Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2862 word(s) 2862 2021-02-08 08:00:15 |
2 format correct Meta information modification 2862 2021-03-29 09:54:20 | |
3 format correct Meta information modification 2862 2021-03-29 09:55:11 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Kemper, K. CD3-Bispecific Antibody Therapy. Encyclopedia. Available online: https://encyclopedia.pub/entry/8312 (accessed on 18 November 2024).
Kemper K. CD3-Bispecific Antibody Therapy. Encyclopedia. Available at: https://encyclopedia.pub/entry/8312. Accessed November 18, 2024.
Kemper, Kristel. "CD3-Bispecific Antibody Therapy" Encyclopedia, https://encyclopedia.pub/entry/8312 (accessed November 18, 2024).
Kemper, K. (2021, March 29). CD3-Bispecific Antibody Therapy. In Encyclopedia. https://encyclopedia.pub/entry/8312
Kemper, Kristel. "CD3-Bispecific Antibody Therapy." Encyclopedia. Web. 29 March, 2021.
CD3-Bispecific Antibody Therapy
Edit

CD3-bispecific antibody therapy is a form of immunotherapy that enables soldier cells of the immune system to recognize and kill tumor cells.

antibody therapy immuno-oncology CD3-bispecific antibody

1. Introduction

CD3-bispecific antibodies (CD3-BsAbs) are an emerging treatment modality in the field of cancer immunotherapy. BsAbs can recognize distinct antigens with each of their antigen-binding domains, in contrast to conventional Abs that recognize the same antigen with both Fab arms. The exception is IgG4, which has been reported to naturally exchange arms to attain bispecificity [1]. CD3-BsAbs act by simultaneous binding to a tumor-associated antigen (TAA) expressed on tumor cells and to CD3 on a T cell (CD3xTAA) [2]. Crosslinking of these two cell types by CD3-BsAbs allows the formation of an immunological synapse, similar to that of a natural T-cell receptor (TCR)/peptide–major histocompatibility complex (MHC) complex [3]. This synapse results in T-cell activation and thereby the secretion of inflammatory cytokines and cytolytic molecules that are able to kill the tumor cells in the process. The strength of CD3-BsAbs lies in the fact that any T cell could serve as an effector cell, regardless of TCR specificity, as for these BsAbs, TCR signaling does not require engagement of the antigen-binding domain of the TCR, but is initiated via CD3 [4]. Therefore, CD3-BsAbs can employ all available T cells and are not limited to tumor-specific T cells, contrary to the key requirement for effective immune checkpoint therapy [5].

CD3-BsAb therapy is a passive form of immunotherapy and shows striking kinship with the adoptive cell transfer of T cells expressing chimeric antigen receptor (CAR) transgenes [6]. CARs consist of TAA binding domains from antibodies directly linked to the intracellular CD3ζ chain and domains from costimulatory receptors (e.g., 4-1BB) and thereby activate T cells upon antigen recognition. CD3-BsAbs and CAR T cells are similar in many ways: both target a surface TAA, both exploit T-cell effector functions and both are successfully used in the clinic for hematological malignancies and show a similar type of toxicity profile [7][8]. Some disadvantages of currently clinically approved CAR T cells compared to CD3-BsAbs are: (1) patients are required to be lymphodepleted prior to infusion of CAR T cells, (2) CAR T cells have to be individually produced for each patient, whereas CD3-BsAbs can serve as off-the-shelf therapeutics, (3) CAR T cells remain in the patients after the tumor is cleared, resulting in continuous B-cell depletion in the case of CD19-targeting CAR T cells, whereas CD3-BsAbs are cleared from the blood over time and (4) unlike CD3-BsAbs, dosing cannot be adjusted to minimize adverse events [7][9]. Nevertheless, it will be important to learn from the CAR T cell field to potentially extrapolate new findings to the CD3-BsAb field.

