The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational …
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients.
The recent coronavirus pandemic crisis is due to viraly emerged infection of severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2 is the cause of th), causing uncontrolled inflammatory conditions in the human lung. Soon after the first transmission emergence of SARS-CoV from animals to humans in China in 2003 [1], a genetically globaevolved beta-coronavirus genus similar to human viruses was discovered in Chinese horseshoe bats (Rhinolophus sinicus) [2]. To date, pneumonia is epidemiologically hcaused by diverse viruses. For example, adenovirus, influenza virus, Middle East respiratory syndrome virus (MERS-V), parainfluenza virus, respiratory syncytial virus (RSV), SARS-CoV and enteric enveloped CoV can cause pneumonia in human hosts.
The World Health crisisOrganization (WHO) reported the official terminology of the 2019-Novel Coronavirus (2019-nCoV) on 13 January 2020, and on February 11th, WHO edited the name of the codisease caused by 2019-nCoV to Coronavirus dDisease -2019 (COVID-19) pandemic. No evidence is yet ava. In academia, the International Committee on Taxonomy of Viruses (ICTV) provided official nomenclature to the virus as SARS-CoV-2 due to the similarity between the novel coronavirus and SARS-CoV [3]. SARS-CoV-2 is spreading and causing a glaobal health-threatening emergency [4]. Researchers have bleen in a race for CoV infection into hosts upon zoonotic diseto develop anti-viral drugs against SARS-CoV-2 even before the WHO declared a worldwide pandemic threatening human lives. Preventive and therapeutic drugs for patients infected with SARS-CoV-2 are yet to be discovered.
The CoVs as e outbreaknveloped forms can also infect the gastrointestinal track (GIT), although the most other enteric viruses are naked in morphology [5][6]. CoVs epcan also rarely infect neural cells [7]. There is, unfortunately, no solid information on how themy resembles in coronaviruses infect humans and animals with reciprocal infectivity and cause a zoonotic viral outbreak. This is in contrast to influenza viruses, which usare known to selectively utilize sialic acid (SA) linkages [8]. Currently, only limited information on is available on β-CoVs, such as SARS-CoV-2 and its receptors is limited. usage and infectible cell types from different species. Host cell surface O-acetylated SAs interact withare recognized by the lectin-like spike glycoproteins of SARS CoV-2 for the initial attachment of viruses to enter into tfirst step of attachment to host cells. Infectious virus interaction with the host cell surface is mediated by sialoglycans as the most important phenomenon in eukaryote-parasite co-evolution. O-GlcNAc, a minor glycan source, is mainly found in the nucleus and cytosol (Figure 1). Apart from the general roles of glycans, CoVs recognize host cells and attach to host cell surface molecules to enter the host cells. SARS-CoV-2 For example, activity of the hemagglutinin-esterase (HE) acts as the classical glycanenzyme relies on the typical carbohydrate-binding lectin and receptor-degradstroying enzyme (RDE) domains. Most β-CoVs recognizetarget 9-O-acetyl-ated SAs but s, but certain species have switched to recognizing the 4-O-acetyl- SA finstead [8][9]. Crystallogrm during evolution of CoVs. Type I HE is specificaphic data for the molecular structure of type II HE provides an explanation for the 9switching mechanism to acquire 4-O-AO ac-etyl SAs and type II HE is specific for 4-O-A binding. This event follows the orthodox ligand–receptor interaction (LRI), lectin–carbohydrate interaction (LCI), lectin–glycan interaction (LGI), lectin–sphingolipid interaction (LSI), protein–glycan interaction (PGI), protein–carbohydrate interac-SAtion (PCI), and als. The SA-binding shift proceeds through quasi-syo protein–protein interaction (PPI). Recently, 332 protein candidates were suggested to be SARS-CoV-2-human protein interacting proteins through PPIs. Among these, 66 human proteins, as druggable host factors, were further characterized as possible FDA-approvable drugs [10]. If PPI is involved, however, chronous adaptations of the SA-recognition sites ofarbohydrates or glycans may serve as co-receptors or co-determinants. Previous reports suggest that carbohydrates act as receptor determinants in most cases. The general principles of PCI stereochemistry potentiate the SA–ligand switch by way of simple conformational shifts for the lectin and esterase domains. The molecular switching of HE acqui. This indicates that our examination of natural adaptation should be directed to how carbohydrate-binding proteins measure and observe carbohydrates, leading to virus evolution toward transition ofal host tropism.
Figure 1. 4-O-Cellular glycetyl binding from 9-O-ans are recognized by infectious acgetyl SA binding is caused bynts including viruses and bacteria through protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitocarbohydrates are uses as cellular adhesion sites in eukaryotic cells. Host cell surfaced and cytosolic glycans include glycoproteins, glycolipids and proteoglycans with minor glycan species of O-GlcNAc present in nucleus and cytosols.
