318. Bibcode: 2020ApJ...902...24D.  https://dx.doi.org/10.3847%2F1538-4357%2Fabb318
  50. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics 614 (12): A12. doi:10.1051/0004-6361/201731471. Bibcode: 2018A&A...614A..12M.  https://dx.doi.org/10.1051%2F0004-6361%2F201731471
  51. Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K. et al. (2016). "Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics 592: A131. doi:10.1051/0004-6361/201527290. PMID 28065983. Bibcode: 2016A&A...592A.131S.  http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5217166
  52. Stassun K.G. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal 158 (4): 138. doi:10.3847/1538-3881/ab3467. Bibcode: 2019AJ....158..138S.  https://dx.doi.org/10.3847%2F1538-3881%2Fab3467
  53. Pollmann, E.; Bennett, P. D.; Vollmann, W.; Somogyi, P. (July 2018). "Periodic Hα Emission in the Eclipsing Binary VV Cephei". Information Bulletin on Variable Stars 6249 (6249): 1. doi:10.22444/IBVS.6249. Bibcode: 2018IBVS.6249....1P.  https://dx.doi.org/10.22444%2FIBVS.6249
  54. Groenewegen, M. A. T. (March 2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics 635: A33. doi:10.1051/0004-6361/201937060. Bibcode: 2020A&A...635A..33G.  https://dx.doi.org/10.1051%2F0004-6361%2F201937060
  55. Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D. (2014). "Nature Versus Nurture: Luminous Blue Variable Nebulae in and Near Massive Stellar Clusters at the Galactic Center". The Astrophysical Journal 785 (2): 120. doi:10.1088/0004-637X/785/2/120. Bibcode: 2014ApJ...785..120L.  https://dx.doi.org/10.1088%2F0004-637X%2F785%2F2%2F120
  56. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy & Astrophysics 546: A105. doi:10.1051/0004-6361/201117166. Bibcode: 2012A&A...546A.105N. http://www.vliz.be/imisdocs/publications/72/262672.pdf. 
  57. Wong, K. T.; Menten, K. M.; Kamiński, T.; Wyrowski, F.; Lacy, J. H.; Greathouse, T. K. (2018). "Circumstellar ammonia in oxygen-rich evolved stars". Astronomy & Astrophysics 612: A48. doi:10.1051/0004-6361/201731873. Bibcode: 2018A&A...612A..48W.  https://dx.doi.org/10.1051%2F0004-6361%2F201731873
  58. Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal 883 (1): 89. doi:10.3847/1538-4357/ab3d2a. Bibcode: 2019ApJ...883...89O.  https://dx.doi.org/10.3847%2F1538-4357%2Fab3d2a
  59. Tram, L. N.; Lesaffre, P.; Cabrit, S.; Nhung, P. T. (2018). "Bow-shock chemistry in the interstellar medium". arXiv:1808.01439 [astro-ph.SR]. //arxiv.org/archive/astro-ph.SR
  60. Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus 151 (1): 130–137. doi:10.1006/icar.2001.6591. Bibcode: 2001Icar..151..130R.  https://dx.doi.org/10.1006%2Ficar.2001.6591
  61. Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155–163. doi:10.1111/j.1365-2966.2008.13022.x. Bibcode: 2008MNRAS.386..155S.  https://dx.doi.org/10.1111%2Fj.1365-2966.2008.13022.x
  62. Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal 413: 641. doi:10.1086/173033. Bibcode: 1993ApJ...413..641V.  https://dx.doi.org/10.1086%2F173033
  63. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union 5: 373–398. doi:10.1017/S1743921310009890. Bibcode: 2010HiA....15..373G.  https://dx.doi.org/10.1017%2FS1743921310009890
  64. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society 415 (3): 2020–2024. doi:10.1111/j.1365-2966.2011.18607.x. Bibcode: 2011MNRAS.415.2020S.  https://dx.doi.org/10.1111%2Fj.1365-2966.2011.18607.x
  65. D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal 553 (837): 837. doi:10.1086/320948. Bibcode: 2001ApJ...553..837H.  https://dx.doi.org/10.1086%2F320948
  66. Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters 837 (1): L4. doi:10.3847/2041-8213/aa60c8. Bibcode: 2017ApJ...837L...4R.  https://dx.doi.org/10.3847%2F2041-8213%2Faa60c8
  67. Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D. et al. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series 220 (1): 14. doi:10.1088/0067-0049/220/1/14. Bibcode: 2015ApJS..220...14K.  https://dx.doi.org/10.1088%2F0067-0049%2F220%2F1%2F14
  68. "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23. https://news.google.com/newspapers?id=rcgyAAAAIBAJ&pg=793,4107018. 
  69. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics 486 (3): 971. doi:10.1051/0004-6361:200809568. Bibcode: 2008A&A...486..971B.  https://dx.doi.org/10.1051%2F0004-6361%3A200809568
  70. Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K. et al. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society 434 (1): 437–450. doi:10.1093/mnras/stt1037. Bibcode: 2013MNRAS.434..437C.  https://dx.doi.org/10.1093%2Fmnras%2Fstt1037
  71. Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J. et al. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal 616 (1): 506–518. doi:10.1086/422180. Bibcode: 2004ApJ...616..506E.  https://dx.doi.org/10.1086%2F422180
  72. Kennedy, Meghan. "LBV 1806-20 AB?". http://www.solstation.com/x-objects/1806-20.htm. 
  73. Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal 610 (2): L109–L112. doi:10.1086/423306. Bibcode: 2004ApJ...610L.109F.  https://dx.doi.org/10.1086%2F423306
  74. Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics 538 (47): A47. doi:10.1051/0004-6361/201118040. Bibcode: 2012A&A...538A..47N.  https://dx.doi.org/10.1051%2F0004-6361%2F201118040
  75. Farr, Will M.; Pope, Benjamin J. S.; Davies, Guy R.; North, Thomas S. H.; White, Timothy R.; Barrett, Jim W.; Miglio, Andrea; Lund, Mikkel N. et al. (2018). "Aldebaran b's Temperate Past Uncovered in Planet Search Data". The Astrophysical Journal 865 (2): L20. doi:10.3847/2041-8213/aadfde. Bibcode: 2018ApJ...865L..20F. http://pure-oai.bham.ac.uk/ws/files/54771082/Farr_2018_ApJL_865_L20.pdf. Retrieved 2019-12-16. 
  76. Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz et al. (2020). "The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society 499 (2): 1918. doi:10.1093/mnras/staa2801. Bibcode: 2020MNRAS.499.1918B.  https://dx.doi.org/10.1093%2Fmnras%2Fstaa2801
  77. Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society 449 (1): 1011–1017. doi:10.1093/mnras/stv412. Bibcode: 2015MNRAS.449.1011F.  https://dx.doi.org/10.1093%2Fmnras%2Fstv412
  78. Ziółkowski, J. (2005). "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system". Monthly Notices of the Royal Astronomical Society 358 (3): 851–859. doi:10.1111/j.1365-2966.2005.08796.x. Bibcode: 2005MNRAS.358..851Z.  Note: For radius, see Table 1 with d=2 kpc. https://dx.doi.org/10.1111%2Fj.1365-2966.2005.08796.x
More
This entry is offline, you can click here to edit this entry!
Video Production Service