You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 + 10335 word(s) 10335 2021-01-12 07:14:07 |
2 Roll back entry to make some changes. -9123 word(s) 1212 2021-01-19 05:19:23 | |
3 Small edit to definition -25 word(s) 1187 2021-01-19 14:20:43 | |
4 format correct Meta information modification 1187 2021-01-26 04:38:52 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Bollard, S.; Potter, S. Extracellular Vesicles in Melanoma. Encyclopedia. Available online: https://encyclopedia.pub/entry/6526 (accessed on 23 April 2025).
Bollard S, Potter S. Extracellular Vesicles in Melanoma. Encyclopedia. Available at: https://encyclopedia.pub/entry/6526. Accessed April 23, 2025.
Bollard, Stephanie, Shirley Potter. "Extracellular Vesicles in Melanoma" Encyclopedia, https://encyclopedia.pub/entry/6526 (accessed April 23, 2025).
Bollard, S., & Potter, S. (2021, January 18). Extracellular Vesicles in Melanoma. In Encyclopedia. https://encyclopedia.pub/entry/6526
Bollard, Stephanie and Shirley Potter. "Extracellular Vesicles in Melanoma." Encyclopedia. Web. 18 January, 2021.
Extracellular Vesicles in Melanoma
Edit

Malignant melanoma, one of the most aggressive human malignancies, is responsible for 80% of skin cancer deaths. Whilst early detection of disease progression or metastasis can improve patient survival, this remains a challenge due to the lack of reliable biomarkers. Importantly, these clinical challenges are not unique to humans, as melanoma affects many other species, including companion animals, such as the dog and horse. Extracellular vesicles (EVs) are tiny nanoparticles involved in cell-to-cell communication. As such, they may be valuable biomarkers in cancer and may address some clinical challenges in the management melanoma. 

melanoma extracellular vesicle

1. Introduction

 Malignant melanoma, one of the most aggressive human malignancies, is responsible for 80% of skin cancer associated deaths [1]. Current prognostic indicators for melanoma are crude, relying predominantly upon the Breslow thickness, or depth of the tumour. However, thin melanomas, which should carry a favourable prognosis, still account for 22-29% of melanoma-related deaths [2][3]. This highlights the lack of a clear method of stratifying risk in melanoma. Whilst the early detection of disease progression or metastasis can improve patient survival [4], it remains a challenge due to the lack of reliable biomarkers. Notably, these clinical challenges are not restricted to humans, as melanoma affects many other species [5], including companion animals, such as the dog and horse. Spontaneously occurring canine dermal and oral malignant melanoma, show striking similarities with human melanomas and represent a valuable translational animal model [5][6][7].

Extracellular vesicles (EVs) are small nanoparticles released by almost all cells examined to date. They harbour a variety of macromolecules such as proteins, lipids, metabolites, DNA, RNA and microRNAs. They are involved in cell-to-cell communication and play a role in regulating physiological processes such as angiogenesis, coagulation, inflammation and immune responses [8]. They are classified based upon their size, biogenesis pathway, cell of origin and function. Importantly, EVs play a significant role in disease and are of particular interest in cancer. Their cargo can drive several specialised functions, including those implicated in the control of tumour proliferation, epithelial-mesenchymal transition (EMT), immune-evasion, and pre-metastatic niche formation in many cancers [9]. In melanoma specifically, it has been demonstrated that EVs play a role in tumour progression [10][11][12][13], and the ability to increase tumour cell migratory capability [14].

2. EVs as Biomarkers in Melanoma

Biomarkers are defined as a ‘characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention’ [15]. However, for a biomarker to be a viable clinical tool, it must meet a number of criteria. Any cancer biomarker must be reflective of the tumour itself, with a high sensitivity and specificity, whilst its utility should be convenient, minimally invasive, reproducible and low cost [16]. Extracellular Vesicle contents reflect the cell from which they have been derived [17], reproducing both the transcriptome and proteome of the cell of origin [18]. They have been described as a potential ‘liquid biopsy[19], due to their detection in multiple different body fluids, in several species, including in plasma, serum, urine, bronchoalveolar lavage, seroma and milk [20][21][22][23][24][25]. This allows convenient and minimally invasive acquisition. In cancer, EVs are of specific interest as they are ubiquitous throughout the body, and can be viewed as a physiological or pathological bio-print. They can offer a ‘snapshot’ insight into the tumour and metastatic landscape at any given moment. EVs are thought to protect their contents, such as genetic material, from degradation, improving the detection of clinically-relevant mutations[26].

