Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 3885 word(s) 3885 2021-03-29 09:58:02 |
2 format change Meta information modification 3885 2021-04-09 11:53:50 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Marcos, A. Moderate Consumption of Beer. Encyclopedia. Available online: https://encyclopedia.pub/entry/8561 (accessed on 15 August 2024).
Marcos A. Moderate Consumption of Beer. Encyclopedia. Available at: https://encyclopedia.pub/entry/8561. Accessed August 15, 2024.
Marcos, Ascensión. "Moderate Consumption of Beer" Encyclopedia, https://encyclopedia.pub/entry/8561 (accessed August 15, 2024).
Marcos, A. (2021, April 09). Moderate Consumption of Beer. In Encyclopedia. https://encyclopedia.pub/entry/8561
Marcos, Ascensión. "Moderate Consumption of Beer." Encyclopedia. Web. 09 April, 2021.
Moderate Consumption of Beer
Edit

There is growing interest in the potential health-related effects of moderate alcohol consumption and, specifically, of beer. This entry provides an assessment of beer-associated effects on cardiovascular and metabolic risk factors to identify a consumption level that can be considered “moderate”.

It introduced all prospective clinical studies and systematic reviews that evaluated the health effects of beer published between January 2007 and April 2020. Five of six selected studies found a protective effect of moderate alcohol drinking on cardiovascular disease (beer up to 385 g/week) vs. abstainers or occasional drinkers. Four out of five papers showed an association between moderate alcohol consumption (beer intake of 84 g alcohol/week) and decreased mortality risk. We concluded that moderate beer consumption of up to 16 g alcohol/day (1 drink/day) for women and 28 g/day (1–2 drinks/day) for men is associated with decreased incidence of cardiovascular disease and overall mortality, among other metabolic health benefits. 

alcohol moderate drinking

1. Introduction

In recent years, there has been an increasing interest in the potential health-related effects of moderate alcohol consumption. Although the harmful effects of excessive alcohol use are well established, the association of low-to-moderate alcohol consumption with health-related benefits is still controversial, since the results of available studies are not homogeneous and reaching clear conclusions is challenging. This lack of consensus is observed in alcohol consumption guidelines published in the last five years, which use different terminology (“risky drinking”, “moderate consumption”, or “low-risk drinking”) as well as different drinking thresholds [1][2][3][4][5][6] (Table 1). Furthermore, other variables, such as differences in concentrations of non-alcoholic components (i.e., polyphenols), may confound the beneficial effects of specific alcoholic drinks [7][8].

Table 1. Low-risk drinking guidelines.

Beer is an alcoholic beverage frequently consumed in Europe. In 2018, the average yearly beer consumption in Europe was 72 L per capita, with a few countries (Czech Republic, Austria, and Germany) consuming more than 100 L per capita per year [9]. However, patterns of consumption differ across the region varying from predominantly meal-associated drinking in Mediterranean countries, to high rates of heavy episodic drinking in Central and Eastern Europe, and relatively frequent consumption both with and outside of meals in Central Western Europe [10].

Beer is mainly composed of water, but it is also rich in nutrients—carbohydrates, amino acids, minerals, vitamins, and polyphenols—resulting from a multi-step brewing and fermentation process [7][11][12][13]. Hop flowers, used as a bittering and flavoring agent [14], contain phenolic compounds, including prenylated flavonoids [15][16], which have been shown in vitro to have different antioxidant, anticarcinogenic, anti-inflammatory, oestrogenic, and antiviral biological activities [7][17]. Xanthohumol is the most abundant of these compounds and, in addition to potential bioactivity [7][18], it also inhibits platelet activation without increasing the bleeding risk [19]. Thus, brewing processes have been optimized to achieve the highest possible content of xanthohumol [20]. Regarding antioxidant content, ale beers have been reported to display a higher antioxidant activity than lager beers due to the higher fermentation temperature in the brewing process. However, despite these enrichment processes, controversy remains as to the bioavailability of the phenolic compounds in beer [21][22][23].

