Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2518 word(s) 2518 2020-12-29 03:56:27 |
2 format correct Meta information modification 2518 2021-01-07 03:43:33 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Litak, J. Cerebral Small Vessel Disease. Encyclopedia. Available online: https://encyclopedia.pub/entry/6113 (accessed on 23 April 2024).
Litak J. Cerebral Small Vessel Disease. Encyclopedia. Available at: https://encyclopedia.pub/entry/6113. Accessed April 23, 2024.
Litak, Jakub. "Cerebral Small Vessel Disease" Encyclopedia, https://encyclopedia.pub/entry/6113 (accessed April 23, 2024).
Litak, J. (2021, January 05). Cerebral Small Vessel Disease. In Encyclopedia. https://encyclopedia.pub/entry/6113
Litak, Jakub. "Cerebral Small Vessel Disease." Encyclopedia. Web. 05 January, 2021.
Cerebral Small Vessel Disease
Edit

Cerebral small vessel disease (CSVD) represents a cluster of various vascular disorders with different pathological backgrounds. The advanced vasculature net of cerebral vessels, including small arteries, capillaries, arterioles and venules, is usually affected. Processes of oxidation underlie the pathology of CSVD, promoting the degenerative status of the epithelial layer. There are several classifications of cerebral small vessel diseases; some of them include diseases such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes.

CSVD CMB cerebral microbleeds cerebral small vessel disease

1. Introduction

Cerebral small vessel disease (CSVD) represents a cluster of pathologies with a heterogeneous etiology and a pathomechanism affecting elements of the brain vascular system such as small arteries, capillaries, arterioles and venules. Histopathologic studies demonstrate reduced lumens in affected vessels and also demonstrate the thickening of walls, which impedes perfusion and transmural gas transfer [1]. The disease accounts for 20–30% of cases of ischemic stroke [2][3] and cerebral hemorrhage [4][5]. Moreover, CSVD has been shown to worsen functional outcomes after supra [6] and infratentorial [7] ischemic stroke because it disrupts the reorganization of brain networks that is essential for post-stroke recovery. Certain fluid biomarkers have been identified to correlate with CSVD. Some studies present elevated levels of Low Molecular Weight Neurofilament Protein (NF-L), tissue inhibitor of metalloproteinase-1, metalloproteinase-9 and metalloproteinase-2 in CSVD patients [8]. Imaging examination has revealed a direct relationship between Alzheimer’s Disease occurrence and certain identified cerebral vascular diseases, principally CSVD.

CSVD can be classified according to varied pathological, radiologic and clinical criteria. Most commonly, two types are identified: amyloid and non-amyloid related. CSVD has been recognized as a dynamic condition of the whole brain and as having a diffuse nature, and systems for the visual scoring of MRI images have been introduced to assess the total load of the disease [9][10]. The neuroimaging features are white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), lacunae, subcortical infarcts, microbleeds and brain atrophy. Some researchers include individual disease entities in this group, such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes.

References

  1. Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701.
  2. Kwon, S.M.; Choi, K.S.; Yi, H.J.; Ko, Y.; Kim, Y.S.; Bak, K.H.; Chun, H.J.; Lee, Y.J.; Lee, J.Y. Impact of brain atrophy on 90-day functional outcome after moderate-vol- ume basal ganglia hemorrhage. Sci. Rep. 2018, 8, 4819.
  3. Zhang, A.-J.; Yu, X.-J.; Wang, M. The clinical manifestations and pathophysiology of cerebral small vessel disease. Neurosci. Bull. 2010, 26, 257–264.
  4. Ryu, W.-S.; Woo, S.-H.; Schellingerhout, D.; Jang, M.U.; Park, K.-J.; Hong, K.-S.; Jeong, S.-W.; Na, J.-Y.; Cho, K.-H.; Kim, J.-T.; et al. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain 2016, 140, 158–170.
  5. Caprio, F.Z.; Maas, M.B.; Rosenberg, N.F.; Kosteva, A.R.; Bernstein, R.A.; Alberts, M.J.; Prabhakaran, S.; Naidech, A.M. Leukoaraiosis on magnetic resonance imaging cor- relates with worse outcomes after spontaneous intracerebral hemorrhage. Stroke 2013, 44, 642–646.
