Sildenafil
Edit

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud’s Phenomenon (RP) is a major risk factor for the development of SSc together with presence of specific autoantiobodies. Here we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated by SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100µM H2O2), in the presence or not of sildenafil (1µM). Treatment with sildenafil significantly reduced dermal fibroblasts gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3, ERK, NF-κB and PKB/AKT dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress induced proinflammatory activation of dermal fibroblasts in vivo and ultimately aid in the prevention of tissue damage in SSc.

Systemic sclerosis Oxidative stress Inflammation PDE5 inhibitors
 

1. Introduction

Sildenafil belongs to the class of drugs inhibiting phosphodiesterase type 5 (PDE5i) commonly used to treat erectile dysfunction, Raynaud’s phenomenon, and pulmonary arterial hypertension [1]. PDE5 is a group of ubiquitously present enzymes that hydrolyze cyclic guanosine monophosphate (cGMP) to its inactive form GMP. This cyclic nucleotide plays a prominent role in the regulation of important cellular functions, and PDE5i can therefore elicit a variety of effects [2][3]. The capacity of PDE5i to inhibit cytokine release has been already observed [4][5]. In particular, sildenafil has been shown to have an immunomodulating ability in human immune cells and cardiomyocytes subjected to inflammatory stimuli [4][5]. However, to date, this potential mechanism of action has never been explored in SSc. In this study, we showed for the first time that the PDE5i sildenafil exerts an inhibitory effect on IL-6 and IL-8 gene expression and is released into the culture medium of SSc fibroblasts exposed to ROS. Numerous reports have shown that both IL-6 and IL-8 levels are elevated in culture supernatants of dermal fibroblasts and serum from patients with SSc [6][7]. Consistent with these findings, we observed that SSc fibroblasts cultured in a pro-oxidant environment showed a significant increase not only in IL-6 and IL-8 gene expression, but also their secretion in the medium. It remains to be investigated whether this could be the result of persistent exposure to pro-oxidants and/or of the reduced antioxidant capacity of these cells [8]. Interestingly, sildenafil did not show effects on IL-8 secretion in healthy fibroblasts. In a previous study, performed in patients affected by diabetic cardiomyopathy, we showed that sildenafil could counteract IL-8 release in consequence of a “cut-off” value [5]. Particularly, only patients with a circulating cytokine level above this “cut-off” were responsive to sildenafil treatment with a significant decrease of the chemokine. By contrast, patients with IL-8 below the “cut-off” value were not sensitive to this PDE5i. It is likely that the IL-8 level in healthy fibroblasts was not sufficient to reach the cut-off value, determining a different sensitivity to sildenafil.

2. History and Development

As suggested by numerous authors, IL-6 and IL-8 may have a direct effect on regulating tissue fibrosis and endothelial damage [7]. In particular, IL-6 is a pleiotropic pro-inflammatory cytokine capable of stimulating SSc fibroblasts to differentiate and proliferate, causing collagen overproduction and fibrosis [9]. IL-8 is a chemoattractant cytokine responsive to oxidative stress that unlike others has distinct target specificity for neutrophils [10]. The persistent neutrophil activation determines neutrophils accumulation in different body districts (e.g., lung), promoting the genesis of interstitial fibrosis, which is one of the most dreaded clinical manifestations of SSc [11][12]. Indeed, a neutrophil-derived gene signature has been shown to be one of the top discriminants in SSc vs. healthy control blood and a major biological marker of clinical improvement [13]. To begin to dissect the potential mechanism by which sildenafil can modulate IL-8 and IL-6 expression, we analyzed the modulation of proteins such as STAT3, ERK, NF-κB, and PKB/AKT, known to be involved in ROS-mediated signaling. Firstly, we observed a greater modulation of these molecules in SSc compared with healthy fibroblasts, supporting the already proposed notion that SSc fibroblasts may have a reduced ability to counteract the redox-balance [14][15]. Importantly, the presence of sildenafil significantly reduced the phosphorylation levels of these proteins. We believe that, despite not offering a complete explanation, these initial observations do inform and warrant future studies aimed to define the molecular mechanisms underlying this novel biological effect of sildenafil. In this sense, it would be worth exploring the extent to which this effect is directly mediated by cyclic nucleotide hydrolysis inhibition or by independently elevating levels of cAMP and cGMP or modulating ion channels in tissue fibroblasts [16]. In conclusion, we believe that our study, although in vitro and on a limited set of samples, has a strong potential impact. Sildenafil is one of the commonly used drugs in the management of Raynaud’s phenomenon, and given the epidemiological observations strongly indicating that patients with Raynaud’s phenomenon and ANA are at high risk of developing SSc, the dissection of the mechanisms underlying the PDE5i-induced modulation of proinflammatory and profibrotic cytokines following ROS may pave the way to extending the scope of treatment with sildenafil in patients at risk of developing SSc from simple management of Raynaud’s phenomenon to a pre-disease-modifying agent.