Alcohol content in regular beers varies between 3% and 6% alcohol by volume [11]. There is vast scientific literature on excessive alcohol consumption. Indeed, chronically high alcohol intake acts as a toxin to the heart and vascular system and may also exacerbate pre-existing heart disorders. However, low-to-moderate amounts of alcohol intake might have beneficial effects on the cardiovascular (CV) system, since it increases high-density lipoprotein cholesterol (HDL) and reduces arterial stiffness (both effects shown specifically with beer) [21][22][24][25], and also decreases fibrinogen, platelet activation and aggregation, as well as blood oxidative stress and inflammatory parameters [26][27][28]. The alcohol content of beer might also have an effect on glucose homeostasis [29]. Alcohol contributes to total calorie intake and may increase weight when consumed in excess [30][31]. Non-alcoholic components also contribute to the energy content of beer. Thus, Public Health England lists the mean energy content of alcohol-free beers at seven kilocalories/100 g [32]. Overall, 28% of the total monthly kilocalories contributed by beer among regular drinkers derive from its non-alcoholic ingredients [33].

Taken together, the biological activity of phenolic compounds in beer and the possible association of alcohol intake with mortality, CV risk [34][35][36], and glucose metabolism [37][38][39][40][41][42][43] may contribute to the putative health-related effects of moderate beer consumption. Conversely, excess beer consumption may be associated with weight increase and associated morbidities [30].

2. Moderate Beer Consumption and Mortality

A summary of related studies is shown in Table 2. The systematic review by de Gaetano et al. [34] suggested that a J-shaped relationship also exists between beer consumption and all-cause mortality. The lowest mortality risk was observed in subjects with low to moderate alcohol consumption compared to abstainers or heavy drinkers, with the lowest risk at beer consumption of 84 g alcohol/week [34].

Table 2. Summary of main mortality studies.

Studies on general alcohol consumption have similar conclusions. A prospective cohort study by Suadicani et al. found an association between wine consumption and all-cause mortality, with a consistent effect at 84 g alcohol/week, and a larger effect seen with higher consumption in men with non-O blood type [34][52]. However, a meta-analysis by Stockwell et al. [49] suggested that, when the necessary adjustments for study design characteristics are implemented, no association of moderate alcohol consumption with mortality is observed. Two later prospective studies, with well-adjusted variables, confirmed the association between lower risk of total and CV mortality [51][50] and moderate alcohol consumption defined by 168 g/week, 24 g/day for men and 112 g/week, 16 g/day for women in the Bell et al. study [51] or by 43–196 g/week for men and 43–98 g/week for women in the Xi et al. study [50].

Gender Differences

In the EPIC study, beer consumption in women was more strongly related than wine consumption to overall mortality for amounts >21 g/week compared with the reference category (0.7–20.3 g/week) [48]. On the other hand, in the study by Xi et al., the protective effect of low and moderate alcohol consumption against all-cause and CV disease (CVD) mortality was more pronounced in women [50]. Thus, it seems that women may be both more sensitive to the protective effects against mortality of moderate beer intake and to the risk effects of higher amounts.

3. Moderate Beer Consumption and Obesity, Diabetes, and Osteoporosis

Table 3 details the studies on this subject. Although beer seems to have a direct effect on weight gain [53], and on waist circumference in men [54], there is not enough evidence to confirm whether moderate intake (<500 mL/day) is associated with general or abdominal obesity [55], although daily amounts ≥500 mL increase the risk of not losing weight [54]. In this regard, Padro et al., have reported that the moderate consumption of either alcoholic (30 g/day for men; 15 g/day for women) or non-alcoholic beer for four weeks did not increase the body weight of obese individuals [56]. Furthermore, moderate beer consumption was associated with increases in the anti-oxidative properties of high-density lipoprotein, which facilitate the efflux of cholesterol [56].

Table 3. Summary of main obesity, diabetes, and osteoporosis studies.

Based on the reviewed diabetes studies [43][57], moderate alcohol consumption may decrease diabetes risk in men. A meta-analysis of 13 prospective studies, with 397,296 participants, showed that wine consumption was associated with a significant reduction of the risk for type 2 diabetes mellitus (T2DM), with a pooled relative risk of 0.85, whereas beer or spirits consumption led to a slight trend towards a decreasing risk for T2DM (relative risk 0.96 and 0.95, respectively) [60]. Chronic alcohol consumption, however, is considered a risk factor for T2DM, which may be triggered by a deterioration in glucose tolerance, alterations in signalling of peptides involved in appetite regulation, and dysfunction and apoptosis of pancreatic β-cells [61][62].