Over the last few years, new insights in BsAb biology and enabling technologies resulted in the generation of many different formats of CD3-BsAbs, which was elaborately reviewed by Labrijn et al. [10]. As of December 2020, over 100 different CD3-BsAb formats are known, ranging from very small fragments containing two different variable domains without an Fc tail, conventional antibody structures (two Fab arms linked to an Fc tail) and larger structures with additional variable domains linked to the conventional antibody structure. These different formats determine important features, such as antibody half-life via neonatal Fc receptor (FcRn)-mediated recycling, immunogenicity, type of effector response via altered immune synapse formation and ability to penetrate in solid tumors [11]. The presence and functionality of the Fc tail determines whether the BsAb is able to bind to and activate Fc receptor (FcR)-expressing immune cells, which could lead to stronger inflammatory responses, but also allows activation of immune cells in the absence of TAA, potentially resulting in more severe adverse events (AEs) [12].

Currently, CD3-BsAbs show great potential for hematological cancers, with the FDA-approved blinatumomab (CD3xCD19) being successfully used in the clinic to treat some B-cell malignancies. Many other CD3-BsAbs are being tested in (pre)clinical studies for both hematological and solid tumors. However, contrary to the success of CD3-BsAbs in hematological malignancies, the effect of these antibodies in solid tumors is still rather limited [13].

2. CD3-BsAbs in Hematological Malignancies

CD3-BsAbs received a lot of attention due to their success in hematological cancers. Blinatumomab (a CD3xCD19 BsAb without an Fc tail) was FDA approved in 2014 and is now successfully used in the clinic to treat patients suffering from relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL) [14]. Over 40% of adult patients treated with blinatumomab show a complete or partial response and median overall survival is improved by several months compared to standard of care chemotherapy [15][16][17]. Unfortunately, most patients still relapse eventually after primary response to blinatumomab therapy. These relapses are currently being extensively investigated and the data have thus far indicated that relapses are frequently found at immune-privileged extramedullary locations and some relapses have lost CD19 antigen expression, but more research is required to further elucidate these resistance mechanisms [18][19].

Apart from blinatumomab, many other CD3-BsAbs are currently in clinical trials targeting well-established B-cell markers, like CD19, CD20, CD38 and B-cell maturation antigen (BCMA) and myeloid markers, like CD33 and CD123. For instance, in a phase I/II study, patients suffering from acute myeloid leukemia (AML) were treated with flotetuzumab (CD3xCD123 BsAb) and showed promising overall response rates (complete response with full, partial or incomplete recovery of blood cells) of 30% [20]. In another phase I/II study for patients suffering from diffuse large B-cell lymphoma (DLBCL), high-grade B-cell lymphoma (HGBCL) or follicular lymphoma (FL), epcoritamab (CD3xCD20 BsAb) therapy generated impressive responses: 44% complete response (CR) and 11% partial response (PR) for patients with DLBCL or HGBCL and 100% PR for patients with FL [21]. Comparable results were obtained with other CD3xCD20 bispecifics [22][23]. In NOD/SCID-gamma null (NSG) mice, REGN1979 (CD3xCD20) delayed tumor outgrowth better than rituximab, thereby further indicating the strength of CD3-BsAbs [24]. Interestingly, some of these trials target the same B-cell or myeloid antigens, however, with different CD3-BsAb formats. Therefore, these clinical studies could potentially inform on the role of different antibody formats’ treatment safety and efficacy.

Clinical trials with blinatumomab revealed that cytokine release syndrome (CRS) is one of the major safety-related AEs [25]. The availability of CD19+ tumor cells and healthy B- and T cells in the same compartment allows acute and synchronic CD3-BsAb-mediated T-cell activation, followed by excessive release of inflammatory cytokines, such as IFN-γ, IL-6 and TNF-α, resulting in symptoms ranging from mild fever to multi-organ system failure [26]. However, CRS is not a specific problem for blinatumomab, but is observed for all CD3-BsAbs and CAR T-cell therapies in both hematological and solid cancer indications with CRS severities dependent on the type of therapy and target [27][28]. Preclinical research using a humanized mouse model showed that the primary mediator of CD3-BsAb-induced CRS was TNF-α produced by activated T cells, leading to massive secretion of inflammatory cytokines by monocytes [29]. The blockade of upstream TNF-α and downstream IL-1β or IL-6 can mitigate CRS [29][30][31]. Others have reported that step-up dosing, or subcutaneous administration of CD3-BsAbs, decreased the extent of CRS [32][33]. Furthermore, several preclinical studies in mouse and cynomolgus monkey models showed that reducing CD3 affinity could reduce treatment-induced cytokine levels [34][35][36][37].