  6. Onteddu, S.R.; Goddeau, R.P., Jr.; Minaeian, A.; Henninger, N. Clinical impact of leukoaraiosis burden and chronological age on neurological de cit recovery and 90-day outcome after minor ischemic stroke. J. Neurol. Sci. 2015, 359, 418–423.
  7. Förster, A.; Griebe, M.; Ottomeyer, C.; Rossmanith, C.; Gass, A.; Kern, R.; Hennerici, M.G.; Szabo, K. Cerebral Network Disruption as a Possible Mechanism for Impaired Recovery after Acute Pontine Stroke. Cerebrovasc. Dis. 2011, 31, 499–505.
  8. Wallin, A.; Kapaki, E.; Boban, M.; Engelborghs, S.; Hermann, D.M.; Huisa, B.; Jonsson, M.; Kramberger, M.G.; Lossi, L.; Malojcic, B.; et al. Biochemical markers in vascular cognitive impairment associ- ated with subcortical small vessel disease—A consensus report. BMC Neurol. 2017, 17, 102–116.
  9. Staals, J.; Makin, S.D.; Doubal, F.N.; Dennis, M.S.; Wardlaw, J.M. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014, 83, 1228–1234.
  10. Xu, X.; Hilal, S.; Collinson, S.L.; Chong, E.J.Y.; Ikram, M.K.; Venketasubramanian, N.; Chen, C.L.H. Association of magnetic resonance imaging markers of cerebro- vascular disease burden and cognition. Stroke 2015, 46, 2808–2814.
  11. Viswanathan, A.; Greenberg, S.M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 2011, 70, 871–880.
  12. Attems, J.; Jellinger, K.; Thal, D.; Van Nostrand, W. Review: Sporadic cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 2011, 37, 75–93.
  13. Shams, S.; Granberg, T.; Martola, J.; Li, X.; Shams, M.; Fereshtehnejad, S.-M.; Cavallin, L.; Aspelin, P.; Kristoffersen-Wiberg, M.; Wahlund, L.-O. Cerebrospinal fluid profiles with increasing number of cerebral microbleeds in a continuum of cognitive impairment. Br. J. Pharmacol. 2016, 36, 621–628.
  14. Martinez-Ramirez, S.; Greenberg, S.M.; Viswanathan, A. Cerebral microbleeds: Overview and implications in cognitive impairment. Alzheimer’s Res. Ther. 2014, 6, 33.
  15. Kuhn, J.; Sharman, T. Cerebral Amyloid Angiopathy. In StatPearls; Updated 1 October 2020; StatPearls Publishing: Treasure Island, FL, USA, January 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556105/ (accessed on 20 March 2020).
  16. Charidimou, A.; Gang, Q.; Werring, D.J. Sporadic cerebral amyloid angiopathy revisied: Recent insights into pathophysiology and clinical spectrum. J. Neurol. Neurosurg. Psychiatry 2012, 83, 124–137.
  17. Scharf, J.; Forsting, M.; Sartor, K. Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage. Neuroradiology 1994, 36, 504–508.
  18. Rensink, A.A.; De Waal, R.M.; Kremer, B.; Verbeek, M.M. Pathogenesis of cerebral amyloid angiopathy. Brain Res. Rev. 2003, 43, 207–223.
  19. Hofman, A.; Ott, A.; Breteler, M.M.; Bots, M.L.; Slooter, A.J.; van Harskamp, F.; van Duijn, C.N.; Van Broeckhoven, C.; Grobbee, D.E. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 1997, 349, 151–154.
  20. Pantelakis, S. [A particular type of senile angiopathy of the central nervous system: Congophilic angiopathy, topography and frequency]. Monatsschr. Psychiatr. Neurol. 1954, 128, 219–256.
  21. Keable, A.; Fenna, K.; Yuen, H.M.; Johnston, D.A.; Smyth, N.R.; Smith, C.; Salman, R.A.-S.; Samarasekera, N.; Nicoll, J.A.; Attems, J.; et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016, 1862, 1037–1046.