Data on bone mineral density (BMD) and fracture risk have been less conclusive, probably due to the few studies available, and both relatively high and low levels of alcohol consumption have shown benefits for bone health. Thus, the consumption of both beer and wine at doses up to 60 g/day in men alone in the study by Yin et al. [58], and up to 13 drinks/week (182 g/week) in the study by Mukamal et al. [59], were shown to increase BMD and/or decrease risk of fracture in the elderly. Even very low levels of consumption were associated with a decreased fracture risk. Considering beer specifically, consumption of <1 beer/week (<14 g/week) in men and women was significantly associated with a lower risk of hip fracture (HR 0.66, 95%CI 0.44–0.99) [59]. Notably, low-alcohol beer consumption in women was associated with increased lumbar BMD [58], suggesting that, beyond the putative positive effect of alcohol on BMD, the non-alcoholic components of beer may also be involved. Other compounds present in beer (e.g., phytoestrogens such as 8-prenylnaringenin) act synergically with silicon to stimulate osteoblast cells, improve bone structure, and help remineralize bone and teeth [63]. The polyphenolic fraction, flavonoids, and the silicon content in beer may contribute to the positive effects on bone metabolism [64]. The protective effect of polyphenols has also been proven in human studies, where they reduced systolic and diastolic pressure and reduced lipoprotein cholesterol serum levels, among others [65]. The cardioprotective role of polyphenols in beer (traditional or alcohol-free) in particular has been reported in individuals with high cardiovascular risk [8][66].

Gender Differences

With regard to obesity, the study by Schütze et al. [54] suggested that only men observe a risk for an increase in waist circumference (WC) with beer consumption of >500 mL/day. In women, beer-abstainers showed lower relative odds for WC gain compared with their very low-level drinking counterparts (1 to <125 mL/day), which was close to significance.

Similar gender differences were seen in the diabetes studies. Cullman et al. found that alcohol effect on glucose metabolism was different between men and women [43], depending on amounts of consumption and alcohol type; overall, in individuals with normal glucose tolerance, a decrease in T2DM risk was observed in occasional consumers of beer and wine vs abstainers among men, and in high consumers (≥192 g/week) of wine vs occasional consumers among women. This cohort study showed that men who were high consumers of beer and had baseline normal glucose tolerance had a significantly increased risk of developing abnormal glucose regulation (OR 1.63, CI 1.07–2.48 for pre-diabetes plus T2DM and OR 1.84, CI 1.13–3.01 for pre-diabetes) compared to occasional drinkers [43]. Men abstainers had a significantly higher risk of developing abnormal glucose regulation (OR 2.13, CI 1.03–4.39) than occasional beer drinkers, suggesting occasional beer consumption may be protective in men. Data for beer consumption in women were not provided in the Cullman et al. study. When considering individuals with normal glucose tolerance or pre-diabetes at baseline, the only significant difference found when using occasional drinking as a reference was the case of women with low consumption of total alcohol, who showed a decreased risk of T2DM (OR 0.41, CI 0.22–0.79). Most studies reviewed by Polsky et al. [57] also showed differences between men and women. In one study, a lower risk for T2DM was only observed in women who consumed alcohol (any quantity; no dose-relationship observed) compared to lifetime abstainers, but this was not found in men [67]. Another study showed that in men alone, a moderate alcohol consumption (10–14.9 g/day) was associated with a reduced risk of T2DM with respect to very low consumption (0.01–4.9 g/day), linked to wine consumption [68].

Regarding BMD, the study by Yin et al. [58] found that alcohol intake was positively associated only in men with an increase in the percentage of spinal and hip BMD after two years, whereas in women, lumbar spine BMD at baseline was positively associated with frequency of low-alcohol beer consumption (beta = 0.034 g/cm2 per category, p = 0.002).