The 9-carbon SAs are by horizontal gene transfer from a 9-O-mainly animal-specific with anionic sugars attached to terminal sugars. SAs exist in two forms, NeuGc and NeuAc. NeuGc is a differentially modified form of the parental SA form, Neu5Ac-. SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to hos are structurally diverse. For example, several modified SA forms are known for their structures including neuraminic acid (NeuC), N-acetyl neuraminic acid (NeuAc), N-glycolyl neuraminic acid (NeuGc), N,O-diacetyl neuraminic acid (occurs in horses), N,O-diacetyl neuraminic acid (occurs in bovines) and N-acetyl O-diacetyl neuraminic acid (occurs in bovines) (Figure 2). Sialyltransferases (STs) biosynthesize different SA linkages. SA linkage diversity occurs at the α2-3, α2-6, α2-8 or α2-9 to the SA or Gal residues (Figure 3). For example, in formation of α2,3 SA or α2,6 SA structures, α2,3-ST and α2,6-ST utilize substrates such as Galβ-1,4-GlcNAc (Figure 4). The most frequent modification of SAs is O-acetylation at positions of C4, C7, C8 and C9 of SA (Figure 5).
Figure 2. Diverse st SAructures of sialic acids (SA). (A) Neuraminic acid; (NeuC); (B) N-acontainingetyl neuraminic acid (NeuAc); (C) N-glycans.olyl neuraminic acid (NeuGc); (D) N, ThO-diacerefore, CoV HE retyl neuraminic acid (occurs in horse); (E) N, O-diaceptor switching preyl neuraminic acid (occurs in bovine); (F) N-acetyl O-des viiacetyl neuraminic acid (occurs in bovine).
Figure 3. SA linkages of α2-3, α2-6, α2-8 orus α2-9 to evoluthe SA or Gal residues.
Figure 4. Formation of α2,3 ST or α2,6 SA structures by α 2,3- andriven by 2,6-sialyltransferase (ST) using substrates such as Galβ-1,4-GlcNAc.
Figure 5. Action sithe es of viral SA-gO-acetylyesterases (C4, C7, C8 and C9) specific for 4-O-SA-, 7-O-SA-, 8-O-SA and 9-O-SA and neuraminidases [6].
SAs have varsity of the hosts. The PCI or LCI stereochemistry potious derivatives of more than 50 chemically different structures formed from the basic N-acetylneuraminic acid (Neu5Ac) on the main ring of pyranose and the glycerol side chain. SA are modified by acetyl-, lactyl-, methyl- and sulfo-groups individually or in multiple combinations [11]. Multiple entiatezymes are involved in the modifications [12]. Historically, the SA–ligand switch by a simple conformational shiffirst discovered SA was crystallized by Gunner Blix via a hot mild acid extraction of bovine submaxillary mucin in 1936. It consisted of two acetyl groups. Among these, only one acetyl group was attached to nitrogen [13]. Blix isolated a 9-O-acetyl SA of the common SA N-acetylecneuraminic acid (Neu5Ac), chemically described as 9-O-acetyl-N-acetylneuramin and esterase domains. ic acid (Neu5,9Ac2). Neu5,9Ac2, Neu5Ac and Neu5Gc are naturally occurring SA species in mammals. A common modification is O-acetylation. In fact, O-acetylation of SAs is common in organisms.
Ther O-acefore, examination of new emerging viruses can lead to better understanding of virus evolutiontyl modification occurs in single positions of C-4, C-7, C-8 and C-9 of SA as well as in combined C-positions to yield Neu4,5Ac2, Neu5,9Ac2 and Neu5,7,9Ac3 SAs. Neu5Ac9NAc is a chemical and biologic mimic of Neu5,9Ac2 in the SA-glycans. The C-7 and/or C-9 O-acetylations are catalyzed by the SA O-acetyltransferase enzyme, Cas1 domain containing 1 (CasD1) (Figure 6). CasD1 catalyzes the addition of acetyl groups to the SA C-7 at the late Golgi apparatus compartment [14]. Thereaftower, ard transn enzyme termed “migrase” transfers the additional host tropismacetyl-group from C-7 to C-9, although this enzyme has not been identified [12]. ACasD1 uses clear example ofacetyl-coenzyme A as a donor substrate and CMP-Neu5Ac as an acceptor substrate, but with weak activity on CMP-Neu5Gc.
Figure 6. CasD1, HESA geneO-acetyltransferase, transfer is found in the BCoV HE, which prefers 7,9-di-O-s acetyl groups to C7 position of SA (Neu5Ac), from which it migrates to the C9 position (Neu5,9Ac2). The additional acetyl group is added to C7 of SA (Neu5,7,9Ac-3) by the same CasD1. The SAs, wh O-acetylesterase cleaves of the acetyl groups.
Biologich is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV linally, the SA O-acetylation event confers merits to hosts such as protection from pathogenic invasion and maintenance of systemic self-homeostasis. The O-acetylation event of SAs protects the SA-containing glycans from neuraminidase (NA)/sialidase action, because O-acetyl-groups inhibit microbial NA activity. The chemical structure of the O-acetyl group is quite unstable and susceptible to esterase enzymes. Sialic acid cleavage of the di-acetylated Neu5,7,9Ac3 by bacterial NAs decreases two-fold, when compared to mono-O-acetylage A type binding wited Neu5Ac. The O-acetylated glycan modification invites interaction with viruses, antibodies and mammalian lectins [15]. Therefore, the two different subSA O-acetylation modification confers specific functions to organisms.