  22. Keage, H.A.D.; Carare, R.O.; Friedland, R.P.; Ince, P.G.; Love, S.; Nicoll, J.A.R.; Wharton, S.B.; Weller, R.O.; Brayne, C. Population studies of sporadic cerebral amyloid angiopathy and dementia: A systematic review. BMC Neurol. 2009, 9, 3.
  23. Kalaria, R.N.; Ballard, C. Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis. Assoc. Disord. 1999, 13 (Suppl. 3), S115–S123.
  24. Mendel, T.A. Sporadyczna mózgowa angiopatia amyloidowa—patofizjologia, objawy, diagnostyka i leczenie. Pol. Przegl. Neurol. 2015, 11, 163–172.
  25. Charidimou, A.; Pantoni, L.; Love, S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts. Int. J. Stroke 2016, 11, 6–18.
  26. Weimar, C.; Benemann, J.; Terborg, C.; Walter, U.; Weber, R.; Diener, H.-C.; German Stroke Study Collaboration. Recurrent Stroke after Lobar and Deep Intracerebral Hemorrhage: A Hospital-Based Cohort Study. Cerebrovasc. Dis. 2011, 32, 283–288.
  27. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 26, 757–772.
  28. Zhang, L.; Wang, K.; Lei, Y.; Li, Q.; Nice, E.C.; Huang, C. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic. Biol. Med. 2015, 89, 452–465.
  29. Kawamura, T.; Muraoka, I.; Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119.
  30. Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017, 11, 482–501.
  31. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264.
  32. Navarro-Yepes, J.; Burns, M.; Anandhan, A.; Khalimonchuk, O.; Del Razo, L.M.; Quintanilla-Vega, B.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid. Redox Signal. 2014, 21, 66–85.
  33. Kapuy, O.; Papp, D.; Vellai, T.; Bánhegyi, G.; Korcsmáros, T. Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response. Antioxidants 2018, 7, 39.
  34. Van’t Erve, T.J. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F2α. Redox Biol. 2018, 17, 284–296.
  35. Debevec, T.; Millet, G.P.; Pialoux, V. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity. Front. Physiol. 2017, 8, 84.
  36. Aikens, J.; A Dix, T. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem. 1991, 266, 15091–15098.
  37. Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicin, 3rd ed.; Oxford University Press: Oxford, UK, 1999.
  38. Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95.
  39. Kupsco, A.; Schlenk, D. Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity. Int. Rev. Cell Mol. Biol. 2015, 317, 1–66.
  40. González, J. Essential hypertension and oxidative stress: New insights. World J. Cardiol. 2014, 6, 353–566.
  41. Yao, Y.; Wang, Y.; Zhang, Y.; Liu, C. Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids Health Dis. 2017, 16, 1–10.
  42. Liu, Y.; Chen, X.; Li, J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol. Med. Rep. 2017, 15, 2457–2464.
  43. Corpas, F.J.; Sandalio, L.M.; Palma, J.M. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants 2019, 8, 37.
  44. Hsieh, H.-J.; Liu, C.-A.; Huang, B.; Tseng, A.H.; Wang, D.L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 2014, 21, 3.
  45. Grochowski, C.; Litak, J.; Kamieniak, P.; Maciejewski, R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free. Radic. Res. 2017, 52, 1–13.
  46. Beck, C.; Kruetzelmann, A.; Forkert, N.D.; Juettler, E.; Singer, O.C.; Köhrmann, M.; Kersten, J.F.; Sobesky, J.; Gerloff, C.; Fiehler, J.; et al. A simple brain atrophy measure improves the prediction of malignant middle cerebral artery infarction by acute DWI lesion volume. J. Neurol. 2014, 261, 1097–1103.
  47. Whitwell, J.L.; Jack, C.R.; Parisi, J.E.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.; Ferman, T.J.; Dickson, D.W.; Josephs, K.A. Rates of cerebral atrophy differ in different degenerative pathologies. Brain 2007, 130, 1148–1158.
  48. Muller, M.M.; Appelman, A.P.; Van Der Graaf, Y.; Vincken, K.L.; Mali, W.P.; I Geerlings, M. Brain atrophy and cognition: Interaction with cerebrovascular pathology? Neurobiol. Aging 2011, 32, 885–893.