References

  1. Kalinowski, A.; Humphreys, K. Governmental Standard Drink Definitions and Low-Risk Alcohol Consumption Guidelines in 37 Countries. Addiction 2016, 111, 1293–1298.
  2. Arbesu, J.A.; Armenteros del Olmo, L.; Casquero, R.; Goncalves, F.; Guardia Serecigni, J.; López Santiago, A.; Pascual Pastor, F.; Represas Carrera, F.J.; Sala Añó, C. Manual de Consenso Sobre Alcohol En Atención Primaria; Socidrogalcohol: Barcelona, Spain, 2016.
  3. Aranceta-Bartrina, J.; Partearroyo, T.; López-Sobaler, A.M.; Ortega, R.M.; Varela-Moreiras, G.; Serra-Majem, L.; Pérez-Rodrigo, C. Updating the Food-Based Dietary Guidelines for the Spanish Population: The Spanish Society of Community Nutrition (Senc) Proposal. Nutrients 2019, 11, 2675.
  4. Department of Health. UK Chief Medical Officers’ Low Risk Drinking Guidelines; Department of Health: London, UK, 2016.
  5. U.S. Department of Health and Human Services. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2015.
  6. Canadian Centre on Substance Use and Adiction. Alcohol Drinking Guidelines; Canadian Centre on Substance Use and Adiction: Ottawa, ON, Canada, 2018.
  7. Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients 2012, 4, 759–781.
  8. Chiva-Blanch, G.; Magraner, E.; Condines, X.; Valderas-Martínez, P.; Roth, I.; Arranz, S.; Casas, R.; Navarro, M.; Hervas, A.; Sisó, A.; et al. Effects of Alcohol and Polyphenols from Beer on Atherosclerotic Biomarkers in High Cardiovascular Risk Men: A Randomized Feeding Trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 36–45.
  9. The Brewers of Europe. European Beer Trends-Statistics Report | 2019 Edition; The Brewers of Europe: Brussels, Belgium, 2020.
  10. Shield, K.D.; Rylett, M.; Rehm, J. Public Health Gains and Missed Opportunities. Trends in Alcohol Consumption and Attributable Mortality in the WHO European Region, 1990–2014: A Report to the WHO European Region; Centre for Addiction and Mental Health: Toronto, ON, Canada, 2016; ISBN 9781771143684.
  11. Missbach, B.; Majchrzak, D.; Sulzner, R.; Wansink, B.; Reichel, M.; Koenig, J. Exploring the Flavor Life Cycle of Beers with Varying Alcohol Content. Food Sci. Nutr. 2017, 5, 889–895.
  12. Sohrabvandi, S.; Mortazavian, A.M.; Rezaei, K. Health-Related Aspects of Beer: A Review. Int. J. Food Prop. 2012, 15, 350–373.
  13. Romeo, J.; Díaz, L.; González-Gross, M.; Wärnberg, J.; Marcos, A. Contribución a La Ingesta de Macro y Micronutrientes Que Ejerce Un Consumo Moderado de Cerveza. Nutr. Hosp. 2006, 21, 84–91.
  14. Hill, S.T.; Sudarsanam, R.; Henning, J.; Hendrix, D. HopBase: A Unified Resource for Humulus Genomics. Database J. Biol. Databases Curation 2017, 2017, bax009.
  15. Carvalho, D.O.; Curto, A.F.; Guido, L.F. Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-Diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry. Antioxidants 2015, 4, 563–576.
  16. Řehová, L.; Škeříkova, V.; Jandera, P. Optimisation of Gradient HPLC Analysis of Phenolic Compounds and Flavonoids in Beer Using a CoulArray Detector. J. Sep. Sci. 2004, 27, 1345–1359.
  17. Gerhäuser, C. Beer Constituents as Potential Cancer Chemopreventive Agents. Eur. J. Cancer 2005, 41, 1941–1954.
  18. Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus Lupulus). Molecules 2015, 20, 754–779.