In the setting of human melanoma, EVs are intimately involved in regulating the antitumour immune response, angiogenesis and pre-metastatic niches supportive of metastasis [27]. In order for melanoma-derived EVs to be a reliable source of biomarkers or a tool in the diagnosis of melanoma, they must first be identifiable within a chosen body fluid. As such, there have been multiple studies which have attempted to define a specific signature melanoma EV, and so allow their identification in patient serum.  Multiple protein markers, such as HSP70, PMEL and Mart-1, as well as genomic markers, such as micro-RNAs, have been suggested. Indeed, combinations of these, as well as the inclusion of normalising controls, have also been published [28].

Alterations in the EV profile may potentially alert clinicians to recurrence before it is clinically evident, thereby facilitating timely interventions and so improving patient outcomes[4]. Patients with advanced disease appear to have a higher concentration of protein per particle, both in plasma [12] and exudative seromas [23]. There is also the suggestion that cargo of EVs from melanoma cells contain distinct proteins reflecting the stage of progression and metastases. Extracellular Vesicles may also be used to assess treatment response in melanoma. The impact of the removal of the primary melanoma on the EV profile has not been thoroughly researched to date. However, there is evidence that the reduction of tumour burden, via surgical resection, is associated with a reduction in the concentration of circulating EVs in humans [29]. There have also been multiple studies investigating how EVs may play a role in monitoring the patient’s response to oncological treatment. In vitro studies have suggested that the secretion and shedding of EVs may be increased in response to chemotherapy [30], in particular of those EVs containing HSP70 [31].

3. Challenges & Conclusions

Whilst the field of EVs is developing rapidly, there are many challenges and barriers to their introduction into clinical use. Inconsistent nomenclature and wide variations in both methods of isolation and reporting standards significantly hinder comparison between studies. These issues are being addressed by the EV community, through the repeated revision of guidelines [22], and the introduction of an online database of experimental parameters EV-TRACK [32], which aims to encourage and facilitate systematic reporting on EV biology and methodology. In addition, the majority of studies performed on EVs in melanoma have been based upon homogenous cell line populations in vitro. Whilst cell lines have long been used to model melanoma molecular biology, they do not replicate the in vivo tumour microenvironment or immune landscape, and as such, they can be a poor representation of in vivo pathophysiology. Melanoma cell lines, represent a valuable tumour model in terms of gene expression similarities, but also differ from their originating tumour at a transcriptional level [33]. Furthermore, EVs isolated from these cell lines represent those from a single cell clone and do not represent variations in tumour heterogeneity. This problem has been noted by those in the field, where melanoma-specific EV signatures developed in vitro, are not replicable as reliably in vivo [23][34].

Melanoma prognostication and monitoring of treatment response remain a significant clinical challenge in both human and veterinary medicine, and despite advances in treatment, the disease still carries significant mortality. Melanoma-derived EVs have been identified in the circulation, and have been demonstrated to play a significant role in tumorigenesis and disease progression. As a result, and due to the advantages they offer over other potential biomarker sources, EVs provide an attractive option for liquid biopsy in many species. In this regard, several clinical studies have attempted to define a melanoma-specific EV signature, and have shown their relevance in monitoring progression and response to treatment. As this field advances, in conjunction with standardisation of reporting and methodology, melanoma-derived EVs will likely play a key role in the clinical management and surveillance of all melanoma patients.