  49. Thong, J.Y.J.; Hilal, S.; Wang, Y.; Soon, H.W.; Dong, Y.; Collinson, S.L.; Anh, T.T.; Ikram, M.K.; Wong, T.Y.; Venketasubramanian, N.; et al. Association of silent lacunar infarct with brain atrophy and cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1219–1225.
  50. Caplan, L.R. Binswanger’s disease—Revisited. Neurology 1995, 45, 626–633.
  51. Sala, S.; Agosta, F.; Pagani, E.; Copetti, M.; Comi, G.; Filippi, M. Microstructural changes and atrophy in brain white matter tracts with aging. Neurobiol. Aging 2012, 33, 488–498.e2.
  52. Nitkunan, A.; Lanfranconi, S.; Charlton, R.A.; Barrick, T.R.; Markus, H.S. Brain atrophy and cerebral small vessel disease: A prospective follow-up study. Stroke 2011, 42, 133–138.
  53. Jokinen, H.; Lipsanen, J.; Schmidt, R.; Fazekas, F.; Gouw, A.; Van Der Flier, W.M.; Barkhof, F.; Madureira, S.; Verdelho, A.; Ferro, J.M.; et al. Brain atrophy accelerates cognitive decline in cerebral small vessel disease: The LADIS study. Neurology 2012, 78, 1785–1792.
  54. Wikgren, M.; Karlsson, T.; Söderlund, H.; Nordin, A.; Roos, G.; Nilsson, L.-G.; Adolfsson, R.; Norrback, K.-F. Shorter telomere length is linked to brain atrophy and white matter hyperintensities. Age Ageing 2013, 43, 212–217.
  55. Guo, H.; Song, X.; Vandorpe, R.; Zhang, Y.; Chen, W.; Zhang, N.; Schmidt, M.; Rockwood, K. Evaluation of common structural brain changes in aging and alzheimer disease with the use of an MRI-based brain atrophy and lesion index: A comparison between T1WI and T2WI at 1.5T and 3T. Am. J. Neuroradiol. 2013, 35, 504–512.
  56. Tate, D.F.; Khedraki, R.; Neeley, E.S.; Ryser, D.K.; Bigler, E.D. Cerebral Volume Loss, Cognitive Deficit, and Neuropsychological Performance: Comparative Measures of Brain Atrophy: II. Traumatic Brain Injury. J. Int. Neuropsychol. Soc. 2011, 17, 308–316.
  57. Kassubek, J.; Landwehrmeyer, G.B.; Ecker, D.; Juengling, F.D.; Muche, R.; Schuller, S.; Weindl, A.; Peinemann, A. Global cerebral atrophy in early stages of Huntington’s disease: Quantitative MRI study. Neuroreport 2004, 15, 363–365.
  58. Aribisala, B.S.; Hernández, M.C.V.; Royle, N.A.; Morris, Z.; Maniega, S.M.; Bastin, M.E.; Deary, I.J.; Wardlaw, J.M. Brain atrophy associations with white matter lesions in the ageing brain: The Lothian Birth Cohort 1936. Eur. Radiol. 2013, 23, 1084–1092.
  59. García-Valdecasas-Campelo, E.; González-Reimers, E.; Santolaria-Fernández, F.; De La Vega-Prieto, M.J.; Milena-Abril, A.; Sánchez-Pérez, M.J.; Martínez-Riera, A.; Rodríguez-Rodríguez, E. Brain atrophy in alcoholics: Relationship with alcohol intake; liver disease; nutritional status, and inflammation. Alcohol. Alcohol. 2007, 42, 533–538.
  60. Henny, C.; A Despland, P.; Regli, F. Initial epileptic crisis after the age of 60: Etiology, clinical aspects and EEG. Schweiz. Med. Wochenschr. 1990, 120, 787–792.
  61. Anandh, K.R.; Sujatha, C.M.; Ramakrishnan, S. Atrophy analysis of corpus callosum in Alzheimer brain MR images using anisotropic diffusion filtering and level sets. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 1945–1948.