3. Historical Perspective and Current Status of CD3-BsAbs in Solid Cancers

Despite the fact that CD3-BsAbs are mostly known for their use in hematological malignancies, the first European medicines agency (EMA)-approved CD3 bispecific antibody was catumaxomab, a CD3xEpCAM BsAb for the intraperitoneal treatment of epithelial cell adhesion molecule (EpCAM)-positive malignant ascites [38]. This antibody was actually trifunctional, as its Fc was able to bind FcR-expressing cells and induced strong immunological responses [39]. Severe liver toxicity was also observed due to the activation of Kupffer cells when administered intravenously [12]. Catumaxomab was eventually withdrawn for commercial reasons in 2017, but taught the field an important lesson about the potential dangers of the presence of an active Fc in CD3-BsAbs. All current full length CD3-BsAbs in development contain Fc-silent backbones with mutations impairing the binding of FcγR and C1q [10]. Moreover, preclinical studies showed that Fc-silenced full length CD3-BsAbs improved T-cell trafficking towards the tumor and induced better anti-tumor responses. Wang et al. showed that CD3-BsAbs with an active Fc backbone failed to drive T cells to the tumor, but instead induced either T-cell depletion or the accumulation of T cells in the lungs [40]. This observed effect was attributed to the capacity of the Fc backbone to be bound by FcγR-expressing myeloid cells. Fc-silenced CD3-BsAbs did not lead to sequestration of T cells in the lungs, but they arrived in the tumor. More importantly, therapeutic efficacy was greatly improved in Fc-silenced CD3-BsAb-treated mice. A similar trend was also observed in a syngeneic mouse model, where CD3xTrp1 (tyrosinase-related protein 1) was used to treat Trp1-positive B16F10 tumor cells [41].

As of December 2020, no CD3-BsAbs are approved for the treatment of solid tumors in the clinic. However, many different targets are being explored in clinical studies, of which most are focusing on classical TAAs, such as carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), EpCAM, HER2 and prostate-specific membrane antigen (PSMA). Other TAAs are also being explored (see Table 1 for an elaborate list). Most of these studies simply inject CD3-BsAbs, however, in some studies, these Abs piggyback with infused T cells as “bispecific-armed T cells”. Furthermore, this table also includes CD3-BsAb formats based on affinity-enhanced TCR-like domains that recognize peptide–human leukocyte antigen (HLA) complexes (immune mobilizing monoclonal T-cell receptors against cancer (ImmTACs)) [42]. Multiple other TAAs are currently pursued in preclinical studies hoping to make their way to the clinic, including B7-H4, CD133, CD155, claudin 6 (CLDN6), cellular mesenchymal to epithelial transcription factor (C-MET), ephrin receptor A10 (EphA10), folate receptor 1 (FOLR1), HLA-A*24:survivin 2B80-88, integrin β4 (ITGB4), P-cadherin, prolactin receptor (PRLR), receptor tyrosine kinase-like orphan receptor 1 (ROR1), TNF-related apoptosis-inducing ligand receptor (TRAIL-R2), transferrin receptor (TfR) and tumor-associated calcium signal transducer 2 (Trop-2) [43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69].

Table 1. Overview of clinical studies involving CD3-BsAbs targeting solid tumors.

* Data as of 13 November 2020. Clinical studies are ordered based on the targeted tumor-associated antigen (TAA). CEA, carcinoembryonic antigen; CLDN18.2, claudin18 isoform 2; DLL3, delta-like ligand 3; EGFR, epidermal growth factor receptor, EpCAM, epithelial cell adhesion molecule; GD2, disialoganglioside; gp100, glycoprotein 100; gpA33, glycoprotein A33; GPC3, glypican 3; GUCY2C, guanylyl cyclase C; HER2, human epidermal growth factor receptor 2; HLA, human leukocyte antigen; MAGE-A4, melanoma-associated antigen 4; MSLN, mesothelin, MUC16, mucin 16; NSCLC, non-small cell lung cancer; NY-ESO1, New York esophageal squamous cell carcinoma 1; PRAME, preferentially expressed antigen in melanoma; PSCA, prostate stem cell antigen; PSMA, prostate-specific membrane antigen; SSTR2, somostatin receptor 2; STEAP1, six-transmembrane epithelial antigen of the prostate 1.