References

  1. Arlo J. Miller; Martin C. Mihm; Melanoma. New England Journal of Medicine 2006, 355, 51-65, 10.1056/nejmra052166.
  2. D.C. Whiteman; Peter D. Baade; Catherine M. Olsen; More People Die from Thin Melanomas (≤1 mm) than from Thick Melanomas (>4 mm) in Queensland, Australia. Journal of Investigative Dermatology 2015, 135, 1190-1193, 10.1038/jid.2014.452.
  3. Shoshana M. Landow; Annie Gjelsvik; Martin A. Weinstock; Mortality burden and prognosis of thin melanomas overall and by subcategory of thickness, SEER registry data, 1992-2013. Journal of the American Academy of Dermatology 2017, 76, 258-263, 10.1016/j.jaad.2016.10.018.
  4. Ulrike Leiter; Petra G. Buettner; Thomas K Eigentler; Andrea Forschner; Friedegund Meier; Claus Garbe; Is detection of melanoma metastasis during surveillance in an early phase of development associated with a survival benefit?. Melanoma Research 2010, 20, 240-6, 10.1097/cmr.0b013e32833716f9.
  5. Louise Van Der Weyden; Thomas Brenn; E. Elizabeth Patton; Geoffrey A Wood; David J Adams; Spontaneously occurring melanoma in animals and their relevance to human melanoma. The Journal of Pathology 2020, 252, 4-21, 10.1002/path.5505.
  6. Anaïs Prouteau; Catherine André; Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes 2019, 10, 501, 10.3390/genes10070501.
  7. Adriana Tomoko Nishiya; Cristina De Oliveira Massoco; Claudia Ronca Felizzola; Eduardo Perlmann; Karen Batschinski; Marcello Vannucci Tedardi; Jéssica Soares Garcia; Priscila Pedra Mendonça; Tarso Felipe Teixeira; Maria L.Z. Dagli.; et al. Comparative Aspects of Canine Melanoma. Veterinary Sciences 2016, 3, 7, 10.3390/vetsci3010007.
  8. Yuana Yuana; Auguste Sturk; Rienk Nieuwland; Extracellular vesicles in physiological and pathological conditions. Blood Reviews 2013, 27, 31-39, 10.1016/j.blre.2012.12.002.
  9. Chia Yin Goh; Cathy Wyse; Matthew Ho; Ellen O’Beirne; Jane Howard; Sinéad Lindsay; Shirley M. Potter; Michaela Higgins; Amanda McCann; Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses?. Cancer Letters 2020, 473, 90-97, 10.1016/j.canlet.2019.12.046.
  10. Marco Tucci; Francesco Mannavola; Anna Passarelli; Luigia Stefania Stucci; Mauro Cives; Franco Silvestris; Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget 2018, 9, 20826-20837, 10.18632/oncotarget.24846.
  11. Susana García-Silva; Héctor Peinado; Melanosomes foster a tumour niche by activating CAFs. Nature 2016, 18, 911-913, 10.1038/ncb3404.
  12. Héctor Peinado; Maša Alečković; Simon Lavotshkin; Irina Matei; Bruno Costa-Silva; Gema Moreno-Bueno; Marta Hergueta-Redondo; Caitlin Williams; Guillermo García-Santos; Cyrus M Ghajar; et al.Ayuko Nitadori-HoshinoCaitlin E HoffmanKaren BadalBenjamin A. GarciaMargaret K. CallahanJianda YuanVilma R. MartinsJohan SkogRosandra N. KaplanMary S. BradyJedd D. WolchokPaul B. ChapmanYibin KangJacqueline F BrombergDavid Lyden Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine 2012, 18, 883-891, 10.1038/nm.2753.
  13. Joshua L. Hood; Roman Susana San; Samuel A. Wickline; Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis. Cancer Research 2011, 71, 3792-3801, 10.1158/0008-5472.can-10-4455.