  62. Sluimer, J.D.; Vrenken, H.; Blankenstein, M.A.; Fox, N.C.; Scheltens, P.; Barkhof, F.; Van Der Flier, W.M. Whole-brain atrophy rate in Alzheimer disease: Identifying fast progressors. Neurology 2008, 70, 1836–1841.
  63. Bokde, A.L.W.; Pietrini, P.; Ibáñez, V.; Furey, M.L.; Alexander, G.E.; Graff-Radford, N.R.; Rapoport, S.I.; Schapiro, M.B.; Horwitz, B. The Effect of Brain Atrophy on Cerebral Hypometabolism in the Visual Variant of Alzheimer Disease. Arch. Neurol. 2001, 58, 480–486.
  64. Henneman, W.; Sluimer, J.D.; Barnes, J.; Van Der Flier, W.M.; Sluimer, I.C.; Fox, N.C.; Scheltens, P.; Vrenken, H.; Barkhof, F. Hippocampal atrophy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology 2009, 72, 999–1007.
  65. Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165.
  66. Pantoni, L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc. Dis. 2002, 13, 7–10.
  67. Thal, D.R.; Ghebremedhin, E.; Orantes, M.; Wiestler, O.D. Vas-cular pathology in Alzheimer disease: Correlation of cerebral amyloid angiopathy and arteriosclerosis/ lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 2003, 62, 1287–1301.
  68. Moody, D.M.; Brown, W.R.; Challa, V.R.; Reboussin, D.M.; Ghazi-Birry, H.S. Cerebral Microvascular Alterations in Aging, Leukoaraiosis, and Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 1997, 826, 103–116.
  69. Makedonov, I.; E Black, S.; MacIntosh, B.J. Cerebral small vessel disease in aging and Alzheimer’s disease: A comparative study using MRI and SPECT. Eur. J. Neurol. 2012, 20, 243–250.
  70. Brown, W.R.; Moody, D.M.; Thore, C.R.; Challa, V.R. Cere- brovascular pathology in Alzheimer’s disease and leukoaraiosis. Ann. N. Y. Acad. Sci. 2000, 903, 39–45.
  71. Smith, E.E. Cerebral amyloid angiopathy as a cause of neurodegeneration. J. Neurochem. 2018, 144, 651–658.
  72. Ylikoski, A.; Erkinjuntti, T.; Raininko, R.; Sarna, S.; Sulkava, R.; Tilvis, R. White Matter Hyperintensities on MRI in the Neurologically Nondiseased Elderly. Stroke 1995, 26, 1171–1177.
  73. Garde, E.; Mortensen, E.L.; Krabbe, K.; Rostrup, E.; Larsson, H.B. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: A longitudinal study. Lancet 2000, 356, 628–634.
  74. Diaz, J.F.; Merskey, H.; Hachinski, V.; Lee, D.H.; Boniferro, M.; Wong, C.J.; Mirsen, T.R.; Fox, H. Improved Recognition of Leukoaraiosis and Cognitive Impairment in Alzheimer’s Disease. Arch. Neurol. 1991, 48, 1022–1025.
  75. Hermosilla, C.; De Lorena, P.; Sarabia-Cobo, C.; Pérez, V.; Núñez, M.J. Apathy and Leukoaraiosis in Mild Cognitive Impairment and Alzheimer’s Disease: Multicenter Diagnostic Criteria according to the Latest Studies. Dement. Geriatr. Cogn. Disord. Extra 2014, 4, 228–235.
  76. Launer, L.J. Epidemiology of White Matter Lesions. Top. Magn. Reson. Imaging 2004, 15, 365–367.
  77. Dufouil, C.; Chalmers, J.; Coskun, O.; Besancon, V.; Bousser, M.G.; Guillon, P.; Macmahon, S.; Mazoyer, B.; Neal, B.; Woodward, M.; et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: The PROGRESS (Peri- ndopril Protection Against Recurrent Stroke Study) Magnetic Reso- nance Imaging Substudy. Circulation 2005, 112, 1644–1650.
  78. Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666.
  79. Baezner, H.; Blahak, C.; Poggesi, A.; Pantoni, L.; Inzitari, D.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Langhorne, P.; et al. Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology 2008, 70, 935–942.