  19. Xin, G.; Wei, Z.; Ji, C.; Zheng, H.; Gu, J.; Ma, L.; Huang, W.; Morris-Natschke, S.L.; Yeh, J.L.; Zhang, R.; et al. Xanthohumol Isolated from Humulus Lupulus Prevents Thrombosis without Increased Bleeding Risk by Inhibiting Platelet Activation and MtDNA Release. Free Radic. Biol. Med. 2017, 108, 247–257.
  20. Wunderlich, S.; Zürcher, A.; Back, W. Enrichment of Xanthohumol in the Brewing Process. Mol. Nutr. Food Res. 2005, 49, 874–881.
  21. Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.d.C.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568.
  22. Sacanella Anglés, I.; Casas Rodriguez, R.; Viñas Esmel, E.; Castro Barquero, S.; Sacanella Meseguer, E. Prevención de La Enfermedad Cardiovascular y Bebidas Alcohólicas Fermentadas. ¿Realidad o Ficción? Nutr. Hosp. 2019, 36, 58–62.
  23. Williamson, G.; Manach, C. Bioavailability and Bioefficacy of Polyphenols in Humans. II. Review of 93 Intervention Studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S.
  24. Romeo, J.; González-Gross, M.; Wärnberg, J.; Díaz, L.E.; Marcos, A. Effects of Moderate Beer Consumption on Blood Lipid Profile in Healthy Spanish Adults. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 365–372.
  25. Nishiwaki, M.; Kora, N.; Matsumoto, N. Ingesting a Small Amount of Beer Reduces Arterial Stiffness in Healthy Humans. Physiol. Rep. 2017, 5, 1–9.
  26. Rimm, E.B.; Williams, P.; Fosher, K.; Criqui, M.; Stampfer, M.J. Moderate Alcohol Intake and Lower Risk of Coronary Heart Disease: Meta-Analysis of Effects on Lipids and Haemostatic Factors. Br. Med. J. 1999, 319, 1523–1528.
  27. Di Castelnuovo, A.; Costanzo, S.; di Giuseppe, R.; de Gaetano, G.; Iacoviello, L. Alcohol Consumption and Cardiovascular Risk: Mechanisms of Action and Epidemiologic Perspectives. Future Cardiol. 2009, 5, 467–477.
  28. Piano, M.R. Alcohol’s Effects on the Cardiovascular System. Alcohol Res. Curr. Rev. 2017, 38, 219–241.
  29. Hätönen, K.A.; Virtamo, J.; Eriksson, J.G.; Perälä, M.M.; Sinkko, H.K.; Leiviskä, J.; Valsta, L.M. Modifying Effects of Alcohol on the Postprandial Glucose and Insulin Responses in Healthy Subjects. Am. J. Clin. Nutr. 2012, 96, 44–49.
  30. Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130.
  31. Block, G. Foods Contributing to Energy Intake in the US: Data from NHANES III and NHANES 1999–2000. J. Food Compos. Anal. 2004, 17, 439–447.
  32. Roe, M.; Pinchen, H.; Church, S.; Finglas, P. McCance and Widdowson’s The Composition of Foods Seventh Summary Edition and Updated Composition of Foods Integrated Dataset. Nutr. Bull. 2015, 40, 36–39.
  33. Tujague, J.; Kerr, W.C. Energy Intake Estimates of Respondent-Measured Alcoholic Beverages. Alcohol Alcohol. 2009, 44, 34–41.
  34. De Gaetano, G.; Costanzo, S.; di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; la Vecchia, C.; Panico, S.; et al. Effects of Moderate Beer Consumption on Health and Disease: A Consensus Document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467.
  35. Kawano, Y. Physio-Pathological Effects of Alcohol on the Cardiovascular System: Its Role in Hypertension and Cardiovascular Disease. Hypertens. Res. 2010, 33, 181–191.
  36. Gardner, J.D.; Mouton, A.J. Alcohol Effects on Cardiac Function. Compr. Physiol. 2015, 5, 791–802.
  37. Shi, L.; Shu, X.O.; Li, H.; Cai, H.; Liu, Q.; Zheng, W.; Xiang, Y.B.; Villegas, R. Physical Activity, Smoking, and Alcohol Consumption in Association with Incidence of Type 2 Diabetes among Middle-Aged and Elderly Chinese Men. PLoS ONE 2013, 8, e7791.