  14. Ikrame Lazar; Emily Clement; Manuelle Ducoux-Petit; Laurence Denat; Vanessa Soldan; Stéphanie Dauvillier; Stéphanie Balor; Odile Burlet-Schiltz; Lionel LaRue; Catherine Muller; et al.Laurence Nieto Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell & Melanoma Research 2015, 28, 464-475, 10.1111/pcmr.12380.
  15. Biomarkers Definitions Working Group.; Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics 2001, 69, 89-95, 10.1067/mcp.2001.113989.
  16. Li Wu; Xiaogang Qu; Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews 2015, 44, 2963-2997, 10.1039/c4cs00370e.
  17. Raghu Kalluri; The biology and function of exosomes in cancer. Journal of Clinical Investigation 2016, 126, 1208-1215, 10.1172/jci81135.
  18. Stephanie N. Hurwitz; Mark A. Rider; Joseph L. Bundy; Xia Liu; Rakesh K. Singh; David G. Meckes Jr.; Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 2016, 7, 86999-87015, 10.18632/oncotarget.13569.
  19. Biting Zhou; Kailun Xu; Xi Zheng; Ting Chen; Jian Wang; Yongmao Song; Yingkuan Shao; Shu Zheng; Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy 2020, 5, 1-14, 10.1038/s41392-020-00258-9.
  20. Sergey E. Sedykh; Lada Purvinsh; Artem S. Monogarov; Evgeniya E. Burkova; Alina E. Grigor'eva; Dmitrii V. Bulgakov; Pavel S. Dmitrenok; Valentin V. Vlassov; Elena I. Ryabchikova; Georgy A. Nevinsky; et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochimie Open 2017, 4, 61-72, 10.1016/j.biopen.2017.02.004.
  21. Matias Aguilera-Rojas; Brit Badewien-Rentzsch; Johanna Plendl; Barbara Kohn; Ralf Einspanier; Exploration of serum- and cell culture-derived exosomes from dogs. BMC Veterinary Research 2018, 14, 1-9, 10.1186/s12917-018-1509-x.
  22. Clotilde Théry; Kenneth W. Witwer; Elena Aikawa; Maria Jose Alcaraz; Johnathon D Anderson; Ramaroson Andriantsitohaina; Anna Antoniou; Tanina Arab; Fabienne Archer; Georgia K Atkin-Smith; et al.D Craig AyreJean-Marie BachDaniel BachurskiHossein BaharvandLeonora BalajShawn BaldacchinoNatalie N BauerAmy A BaxterMary BebawyCarla BeckhamApolonija Bedina ZavecAbderrahim BenmoussaAnna C BerardiPaolo BergeseEwa BielskaCherie BlenkironSylwia Bobis-WozowiczEric BoilardWilfrid BoireauAntonella BongiovanniFrancesc E BorràsSteffi BoschChantal M BoulangerXandra BreakefieldAndrew M BreglioMeadhbh Á BrennanDavid R BrigstockAlain BrissonMarike Ld BroekmanJacqueline F BrombergPaulina Bryl-GóreckaShilpa BuchAmy H BuckDylan BurgerSara BusattoDominik BuschmannBenedetta BussolatiEdit I BuzásJames Bryan ByrdGiovanni CamussiDavid Rf CarterSarah CarusoLawrence W ChamleyYu-Ting ChangChihchen ChenShuai ChenLesley ChengAndrew R ChinAled ClaytonStefano P ClericiAlex CocksEmanuele CocucciRobert J CoffeyAnabela Cordeiro-Da-SilvaYvonne CouchFrank Aw CoumansBeth CoyleRossella CrescitelliMiria Ferreira CriadoCrislyn D’Souza-SchoreySaumya DasAmrita Datta ChaudhuriPaola De CandiaEliezer F De SantanaOlivier De WeverHernando A Del PortilloTanguy DemaretSarah DevilleAndrew DevittBert DhondtDolores Di VizioLothar C DieterichVincenza DoloAna Paula Dominguez RubioMassimo DominiciMauricio R DouradoTom Ap