Most of these studies are currently still enrolling patients and we are only starting to get a view on CD3-BsAb therapy safety and efficacy in solid cancers. First, in three different studies, patients were treated with an i.p. infusion of catumaxomab, which resulted in frequent but manageable toxicities and increased time between paracentesis in all studies and even a significant improvement in overall survival (OS) in one study. Other clinical trials in solid tumors reported dose-limiting toxicities (DLTs) for CD3-BsAbs targeting CEA, EpCAM and HLA-A*02:01:gp100. These toxicities consisted of abnormal liver parameters, colitis, CRS, diarrhea, dyspnea, hypotension, hypoxia, respiratory failure and tachycardia. Some of these toxicities were caused by tumor lesion inflammation, however, most were reversible upon treatment discontinuation. Responses to CD3-BsAbs varied from only 1.5% partial response (PR), up to 15% PR and 46% stable disease (SD) and everything in between. Pasotuxizumab, a CD3-BsAb targeting PSMA, obtained the most impressive results with two long-term responders, of which one had marked regression of soft tissue and bone metastases. Overall, some evidence for efficacy induced by CD3-BsAbs in solid tumors has been found, however, with only a handful of long-term survivors, some partial responses and the occurrence of multiple DLTs, the development of CD3-BsAbs in solid tumors lags behind that in hematological malignancies.