References

  1. Phatak, S.; Ajmani, S.; Agarwal, V.; Misra, D.P. Phosphodiesterase-5 inhibitors: Raynaud’s and beyond. Indian J. Rheumatol. 2017, 12, 227–231.
  2. Jeon, Y.H.; Heo, Y.S.; Kim, C.M.; Hyun, Y.L.; Lee, T.G.; Ro, S.; Cho, J.M. Phosphodiesterase: Overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol. Life Sci. 2005, 62, 1198–1220.
  3. Higuchi, T.; Kawaguchi, Y.; Takagi, K.; Tochimoto, A.; Ota, Y.; Katsumata, Y.; Ichida, H.; Hanaoka, M.; Kawasumi, H.; Tochihara, M. Sildenafil attenuates the fibrotic phenotype of skin fibroblasts in patients with systemic sclerosis. Clin. Immunol. 2015, 161, 333–338.
  4. Matsumori, A.; Ono, K.; Sato, Y.; Shioi, T.; Nose, Y.; Sasayama, S. Differential modulation of cytokine production by drugs: Implications for therapy in heart failure. J. Mol. Cell Cardiol. 1996, 28, 2491–2499.
  5. Giannattasio, S.; Corinaldesi, C.; Colletti, M.; Di Luigi, L.; Antinozzi, C.; Filardi, T.; Scolletta, S.; Basili, S.; Lenzi, A.; Morano, S. The phosphodiesterase 5 inhibitor S decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: In vivo and in vitro evidence. J. Endocrinol. Investig. 2019, 42, 715–725.
  6. Kitaba, S.; Murota, H.; Terao, M.; Azukizawa, H.; Terabe, F.; Shima, Y.; Fujimoto, M.; Tanaka, T.; Naka, T.; Kishimoto, T. Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am. J. Pathol. 2012, 180, 165–176.
  7. Kadono, T.; Kikuchi, K.; Ihn, H.; Takehara, K.; Tamaki, K. Increased production of interleukin 6 and interleukin 8 in scleroderma fibroblasts. J. Rheumatol. 1998, 25, 296–301.
  8. Sierra-Sepúlveda, A.; Esquinca-González, A.; Benavides-Suárez, S.A.; Sordo-Lima, D.E.; Caballero-Islas, A.E.; Cabral-Castañeda, A.R.; Rodríguez-Reyna, T.S. Systemic Sclerosis Pathogenesis and Emerging Therapies, beyond the Fibroblast. BioMed Res. Int. 2019, 2019, 4569826.
  9. Muangchan, C.; Pope, J.E. Interleukin 6 in systemic sclerosis and potential implications for targeted therapy. J. Rheumatol. 2012, 39, 1120–1124.
  10. Bickel, M. The Role of interleukin-8 in Inflammation and Mechanisms of Regulation. J. Periodontol. 1993, 64, 456–460.
  11. Crestani, B.; Seta, N.; Palazzo, E.; Rolland, C.; Venembre, P.; Dehoux, M.; Boutten, A.; Soler, P.; Dombret, M.-C.; Kahn, M.-F. Interleukin-8 and Neutrophils in Systemic Sclerosis with Lung Involvement. Am. J. Respir. Crit. Care Med. 1994, 150, 1363–1367.
  12. Wang, L.; Tang, C.; Cao, H.; Li, K.; Pang, X.; Zhong, L.; Dang, W.; Tang, H.; Huang, Y.; Wei, L. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol. Ther. 2015, 16, 1220–1230.
  13. Skaug, B.; Khanna, D.; Swindell, W.R.; Hinchcliff, M.E.; Frech, T.M.; Steen, V.D.; Hant, F.N.; Gordon, J.K.; Shah, A.A.; Zhu, L. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann. Rheum. Dis. 2020, 79, 379–386.
  14. Gabrielli, A.; Svegliati, S.; Moroncini, G.; Pomponio, G.; Santillo, M.; Avvedimento, E.V. Oxidative stress and the pathogenesis of scleroderma: The Murrell’s hypothesis revisited. Semin. Immunopathol. 2008, 30, 329–337.
  15. Garret, S.M.; Frost, D.B.; Feghali-Bostwick, C. The mighty fibroblast and its utility in scleroderma research. J. Scleroderma Related Disord. 2017, 2, 100–107.
  16. Pilz, R.B.; Casteel, D.E. Regulation of gene expression by cyclic GMP. Circ. Res. 2003, 93, 1034–1046.
More
Related Content
The central nervous system (CNS) relies on precise regulation of potassium ion (K+) concentrations to maintain physiology. This regulation involves complex cellular and molecular mechanisms that work in concert to regulate both intracellular and extracellular K+ levels. Inflammation, a key physiological response, encompasses a series of cell-specific events leading to inflammasome activation. Perturbations in K+-sensitive processes can result in either chronic or uncontrolled inflammation, highlighting the intricate relationship between K+ homeostasis and inflammatory signalling. This review explores molecular targets that influence K+ homeostasis and have been implicated in inflammatory cascades, offering potential therapeutic