DriedonksFilipe V. DuarteHeather M DuncanRamon M EichenbergerKarin EkströmSamir El AndaloussiCeline Elie-CailleUta ErdbrüggerJuan M Falcón-PérezFarah FatimaJason E FishMiguel Flores-BellverAndrás FörsönitsAnnie Frelet-BarrandFabia FrickeGregor FuhrmannSusanne GabrielssonAna Gámez-ValeroChris GardinerKathrin GärtnerRaphael GaudinYong Song GhoBernd GiebelCaroline GilbertMario GimonaIlaria GiustiDeborah Ci GoberdhanAndré GörgensSharon M GorskiDavid W GreeningJulia Christina GrossAlice GualerziGopal N GuptaDakota GustafsonAase HandbergReka A HarasztiPaul HarrisonHargita HegyesiAn HendrixAndrew F HillFred H HochbergKarl F HoffmannBeth HolderHarry HolthoferBaharak HosseinkhaniGuoku HuYiyao HuangVeronica HuberStuart HuntAhmed Gamal-Eldin IbrahimTsuneya IkezuJameel M InalMustafa IsinAlena IvanovaHannah K JacksonSoren JacobsenSteven M JayMuthuvel JayachandranGuido JensterLanzhou JiangSuzanne M JohnsonJennifer C JonesAmbrose JongTijana Jovanovic-TalismanStephanie JungRaghu KalluriShin-Ichi KanoSukhbir KaurYumi KawamuraEvan T KellerDelaram KhamariElena KhomyakovaAnastasia KhvorovaPeter KierulfKwang Pyo KimThomas KislingerMikael KlingebornDavid J Klinke IiMiroslaw KornekMaja M KosanovićÁrpád Ferenc KovácsEva-Maria Krämer-AlbersSusanne KrasemannMirja KrauseIgor V KurochkinGina D KusumaSören KuypersSaara LaitinenScott M LangevinLucia R LanguinoJoanne LanniganCecilia LässerLouise C LaurentGregory LavieuElisa Lázaro-IbáñezSoazig Le LayMyung-Shin LeeYi Xin Fiona LeeDebora S LemosMetka LenassiAleksandra LeszczynskaIsaac Ts LiKe LiaoSten F LibregtsErzsebet LigetiRebecca LimSai Kiang LimAija LinēKaren LinnemannstönsAlicia LlorenteCatherine A LombardMagdalena J LorenowiczÁkos M LörinczJan LötvallJason LovettMichelle C LowryXavier LoyerQuan LuBarbara LukomskaTaral R LunavatSybren Ln MaasHarmeet MalhiAntonio MarcillaJacopo MarianiJavier MariscalElena S Martens-UzunovaLorena Martin-JaularM Carmen MartinezVilma Regina MartinsMathilde MathieuSuresh MathivananMarco MaugeriLynda K McGinnisMark J McVeyDavid G Meckes JrKatie L MeehanInge MertensValentina R MinciacchiAndreas MöllerMalene Møller JørgensenAizea Morales-KastresanaJess MorhayimFrançois MullierMaurizio MuracaLuca MusanteVeronika MussackDillon C MuthKathryn H MyburghTanbir NajranaMuhammad NawazIrina NazarenkoPeter NejsumChristian NeriTommaso NeriRienk NieuwlandLeonardo NimrichterJohn P NolanEsther Nm Nolte-’T HoenNicole Noren HootenLorraine O’DriscollTina O’GradyAna O’LoghlenTakahiro OchiyaMartin OlivierAlberto OrtizLuis A OrtizXabier OsteikoetxeaOle ØstergaardMatias OstrowskiJaesung ParkD. Michiel PegtelHector PeinadoFrancesca PerutMichael W PfafflDonald G PhinneyBartijn Ch PietersRyan C PinkDavid S PisetskyElke Pogge Von StrandmannIva PolakovicovaIvan Kh PoonBonita H PowellIlaria PradaLynn PulliamPeter QuesenberryAnnalisa RadeghieriRobert L RaffaiStefania RaimondoJanusz RakMarcel I RamirezGraça RaposoMorsi S RayyanNeta Regev-RudzkiFranz L RicklefsPaul D RobbinsDavid D RobertsSilvia C RodriguesEva RohdeSophie RomeKasper Ma RouschopAurelia RughettiAshley E RussellPaula SaáSusmita SahooEdison Salas-HuenuleoCatherine SánchezJulie A SaugstadMeike J SaulRaymond M SchiffelersRaphael SchneiderTine Hiorth SchøyenAaron ScottEriomina ShahajShivani SharmaOlga ShatnyevaFaezeh ShekariGanesh Vilas ShelkeAshok Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 2018, 7, 1535750, 10.1080/20013078.2018.1535750.