  38. Sato, K.K.; Hayashi, T.; Harita, N.; Koh, H.; Maeda, I.; Endo, G.; Nakamura, Y.; Kambe, H.; Kiyotaki, C. Relationship between Drinking Patterns and the Risk of Type 2 Diabetes: The Kansai Healthcare Study. J. Epidemiol. Community Health 2012, 66, 507–511.
  39. Marques-Vidal, P.; Vollenweider, P.; Waeber, G. Alcohol Consumption and Incidence of Type 2 Diabetes. Results from the CoLaus Study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 75–84.
  40. Wei, M.; Gibbons, L.W.; Mitchell, T.L.; Kampert, J.B.; Blair, S.N. Alcohol Intake and Incidence of Type 2. Diabetes Care 2000, 23, 18–24.
  41. Wannamethee, S.G.; Shaper, A.G.; Perry, I.J.; Alberti, K.G.M.M. Alcohol Consumption and the Incidence of Type II Diabetes. J. Epidemiol. Community Health 2002, 56, 542–548.
  42. Athyros, V.G.; Liberopoulos, E.N.; Mikhailidis, D.P.; Papageorgiou, A.A.; Ganotakis, E.S.; Tziomalos, K.; Kakafika, A.I.; Karagiannis, A.; Lambropoulos, S.; Elisaf, M. Association of Drinking Pattern and Alcohol Beverage Type with the Prevalence of Metabolic Syndrome, Diabetes, Coronary Heart Disease, Stroke, and Peripheral Arterial Disease in a Mediterranean Cohort. Angiology 2008, 58, 689–697.
  43. Cullmann, M.; Hilding, A.; Östenson, C.G. Alcohol Consumption and Risk of Pre-Diabetes and Type 2 Diabetes Development in a Swedish Population. Diabet. Med. 2012, 29, 441–452.
  44. Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol Dosing and Total Mortality in Men and Women: An Updated Meta-Analysis of 34 Prospective Studies. Arch. Intern. Med. 2006, 166, 2437–2445.
  45. Renaud, S.C.; Guéguen, R.; Siest, G.; Salamon, R. Wine, Beer, and Mortality in Middle-Aged Men from Eastern France. Arch. Intern. Med. 1999, 159, 1865–1870.
  46. Wannamethee, S.G.; Shaper, A.G. Type of Alcoholic Drink and Risk of Major Coronary Heart Disease Events and All-Cause Mortality. Am. J. Public Health 1999, 89, 685–690.
  47. Nielsen, N.R.; Schnohr, P.; Jensen, G.; Grønbæk, M. Is the Relationship between Type of Alcohol and Mortality Influenced by Socio-Economic Status? J. Intern. Med. 2004, 255, 280–288.
  48. Ferrari, P.; Licaj, I.; Muller, D.C.; Andersen, P.K.; Johansson, M.; Boeing, H.; Weiderpass, E.; Dossus, L.; Dartois, L.; Fagherazzi, G.; et al. Lifetime Alcohol Use and Overall and Cause-Specific Mortality in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. BMJ Open 2014, 4, e005245.
  49. Stockwell, T.; Zhao, J.; Panwar, S.; Roemer, A.; Naimi, T.; Chikritzhs, T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality. J. Stud. Alcohol Drugs 2016, 77, 185–198.
  50. Xi, B.; Veeranki, S.P.; Zhao, M.; Ma, C.; Yan, Y.; Mi, J. Relationship of Alcohol Consumption to All-Cause, Cardiovascular, and Cancer-Related Mortality in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 913–922.
  51. Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D.; et al. Association between Clinically Recorded Alcohol Consumption and Initial Presentation of 12 Cardiovascular Diseases: Population Based Cohort Study Using Linked Health Records. BMJ 2017, 356, 1–7.
  52. Suadicani, P.; Hein, H.O.; Gyntelberg, F. Wine Intake, ABO Phenotype, and Risk of Ischemic Heart Disease and All-Cause Mortality: The Copenhagen Male Study-a 16-Year Follow-Up. Alcohol 2008, 42, 575–582.