References

  1. van der Neut Kolfschoten, M.; Schuurman, J.; Losen, M.; Bleeker, W.K.; Martinez-Martinez, P.; Vermeulen, E.; den Bleker, T.H.; Wiegman, L.; Vink, T.; Aarden, L.A.; et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007, 317, 1554–1557.
  2. Dahlen, E.; Veitonmaki, N.; Norlen, P. Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6, 3–17.
  3. Xu, H.; Cheng, M.; Guo, H.; Chen, Y.; Huse, M.; Cheung, N.K. Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol. Res. 2015, 3, 266–277.
  4. Wu, Z.; Cheung, N.V. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol. Ther. 2018, 182, 161–175.
  5. Fife, B.T.; Guleria, I.; Gubbels Bupp, M.; Eagar, T.N.; Tang, Q.; Bour-Jordan, H.; Yagita, H.; Azuma, M.; Sayegh, M.H.; Bluestone, J.A. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med. 2006, 203, 2737–2747.
  6. Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr. Pharm. Biotechnol. 2018, 19, 5–18.
  7. Slaney, C.Y.; Wang, P.; Darcy, P.K.; Kershaw, M.H. CARs versus BiTEs: A Comparison between T Cell-Redirection Strategies for Cancer Treatment. Cancer Discov. 2018, 8, 924–934.
  8. Sadelain, M. CD19 CAR T Cells. Cell 2017, 171, 1471.
  9. Scholler, J.; Brady, T.L.; Binder-Scholl, G.; Hwang, W.T.; Plesa, G.; Hege, K.M.; Vogel, A.N.; Kalos, M.; Riley, J.L.; Deeks, S.G.; et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 2012, 4, 132ra153.
  10. Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608.
  11. Suurs, F.V.; Lub-de Hooge, M.N.; de Vries, E.G.E.; de Groot, D.J.A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 2019, 201, 103–119.
  12. Borlak, J.; Langer, F.; Spanel, R.; Schondorfer, G.; Dittrich, C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget 2016, 7, 28059–28074.
  13. Clynes, R.A.; Desjarlais, J.R. Redirected T Cell Cytotoxicity in Cancer Therapy. Annu. Rev. Med. 2019, 70, 437–450.
  14. Przepiorka, D.; Ko, C.W.; Deisseroth, A.; Yancey, C.L.; Candau-Chacon, R.; Chiu, H.J.; Gehrke, B.J.; Gomez-Broughton, C.; Kane, R.C.; Kirshner, S.; et al. FDA Approval: Blinatumomab. Clin. Cancer Res. 2015, 21, 4035–4039.
  15. Martinelli, G.; Dombret, H.; Chevallier, P.; Ottmann, O.G.; Goekbuget, N.; Topp, M.S.; Fielding, A.K.; Sterling, L.R.; Benjamin, J.; Stein, A.S. Complete Molecular and Hematologic Response in Adult Patients with Relapsed/Refractory (R/R) Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia (ALL) Following Treatment with Blinatumomab: Results from a Phase 2 Single-Arm, Multicenter Study (ALCANTARA). Blood 2015, 126, 679.
  16. Kantarjian, H.; Stein, A.; Gokbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foa, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847.
  17. Franquiz, M.J.; Short, N.J. Blinatumomab for the Treatment of Adult B-Cell Acute Lymphoblastic Leukemia: Toward a New Era of Targeted Immunotherapy. Biologics 2020, 14, 23–34.
  18. Lau, K.M.; Saunders, I.M.; Goodman, A.M. Characterization of relapse patterns in patients with acute lymphoblastic leukemia treated with blinatumomab. J. Oncol. Pharm. Pract. 2020.
  19. Zhao, Y.; Aldoss, I.; Qu, C.; Crawford, J.C.; Gu, Z.; Allen, E.K.; Zamora, A.E.; Alexander, T.B.; Wang, J.; Goto, H.; et al. Tumor intrinsic and extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood 2020.
  20. Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.; Emadi, A.; et al. Flotetuzumab as Salvage Immunotherapy for Refractory Acute Myeloid Leukemia. Blood 2020.