  23. S. Garcia-Silva; Alberto Benito-Martín; Sara Sánchez-Redondo; Alberto Hernández-Barranco; Pilar Ximénez-Embún; Laura Nogués; Marina S. Mazariegos; Kay Brinkmann; Ana Amor López; Lisa Meyer; et al.Carlos RodríguezCarmen García-MartínJasminka BoskovicRocío LetónCristina MonteroMercedes RobledoLaura SantambrogioMary Sue BradyAnna Szumera-CiećkiewiczIwona KalinowskaJohan SkogMikkel NoerholmJavier MuñozPablo L. Ortiz-RomeroYolanda RuanoJosé L. Rodríguez-PeraltoPiotr RutkowskiHéctor Peinado Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. Journal of Experimental Medicine 2019, 216, 1061-1070, 10.1084/jem.20181522.
  24. Oleg Tutanov; Ksenia Proskura; Roman Kamyshinsky; Tatiana Shtam; Yuri Tsentalovich; S. N. Tamkovich; Proteomic Profiling of Plasma and Total Blood Exosomes in Breast Cancer: A Potential Role in Tumor Progression, Diagnosis, and Prognosis. Frontiers in Oncology 2020, 10, 2173, 10.3389/fonc.2020.580891.
  25. S. N. Tamkovich; Alina Grigor'eva; Alena Eremina; Alexey Tupikin; Marcel Kabilov; Valerii Chernykh; Valentin Vlassov; Elena Ryabchikova; What information can be obtained from the tears of a patient with primary open angle glaucoma?. Clinica Chimica Acta 2019, 495, 529-537, 10.1016/j.cca.2019.05.028.
  26. Davide Zocco; Simona Bernardi; Mauro Novelli; Chiara Astrua; Paolo Fava; Natasa Zarovni; Francesco M. Carpi; Laura Bianciardi; Ottavia Malavenda; Pietro Quaglino; et al.Chiara ForoniDomenico RussoAntonio ChiesiMaria Teresa Fierro Isolation of extracellular vesicles improves the detection of mutant DNA from plasma of metastatic melanoma patients. Scientific Reports 2020, 10, 1-12, 10.1038/s41598-020-72834-6.
  27. Joshua L. Hood; Natural melanoma-derived extracellular vesicles. Seminars in Cancer Biology 2019, 59, 251-265, 10.1016/j.semcancer.2019.06.020.
  28. Li Tengda; Long Shuping; Gu Mingli; Guo Jie; Liu Yun; Zhang Weiwei; Deng Anmei; Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Research 2018, 28, 295-303, 10.1097/cmr.0000000000000450.
  29. D. De Peralta, W.M., M.Hammond, G. Boland. 44.03 Circulating Microvesicles, Exosomes, are Enriched in Melanoma and correlate with Tumor Burden. In Proceedings of Academic Surgical Congress, Jacksonville, Florida.
  30. Luciana Nogueira De Sousa Andrade; Andréia Hanada Otake; Silvia Guedes Braga Cardim; Felipe Ilelis Da Silva; Mariana Mari Ikoma Sakamoto; Tatiane Katsue Furuya; Miyuki Uno; Fátima Solange Pasini; Roger Chammas; Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy. Scientific Reports 2019, 9, 1-12, 10.1038/s41598-019-50848-z.
  31. Jessica Gobbo; Guillaume Marcion; Marine Cordonnier; Alexandre M. M. Dias; Nicolas Pernet; Arlette Hammann; Sarah Richaud; Hajare Mjahed; Nicolas Isambert; Victor Clausse; et al.Cédric RébéAurélie BertautVincent GoussotFrédéric LirussiFrançois GhiringhelliAurélie De ThonelPierre FumoleauRenaud SeigneuricCarmen Garrido Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer. JNCI Journal of the National Cancer Institute 2015, 108, djv330, 10.1093/jnci/djv330.