For example, in the horse, C4-O-acetyl modification of Neu5Ac (SA) occupes oies more than 50% of the typical 9otal SA content. The C4-O-acetylated Neu5Ac-SA (ty, Neu4,5Ac2, inhibits the influenza A2 virus HA. De-acetylation reagents such as NaOH or NaIO4 treatment comple I) and the tely hemagglutinate Neu4,5Ac2 by elimination of the C4-O-acextyl group [16]. The C4-O-acetylusive Neu5Ac species are found in various sources such as equine erythrocyte GM3, starfish A. rubens and fish [17][18][19][20][21]. C4-O-acetylated Neu5Ac-SA (type II) facilitates the initial attachment factors. The protein structure data for type II HE also imply thof viruses to target cells. Like the influenza C virus, infectious salmon anemia virus (ISAV), a member of the Orthomyxoviridae family, contains HE and HEF proteins to mediate virus switentry and exit. C4-O-Ac Neu5Ac is thing toe major receptor determinant of ISAV in receptor binding 4-O acand destruction [21], while tyl SA from he influenza C virus recognizes C9-OO-Ac Neu5Ac. The acetylesterase SA.RDE of ISAV cleaves C4-O-Ac via P4-SA-O-acetylesterase winth a short turnover time, whereas C9-O-Ac Neu5Ac ips cleaved by 9-SA-O-acetylesterase of twith a long turnover time [17].
The protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domainssition of SA O-acetylation is linked to functions including substrate differentiation of enzymes such as NAs and esterase by C4 O-Ac. Previous development of O-Ac site-selective NA inhibitors were based on the conceptual consideration of different O-Ac positions. The O-Ac of SAs is site-specific, as C4 of Neu5Ac is considered to be a potential position for modification. Historically, inhibitors of influenza A and B viruses-sialidases were designed by Von-Itzstein in 1993 [22]. The Ac grous, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizingp-based C4 substitution interacts with amino acid Glu-119 present in the active site of sialidase. Guanidine-attached C4 of C2–C3 unsaturated SA (Neu5Ac2en) inhibits activity of sialidases isolated from influenza A virus (Singapore/1/57) and B virus (Victoria/102/85). The same scenario was applied for sialidase inhibition of the human parainfluenza virus type 3, which has HN and fusion proteins/m [23]. The C4 olf Necules contribute to virus evolu5Ac2en was substituted by alkyl groups such as the O-ethyl group. For example, Zanamivir has a substitution toward host tropism. Under the current circumstances where reliwith a 4-guanidino group with an IC50 of 25 μM. Thus, sialidase inhibition is important for C4 modification of Neu5Ac2en. Later, oseltamivir with the tradename Tamiflu (Basel, Switzerland) and zanamivir with the tradename Relenza (London, UK) were established [24]. These drugs exhibit some abldverse side effe antiviral tcts that restrict clinical use.
Ther SA 9-O-apceutics or vaccination tools are lacking, several ttylation in hosts allows hosts to evade influenza A virus hemagglutinin (HA) recognition and some lectins of factor H (FH), CD22/Siglec-2 and sialoadhesin/Siglec-1. Instead, the influenza C virus HA recognizes the hosts. β-elimination and permethylation eliminate the 9-O-acetyl group from SAs. Chemials are underway to examine viralcal modification of the C-9 position of Neu5,9Ac2 generates a 9-N-acetyl analog, 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc), a mimic of Neu5,9Ac2 with influenza C virus-binding capacity, which is not cleaved by the HE [25]. SA O-agentscetylesterase regulates the presence of 7,9-O-Ac and 9-O-Ac. SAs expected, structural and non-structural O-acetylation and deacetylation are involved in development, cancer and immunology. SA O-acetylation alters host lectin bindings such as siglecs [12]. The presence of 9-O-Ac can also reduce theins of activity of NAs [26]. SARS-C modificatioV-2 are currently being targeted for viral therapeutic designation and development. However, the modern gns regulate pathogen binding or pathogen NAs. Influenza A/B/C/D viruses use SA as their entry receptors. Influenza A and B subtypes bind to SAs via HA and NA to allow endocytosis of the virus and fusion of the viral envelope with endosomes. In contrast, influenza C and D subtypes bear only one coated glycoprotein, termed the HE fusion protein (HEF). The HEF acts as the HA and NA. HEF recognizes 9-O-acetyl SA fobal society needs SARS-CoV-2 prevenr entry into cells, while the esterase domain removes 9-O-acetiveyl-groups and therapeutic drugs for infeliberates the virus from mucus and mis-assembled virus aggregates after budding. The 9-O-Ac on cells prevented patientss the NA activity and HA binding of the influenza A type virus [27].