  21. Hutchings, M.; Lugtenburg, P.; Mous, R.; Clausen, M.R.; Chamuleau, M.; Linton, K.; Rule, S.; Lopez, J.S.; Oliveri, R.S.; DeMarco, D.; et al. Epcoritamab (GEN3013; DuoBody-CD3×CD20) to induce complete response in patients with relapsed/refractory B-cell non-Hodgkin lymphoma (B-NHL): Complete dose escalation data and efficacy results from a phase I/II trial. J. Clin. Oncol. 2020, 38, 8009.
  22. Bannerji, R.; Allan, J.N.; Arnason, J.E.; Brown, J.R.; Advani, R.H.; Barnes, J.A.; Ansell, S.M.; O’Brien, S.M.; Chavez, J.; Duell, J.; et al. Clinical Activity of REGN1979, a Bispecific Human, Anti-CD20 x Anti-CD3 Antibody, in Patients with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (B-NHL). Blood 2019, 134, 762.
  23. Schuster, S.J.; Bartlett, N.L.; Assouline, S.; Yoon, S.-S.; Bosch, F.; Sehn, L.H.; Cheah, C.Y.; Shadman, M.; Gregory, G.P.; Ku, M.; et al. Mosunetuzumab Induces Complete Remissions in Poor Prognosis Non-Hodgkin Lymphoma Patients, Including Those Who Are Resistant to or Relapsing After Chimeric Antigen Receptor T-Cell (CAR-T) Therapies, and Is Active in Treatment through Multiple Lines. Blood 2019, 134, 6.
  24. Varghese, B.; Menon, J.; Rodriguez, L.; Haber, L.; Olson, K.; Duramad, P.; Oyejide, A.; Smith, E.; Thurston, G.; Kirshner, J. A Novel CD20xCD3 Bispecific Fully Human Antibody Induces Potent Anti-Tumor Effects Against B Cell Lymphoma in Mice. Blood 2014, 124, 4501.
  25. Teachey, D.T.; Rheingold, S.R.; Maude, S.L.; Zugmaier, G.; Barrett, D.M.; Seif, A.E.; Nichols, K.E.; Suppa, E.K.; Kalos, M.; Berg, R.A.; et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013, 121, 5154–5157.
  26. Shimabukuro-Vornhagen, A.; Godel, P.; Subklewe, M.; Stemmler, H.J.; Schlosser, H.A.; Schlaak, M.; Kochanek, M.; Boll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56.
  27. Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015, 125, 4017–4023.
  28. Strohl, W.R.; Naso, M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies 2019, 8, 41.
  29. Li, J.; Piskol, R.; Ybarra, R.; Chen, Y.J.; Li, J.; Slaga, D.; Hristopoulos, M.; Clark, R.; Modrusan, Z.; Totpal, K.; et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci. Transl. Med. 2019, 11.
  30. Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738.
  31. Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748.
  32. Iwata, Y.; Sasaki, M.; Harada, A.; Taketo, J.; Hara, T.; Akai, S.; Ishiguro, T.; Narita, A.; Kaneko, A.; Mishima, M. Daily ascending dosing in cynomolgus monkeys to mitigate cytokine release syndrome induced by ERY22, surrogate for T-cell redirecting bispecific antibody ERY974 for cancer immunotherapy. Toxicol. Appl. Pharmacol. 2019, 379, 114657.
  33. Deppisch, N.; Ruf, P.; Eissler, N.; Neff, F.; Buhmann, R.; Lindhofer, H.; Mocikat, R. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol. Cancer Ther. 2015, 14, 1877–1883.
  34. Trinklein, N.D.; Pham, D.; Schellenberger, U.; Buelow, B.; Boudreau, A.; Choudhry, P.; Clarke, S.C.; Dang, K.; Harris, K.E.; Iyer, S.; et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 2019, 11, 639–652.
  35. Leong, S.R.; Sukumaran, S.; Hristopoulos, M.; Totpal, K.; Stainton, S.; Lu, E.; Wong, A.; Tam, L.; Newman, R.; Vuillemenot, B.R.; et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 2017, 129, 609–618.
  36. Staflin, K.; Zuch de Zafra, C.L.; Schutt, L.K.; Clark, V.; Zhong, F.; Hristopoulos, M.; Clark, R.; Li, J.; Mathieu, M.; Chen, X.; et al. Target arm affinities determine preclinical efficacy and safety of anti-HER2/CD3 bispecific antibody. JCI Insight 2020, 5.
  37. Vafa, O.; Trinklein, N.D. Perspective: Designing T-Cell Engagers With Better Therapeutic Windows. Front. Oncol. 2020, 10, 446.