avenues for managing inflammation. We examine both cell-specific and common molecular targets across different cell types, providing a comprehensive overview of the interplay between K+ regulation and inflammation in the CNS. By elucidating these mechanisms, we identify leads for drug discovery programmes aimed at modulating inflammatory responses. Additionally, we highlight potential consequences of targeting individual molecular entities for therapeutic purposes, emphasizing the need for a nuanced approach in developing anti-inflammatory strategies. This review considers current knowledge on K+-sensitive inflammatory processes within the CNS, offering critical insights into the molecular underpinnings of inflammation and potential therapeutic interventions. Our findings underscore the importance of considering K+ homeostasis in the development of targeted therapies for inflammatory conditions within the CNS.
Keywords: potassium; homeostasis; inflammation; neurons; glia; neurodegeneration
Vitamin D is a secosteroid hormone essential for calcium homeostasis and skeletal health, but established evidence highlights its significant roles also in muscle health and in the modulation of immune response. This review aims to explore the impact of impaired vitamin D status on outcomes of muscle function and involvement in inflammatory and autoimmune rheumatic diseases damaging the skeletal muscle efficiency both with direct immune-mediated mechanisms and indirect processes such as sarcopenia. Altered serum vitamin D status is commonly observed in inflammatory and autoimmune rheumatic diseases and seems to be associated with adverse muscle health outcomes. While maintaining adequate serum vitamin D concentrations may confer muscle-protective effects, further research is needed to confirm these findings and establish optimal supplementation strategies to obtain a safe and efficient serum threshold.
Keywords: vitamin D; connective tissue diseases; myositis; autoimmune rheumatic diseases
The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug–supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. On a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Keywords: eye; retina; neo-angiogenesis; drugs; nutraceuticals
Comorbidities in patients with rheumatoid arthritis (RA) are often associated with poor health outcomes and increased mortality. Treatment decisions should consider these comorbidities due to known or suspected associations with certain drug classes. In clinical practice, it is critical to balance potential treatment benefit against the possible risks for comorbidities as well as the articular manifestations of RA. This entry summarises the current literature relating to prevalence and risk factors for the important comorbidities of cardiovascular disease, infections, lymphomas and nonmelanoma skin cancers in patients with RA. The impact on patient outcomes and the interplay between these comorbidities and the therapeutic options currently available, including tumour necrosis factor inhibitors and newer biological therapies, are also explored. As newer RA therapies are developed, and patients gain wider and earlier access to advanced therapies, in part due to the emergence of biosimilars, it is important to consider the prevention or treatment of comorbidities as part of the overall management of RA.
Keywords: rheumatoid arthritis; comorbidities; extra-articular manifestations; tumour necrosis factor; cardiovascular disease
Clinical features of Morgellons disease. A, MD patient back showing lesions covering entire surface, including areas out of patient’s reach. B, Back of patient with scratching-induced lesions showing distribution limited to patient’s reach. C, Multicolored fibers embedded in skin callus from MD Patient 2 (100x). 
Keywords: bacteria; Borreliella burgdorferi
Information
Subjects: Pathology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , ,
View Times: 760
Revisions: 2 times (View History)
Update Date: 30 Oct 2020
Video Production Service