  53. Fresán, U.; Gea, A.; Bes-Rastrollo, M.; Ruiz-Canela, M.; Martínez-Gonzalez, M.A. Substitution Models of Water for Other Beverages, and the Incidence of Obesity and Weight Gain in the SUN Cohort. Nutrients 2016, 8, 688.
  54. Schütze, M.; Schulz, M.; Steffen, A.; Bergmann, M.M.; Kroke, A.; Lissner, L.; Boeing, H. Beer Consumption and the “Beer Belly”: Scientific Basis or Common Belief? Eur. J. Clin. Nutr. 2009, 63, 1143–1149.
  55. Bendsen, N.T.; Christensen, R.; Bartels, E.M.; Kok, F.J.; Sierksma, A.; Raben, A.; Astrup, A. Is Beer Consumption Related to Measures of Abdominal and General Obesity? A Systematic Review and Meta-Analysis. Nutr. Rev. 2013, 71, 67–87.
  56. Padro, T.; Muñoz-García, N.; Vilahur, G.; Chagas, P.; Deyà, A.; Antonijoan, R.M.; Badimon, L. Moderate Beer Intake and Cardiovascular Health in Overweight Individuals. Nutrients 2018, 10, 1237.
  57. Polsky, S.; Akturk, H.K. Alcohol Consumption, Diabetes Risk, and Cardiovascular Disease Within Diabetes. Curr. Diabetes Rep. 2017, 17, 136.
  58. Yin, J.; Winzenberg, T.; Quinn, S.; Giles, G.; Jones, G. Beverage-Specific Alcohol Intake and Bone Loss in Older Men and Women: A Longitudinal Study. Eur. J. Clin. Nutr. 2011, 65, 526–532.
  59. Mukamal, K.J.; Robbins, J.A.; Cauley, J.A.; Kern, L.M.; Siscovick, D.S. Alcohol Consumption, Bone Density, and Hip Fracture among Older Adults: The Cardiovascular Health Study. Osteoporos. Int. 2007, 18, 593–602.
  60. Huang, J.; Wang, X.; Zhang, Y. Specific Types of Alcoholic Beverage Consumption and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Diabetes Investig. 2017, 8, 56–68.
  61. Kim, J.Y.; Lee, D.Y.; Lee, Y.J.; Park, K.J.; Kim, K.H.; Kim, J.W.; Kim, W.-H. Chronic Alcohol Consumption Potentiates the Development of Diabetes through Pancreatic β-Cell Dysfunction. World J. Biol. Chem. 2015, 6, 1–15.
  62. Kim, S.J.; Kim, D.J. Alcoholism and Diabetes Mellitus. Diabetes Metab. J. 2012, 36, 108–115.
  63. Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and Its Non-Alcoholic Compounds in Health and Disease. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–14.
  64. Redondo, N.; Nova, E.; Díaz-Prieto, L.E.; Marcos, A. Effects of Moderate Beer Consumption on Health. Nutr. Hosp. 2018, 35, 41–44.
  65. Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351.
  66. Chiva-Blanch, G.; Condines, X.; Magraner, E.; Roth, I.; Valderas-Martínez, P.; Arranz, S.; Casas, R.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Quifer-Rada, P.; et al. The Non-Alcoholic Fraction of Beer Increases Stromal Cell Derived Factor 1 and the Number of Circulating Endothelial Progenitor Cells in High Cardiovascular Risk Subjects: A Randomized Clinical Trial. Atherosclerosis 2014, 233, 518–524.
  67. Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Alcohol Intake, Consumption Pattern and Beverage Type, and the Risk of Type 2 Diabetes. Diabet. Med. 2006, 23, 690–697.
  68. Rasouli, B.; Ahlbom, A.; Andersson, T.; Grill, V.; Midthjell, K.; Olsson, L.; Carlsson, S. Alcohol Consumption Is Associated with Reduced Risk of Type2 Diabetes and Autoimmune Diabetes in Adults: Results from the Nord-Trøndelag Health Study. Diabet. Med. 2013, 30, 56–64.
More
Information
Subjects: Allergy
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 713
Revisions: 2 times (View History)
Update Date: 09 Apr 2021
1000/1000
Video Production Service