  38. Heiss, M.M.; Murawa, P.; Koralewski, P.; Kutarska, E.; Kolesnik, O.O.; Ivanchenko, V.V.; Dudnichenko, A.S.; Aleknaviciene, B.; Razbadauskas, A.; Gore, M.; et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int. J. Cancer 2010, 127, 2209–2221.
  39. Riesenberg, R.; Buchner, A.; Pohla, H.; Lindhofer, H. Lysis of prostate carcinoma cells by trifunctional bispecific antibodies (alpha EpCAM x alpha CD3). J. Histochem. Cytochem. 2001, 49, 911–917.
  40. Wang, L.; Hoseini, S.S.; Xu, H.; Ponomarev, V.; Cheung, N.K. Silencing Fc Domains in T cell-Engaging Bispecific Antibodies Improves T-cell Trafficking and Antitumor Potency. Cancer Immunol. Res. 2019, 7, 2013–2024.
  41. Labrijn, A.F.; Meesters, J.I.; Bunce, M.; Armstrong, A.A.; Somani, S.; Nesspor, T.C.; Chiu, M.L.; Altintas, I.; Verploegen, S.; Schuurman, J.; et al. Efficient Generation of Bispecific Murine Antibodies for Pre-Clinical Investigations in Syngeneic Rodent Models. Sci. Rep. 2017, 7, 2476.
  42. Oates, J.; Hassan, N.J.; Jakobsen, B.K. ImmTACs for targeted cancer therapy: Why, what, how, and which. Mol. Immunol. 2015, 67, 67–74.
  43. Chen, C.; Wang, Y.; Zhong, K.; Jiang, C.; Wang, L.; Yuan, Z.; Nie, C.; Xu, J.; Guo, G.; Zhou, L.; et al. Frequent B7-H3 overexpression in craniopharyngioma. Biochem. Biophys. Res. Commun. 2019, 514, 379–385.
  44. Crawford, A.; Haber, L.; Kelly, M.P.; Vazzana, K.; Canova, L.; Ram, P.; Pawashe, A.; Finney, J.; Jalal, S.; Chiu, D.; et al. A Mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci. Transl. Med. 2019, 11.
  45. Fisher, T.S.; Hooper, A.T.; Lucas, J.; Clark, T.H.; Rohner, A.K.; Peano, B.; Elliott, M.W.; Tsaparikos, K.; Wang, H.; Golas, J.; et al. A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol. Immunother. 2018, 67, 247–259.
  46. Fu, M.; He, Q.; Guo, Z.; Zhou, X.; Li, H.; Zhao, L.; Tang, H.; Zhou, X.; Zhu, H.; Shen, G.; et al. Therapeutic Bispecific T-Cell Engager Antibody Targeting the Transferrin Receptor. Front. Immunol. 2019, 10, 1396.
  47. Fu, M.P.; Guo, Z.L.; Tang, H.L.; Zhu, H.F.; Shen, G.X.; He, Y.; Lei, P. Selection for Anti-transferrin Receptor Bispecific T-cell Engager in Different Molecular Formats. Curr. Med. Sci. 2020, 40, 28–34.
  48. Hettich, M.; Lahoti, J.; Prasad, S.; Niedermann, G. Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing gamma-Irradiation. Cancer Res. 2016, 76, 4673–4683.
  49. Huang, L.; Xie, K.; Li, H.; Wang, R.; Xu, X.; Chen, K.; Gu, H.; Fang, J. Suppression of c-Met-Overexpressing Tumors by a Novel c-Met/CD3 Bispecific Antibody. Drug Des. Dev. Ther. 2020, 14, 3201–3214.
  50. Iizuka, A.; Nonomura, C.; Ashizawa, T.; Kondou, R.; Ohshima, K.; Sugino, T.; Mitsuya, K.; Hayashi, N.; Nakasu, Y.; Maruyama, K.; et al. A T-cell-engaging B7-H4/CD3-bispecific Fab-scFv Antibody Targets Human Breast Cancer. Clin. Cancer Res. 2019, 25, 2925–2934.
  51. Kamada, H.; Taki, S.; Nagano, K.; Inoue, M.; Ando, D.; Mukai, Y.; Higashisaka, K.; Yoshioka, Y.; Tsutsumi, Y.; Tsunoda, S. Generation and characterization of a bispecific diabody targeting both EPH receptor A10 and CD3. Biochem. Biophys. Res. Commun. 2015, 456, 908–912.
  52. Kurosawa, N.; Wakata, Y.; Ida, K.; Midorikawa, A.; Isobe, M. High throughput development of TCR-mimic antibody that targets survivin-2B80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci. Rep. 2019, 9, 9827.
  53. Li, H.; Huang, C.; Zhang, Z.; Feng, Y.; Wang, Z.; Tang, X.; Zhong, K.; Hu, Y.; Guo, G.; Zhou, L.; et al. MEK Inhibitor Augments Antitumor Activity of B7-H3-Redirected Bispecific Antibody. Front. Oncol. 2020, 10, 1527.