  80. Wardlaw, J.M.; E Smith, E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; I Lindley, R.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838.
  81. Del Bene, A.; Makin, S.D.; Doubal, F.N.; Inzitari, D.; Wardlaw, J.M. Variation in Risk Factors for Recent Small Subcortical Infarcts With Infarct Size, Shape, and Location. Stroke 2013, 44, 3000–3006.
  82. Sudlow, C.L.; Warlow, C.P. Comparable studies of the incidence of stroke and its pathological types: Results from an international collaboration. International Stroke Incidence Collaboration. Stroke 1997, 28, 491–499.
  83. E Vermeer, S.; Longstreth, W.T.; Koudstaal, P.J. Silent brain infarcts: A systematic review. Lancet Neurol. 2007, 6, 611–619.
  84. Kase, C.S.; A Wolf, P.; Chodosh, E.H.; Zacker, H.B.; Kelly-Hayes, M.; Kannel, W.B.; D’Agostino, R.B.; Scampini, L. Prevalence of silent stroke in patients presenting with initial stroke: The Framingham Study. Stroke 1989, 20, 850–852.
  85. Rabinstein, A. Differing Risk Factor Profiles of Ischemic Stroke Subtypes: Evidence for a Distinct Lacunar Arteriopathy? Yearb. Neurol. Neurosurg. 2010, 2010, 24–25.
  86. Jerrard-Dunne, P.; Cloud, G.; Hassan, A.; Markus, H.S. Evaluating the genetic component of ischemic stroke subtypes: A family history study. Stroke 2003, 34, 1364–1369.
  87. Del Brutto, O.H.; Mera, R.M.; Gillman, J.; Ha, J.-E.; Zambrano, M. Calcifications in the carotid siphon correlate with silent cerebral small vessel disease in community-dwelling older adults: A population-based study in rural Ecuador. Geriatr. Gerontol. Int. 2015, 16, 1063–1067.
  88. Xiao, L.; Lan, W.; Sun, W.; Dai, Q.; Xiong, Y.; Li, L.; Zhou, Y.; Zheng, P.; Fan, W.; Ma, N.; et al. Chronickidney disease in patients with lacunar stroke: Association with enlarged perivascular spaces and total magnetic resonance imaging burden of cerebral small vessel disease. Stroke 2015, 46, 2081–2086.
  89. Yang, S.; Cai, J.; Lu, R.; Wu, J.; Zhang, M.; Zhou, X. Association Between Serum Cystatin C Level and Total Magnetic Resonance Imaging Burden of Cerebral Small Vessel Disease in Patients With Acute Lacunar Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 186–191.
  90. Giwa, M.O.; Williams, J.; Elderfield, K.; Jiwa, N.S.; Bridges, L.R.; Kalaria, R.N.; Markus, H.S.; Esiri, M.M.; Hainsworth, A.H. Neuropathologic evidence of endothelial changes in cerebral small vessel disease. Neurology 2012, 78, 167–174.
  91. Lawrence, E.S.; Coshall, C.; Dundas, R.; Stewart, J.; Rudd, A.G.; Howard, R.; Wolfe, C.D. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 2001, 32, 1279–1284.
  92. Chen, Y.; Chen, X.; Mok, V.C.; Lam, W.W.; Wong, K.S.; Tang, W.K. Poststroke depression in patients with small subcortical infarcts. Clin. Neurol. Neurosurg. 2009, 111, 256–260.
  93. Ross, G.W.; Petrovitch, H.; White, L.R.; Masaki, K.H.; Li, C.Y.; Curb, J.; Yano, K.; Rodriguez, B.L.; Foley, D.J.; Blanchette, P.L.; et al. Characterization of risk factors for vascular dementia: The Honolulu-Asia Aging Study. Neurology 1999, 53, 337.
  94. Barba, R.; Martinez-Espinosa, S.; Rodríguez-Garcia, E.; Pondal, M.; Vivancos, J.; Del Ser, T. Poststroke dementia: Clinical features and risk factors. Stroke 2000, 31, 1494–1501.
More
Information
Subjects: Others
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 660
Revisions: 2 times (View History)
Update Date: 07 Jan 2021
1000/1000