  32. Jan Van Deun; EV-TRACK Consortium; Pieter Mestdagh; Patrizia Agostinis; Özden Akay; Sushma Anand; Jasper Anckaert; Zoraida Andreu Martinez; Tine Baetens; Els Beghein; et al.Laurence BertierGeert BerxJanneke BoereStephanie BoukourisMichel BremerDominik BuschmannJames B ByrdClara CasertLesley ChengAnna CmochDelphine DavelooseEva De SmedtSeyma DemirsoyVictoria DepoorterBert DhondtTom A P DriedonksAleksandra DudekAbdou ElSharawyIlaria FlorisAndrew D FoersKathrin GärtnerAbhishek D GargEdward GeeurickxJan GettemansFarzaneh GhazaviMichel Bremer Bernd GiebelTom Groot KormelinkGrace HancockHetty HelsmoortelAndrew F HillVincent HyenneHina KalraDavid KimJoanna KowalSandra KraemerPetra LeidingerCarina LeonelliYaxuan LiangLien LippensShu LiuAlessandra Lo CiceroShaun MartinSuresh MathivananPrabhu MathiyalaganTámas MatusekGloria MilaniMarta Monguió-TortajadaLiselot M MusDillon C MuthAndrea NémethEsther N.M. Nolte‐‘T HoenLorraine O'driscollRoberta PalmulliDominik Buschmann Michael W PfafflBjarke Primdal-BengtsonErminia RomanoQuentin RousseauDavid Kim Yaxuan Liang Prabhu Mathiyalagan Susmita SahooNatalia SampaioMonisha SamuelSushma Anand Stephanie Boukouris Lesley Cheng Andrew F Hill Hina Kalra Suresh Mathivanan Monisha Samuel Benjamin SciclunaBieke SoenAnneleen SteelsJohannes V. SwinnenMaarit TakataloMaarit Takatalo Safia ThaminyClotilde ThéryJoeri TulkensEls Beghein Laurence Bertier Jan Gettemans Anneleen Steels Isabel Van AudenhoveSusanne Van Der GreinAlan Van GoethemMartijn J Van HerwijnenGuillaume Van NielNadine Van RoyPatrizia Agostinis Seyma Demirsoy Aleksandra Dudek Abhishek D Garg Shaun Martin Erminia Romano Alexander R Van VlietÖzden Akay Geert Berx Eva De Smedt Bieke Soen Niels VandammeSuzanne VanhauwaertGlenn VergauwenAlessandra Lo Cicero Roberta Palmulli Guillaume Van Niel Frederik VerweijAnnelynn WallaertMarca WaubenKenneth W. WitwerJanneke Boere Tom A P Driedonks Tom Groot Kormelink Esther N M Nolte-'T Hoen Susanne Van Der Grein Martijn J Van Herwijnen Marca Wauben Marijke I ZonneveldOlivier De WeverJo VandesompeleJan Van Deun Tine Baetens Clara Casert Delphine Daveloose Victoria Depoorter Bert Dhondt Edward Geeurickx Lien Lippens Quentin Rousseau Joeri Tulkens Glenn Vergauwen Olivier De Wever An Hendrix EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods 2017, 14, 228-232, 10.1038/nmeth.4185.
  33. Krista Marie Vincent; Lynne-Marie Postovit; Investigating the utility of human melanoma cell lines as tumour models. Oncotarget 2017, 8, 10498-10509, 10.18632/oncotarget.14443.
  34. Nina Koliha; Ute Heider; Tobias Ozimkowski; Martin Wiemann; Andreas Bosio; Stefan Wild; Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles. Frontiers in Immunology 2016, 7, 282, 10.3389/fimmu.2016.00282.
More
Information
Subjects: Pathology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : ,
View Times: 903
Revisions: 4 times (View History)
Update Date: 26 Jan 2021
1000/1000
Academic Video Service