  54. Ma, J.; Shang, T.; Ma, P.; Sun, X.; Zhao, J.; Sun, X.; Zhang, M. Bispecific anti-CD3 x anti-B7-H3 antibody mediates T cell cytotoxic ability to human melanoma in vitro and in vivo. Investig. New Drugs 2019, 37, 1036–1043.
  55. Ma, W.; Ma, J.; Lei, T.; Zhao, M.; Zhang, M. Targeting immunotherapy for bladder cancer by using anti-CD3x CD155 bispecific antibody. J. Cancer 2019, 10, 5153–5161.
  56. Ma, W.; Ma, J.; Ma, P.; Lei, T.; Zhao, M.; Zhang, M. Targeting immunotherapy for bladder cancer using anti-CD3x B7-H3 bispecific antibody. Cancer Med. 2018, 7, 5167–5177.
  57. Martini, S.; Figini, M.; Croce, A.; Frigerio, B.; Pennati, M.; Gianni, A.M.; De Marco, C.; Daidone, M.G.; Argueta, C.; Landesman, Y.; et al. Selinexor Sensitizes TRAIL-R2-Positive TNBC Cells to the Activity of TRAIL-R2xCD3 Bispecific Antibody. Cells 2020, 9, 2231.
  58. Mathur, D.; Root, A.R.; Bugaj-Gaweda, B.; Bisulco, S.; Tan, X.; Fang, W.; Kearney, J.C.; Lucas, J.; Guffroy, M.; Golas, J.; et al. A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers. Clin. Cancer Res. 2020, 26, 2188–2202.
  59. Qi, J.; Hymel, D.; Nelson, C.G.; Burke, T.R., Jr.; Rader, C. Conventional and Chemically Programmed Asymmetric Bispecific Antibodies Targeting Folate Receptor 1. Front. Immunol. 2019, 10, 1994.
  60. Qi, J.; Li, X.; Peng, H.; Cook, E.M.; Dadashian, E.L.; Wiestner, A.; Park, H.; Rader, C. Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proc. Natl. Acad. Sci. USA 2018, 115, E5467–E5476.
  61. Root, A.R.; Cao, W.; Li, B.; LaPan, P.; Meade, C.; Sanford, J.; Jin, M.; O’Sullivan, C.; Cummins, E.; Lambert, M.; et al. Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer. Antibodies 2016, 5, 6.
  62. Ruan, S.; Lin, M.; Zhu, Y.; Lum, L.; Thakur, A.; Jin, R.; Shao, W.; Zhang, Y.; Hu, Y.; Huang, S.; et al. Integrin beta4-Targeted Cancer Immunotherapies Inhibit Tumor Growth and Decrease Metastasis. Cancer Res. 2020, 80, 771–783.
  63. Satta, A.; Grazia, G.; Caroli, F.; Frigerio, B.; Di Nicola, M.; Raspagliesi, F.; Mezzanzanica, D.; Zaffaroni, N.; Gianni, A.M.; Anichini, A.; et al. A Bispecific Antibody to Link a TRAIL-Based Antitumor Approach to Immunotherapy. Front. Immunol. 2019, 10, 2514.
  64. Satta, A.; Mezzanzanica, D.; Caroli, F.; Frigerio, B.; Di Nicola, M.; Kontermann, R.E.; Iacovelli, F.; Desideri, A.; Anichini, A.; Canevari, S.; et al. Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells. MAbs 2018, 10, 1084–1097.
  65. Stadler, C.R.; Bahr-Mahmud, H.; Plum, L.M.; Schmoldt, K.; Kolsch, A.C.; Tureci, O.; Sahin, U. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncoimmunology 2016, 5, e1091555.
  66. Taki, S.; Kamada, H.; Inoue, M.; Nagano, K.; Mukai, Y.; Higashisaka, K.; Yoshioka, Y.; Tsutsumi, Y.; Tsunoda, S. A Novel Bispecific Antibody against Human CD3 and Ephrin Receptor A10 for Breast Cancer Therapy. PLoS ONE 2015, 10, e0144712.
  67. Zhao, H.; Ma, J.; Lei, T.; Ma, W.; Zhang, M. The bispecific anti-CD3 x anti-CD155 antibody mediates T cell immunotherapy for human prostate cancer. Investig. New Drugs 2019, 37, 810–817.
  68. Zhao, L.; Yang, Y.; Zhou, P.; Ma, H.; Zhao, X.; He, X.; Wang, T.; Zhang, J.; Liu, Y.; Zhang, T. Targeting CD133high Colorectal Cancer Cells In Vitro and In Vivo with an Asymmetric Bispecific Antibody. J. Immunother. 2015, 38, 217–228.
  69. Zhou, Y.; Zong, H.; Han, L.; Xie, Y.; Jiang, H.; Gilly, J.; Zhang, B.; Lu, H.; Chen, J.; Sun, R.; et al. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer. J. Exp. Clin. Cancer Res. 2020, 39, 87.
More
Information
Subjects: Oncology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 659
Revisions: 3 times (View History)
Update Date: 29 Mar 2021
1000/1000
ScholarVision Creations