Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 3864 2024-03-17 12:58:40 |
2 layout & references Meta information modification 3864 2024-03-18 02:12:28 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Eliso, M.C.; Billè, B.; Cappello, T.; Maisano, M. -Omics Approaches in Studies of Polystyrene MNP Toxicity. Encyclopedia. Available online: https://encyclopedia.pub/entry/56362 (accessed on 15 April 2024).
Eliso MC, Billè B, Cappello T, Maisano M. -Omics Approaches in Studies of Polystyrene MNP Toxicity. Encyclopedia. Available at: https://encyclopedia.pub/entry/56362. Accessed April 15, 2024.
Eliso, Maria Concetta, Barbara Billè, Tiziana Cappello, Maria Maisano. "-Omics Approaches in Studies of Polystyrene MNP Toxicity" Encyclopedia, https://encyclopedia.pub/entry/56362 (accessed April 15, 2024).
Eliso, M.C., Billè, B., Cappello, T., & Maisano, M. (2024, March 17). -Omics Approaches in Studies of Polystyrene MNP Toxicity. In Encyclopedia. https://encyclopedia.pub/entry/56362
Eliso, Maria Concetta, et al. "-Omics Approaches in Studies of Polystyrene MNP Toxicity." Encyclopedia. Web. 17 March, 2024.
-Omics Approaches in Studies of Polystyrene MNP Toxicity
Edit

The investigation of the toxicity mechanism of micro- and nanoplastics (MNPs) is a topic of major concern for the scientific community. The use of transcriptomics, proteomics, and metabolomics has suggested that the main pathways affected by polystyrene (PS) MNPs are related to energy metabolism, oxidative stress, immune response, and the nervous system, both in fishes and aquatic invertebrates. 

microplastics nanoplastics polystyrene -omics approaches transcriptomics proteomics metabolomics mechanism of toxicity fish aquatic invertebrates

1. Introduction

Plastic pollution is a fast-rising environmental threat. Due to plastics’ low cost, durability, and flexibility, their use has increased worldwide, leading to an augmentation of their release into the marine environment. Most of the plastic debris found in the seas originates from land-based sources [1]. Once in the natural environment, plastic can be degraded into micro- (MPs, <5 mm) and nanoscale sizes (NPs, <1 μm) [2][3] by weathering, sunlight radiation, and biodegradation processes [4][5][6][7][8]. MPs and NPs (MNPs) can be also classified into primary and secondary based on their sources. Primary MNPs are those that enter the environment in their original small size associated with specific applications and consumer products (e.g., cosmetics, clothing fibers, drug delivery, ink for 3D printers), whilst secondary MNPs are a consequence of macro/microplastics degradation [4][9][10][11]. The formation of smaller particles leads to alterations in the physical-chemical proprieties, surface area, and size of MNPs, wherein, once the nanoscale is reached, the strength, conductivity, and reactivity will differ substantially from those of macro-/micro-sized particles [12][13][14][15]. Obviously, as the size of the plastic particle decreases, biological reactivity, on the other hand, increases. Thus, it is crucial to comprehend the burden of MNPs’ availability and their biological impact on aquatic biota [14][16].
Up to now, polystyrene (PS) ha sbeen chosen as a proxy for MNPs due to the fact that it is one of the most largely used non-biodegradable plastics worldwide and, unlike other polymers, it shows a greater stability in sea water suspension with low styrene release [17]. Several studies have been conducted to evaluate the lethal and sublethal effects of PS MNPs on aquatic biota, reporting fertility, growth, and reproduction abnormalities [18][19][20][21][22][23][24][25][26][27][28], as well as metabolism disorders, oxidative stress, and immune and nervous system dysfunction [13][29][30][31][32][33][34][35][36]. Consequently, one of the main challenges today is to understand the mechanism of the toxicity of MNPs correlated to the lethal/sublethal effects studied so far. With this aim, the aquatic ecotoxicology field can benefit significantly from using the -omics approaches, which are emerging systemic and holistic tools for the global identification of the processes and pathways involved in the normal and abnormal physiological states, that allow not only the study of the mode of action of chemicals, but also the prediction of their toxicological effects on a given biological system [37]. -Omics approaches permit the production of large-scale datasets, measuring simultaneously the changes in gene expressions, proteins, and metabolites (by application of transcriptomics, proteomics, and metabolomics, respectively) occurring at the molecular, cell, tissue, and whole-organism levels [38][39]. These approaches allow the characterization of complex signal pathways and correlation of gene/protein expression, rather than focusing on the modulation of individual genes/proteins. Among others, -omics technologies include: (i) transcriptomics, which is used to study the whole set of RNA transcripts and to identify general and specific transcript biomarkers as transcriptional consequences related to natural environmental factors or the mode of action of environmental pollutants in an organism [38][40]; (ii) proteomics, which is used to study the whole set of proteins in order to evaluate any alterations in their function and/or structure in an organism after changes in the environmental conditions [41]; and (iii) metabolomics, which is used to study the whole set of cell metabolites, and has been employed in the past several years with the purpose of unveiling the molecular and biochemical mechanisms underlying the response, sensitivity, tolerance, and adaptation of aquatic organisms to environmental challenges or pollution [42][43]. Transcriptomic studies dominated until 2016, whereas a shift towards proteomics, and mostly metabolomics, including multi-omics studies, is now apparent [44].

2. -Omics Approaches in Studies of PS MNP Toxicity

2.1. Transcriptomics

Over the past decades, transcriptomics has predominantly been applied for environmental risk assessment by evaluation of the health status of aquatic animals [45]. It determines the changes in gene expression by measuring the level of mRNA after studying the whole set of transcripts, also named the transcriptome, present in an organism. Indeed, the quantitative real-time polymerase chain reaction (qRT-PCR) is the simplest and most widely used technique to conduct a transcriptomic analysis. Although the relative expression of selected genes is easy to undertake, as the amount of the gene studied is compared to the amount of a control reference gene, qRT-PCR can quantify only a limited number of genes, with the requirement for prior knowledge of target genes. To cope with these limitations and to target thousands of single mRNAs in a single run, microarrays and RNA-sequencing (RNA-seq) have therefore been used lately. In particular, the last mentioned technique uses high-throughput sequencing methodologies to detect the presence and quantity of RNA in a biological sample with the aim of analyzing the whole cellular transcriptome. In brief, the method consists of isolating total RNAs from biological samples and then performing its reverse transcription to obtain double-stranded cDNA. After that, cDNAs are sequenced as short reads, aligned, and mapped against a known genomic reference sequence. In recent years, RNA-seq has been successfully used to assess differential responses in a variety of aquatic species since it is effectively able to analyse whole transcriptomes, generating data on more differentially expressed genes (DEGs), which, through bioinformatics, will give information about the major pathways affected following a stress condition [44]. A description of the effects of PS MNPs at the transcription level in fishes and aquatic invertebrates is reported in Table 1.
Table 1. Table summarizing the effects of PS MNPs at transcript level evaluated by transcriptomics in fishes and aquatic invertebrates.

References

  1. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771.
  2. Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environ. Pollut. 2018, 235, 1030–1034.
  3. Missawi, O.; Bousserrhine, N.; Zitouni, N.; Maisano, M.; Boughattas, I.; De Marco, G.; Cappello, T.; Belbekhouche, S.; Belbekhouche, S.; Guerrouache, M.; et al. Uptake, Accumulation and Associated Cellular Alterations of Environmental Samples of Microplastics in the Seaworm Hediste diversicolor. J. Hazard. Mater. 2021, 406, 124287.
  4. Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605.
  5. Dawson, A.L.; Kawaguchi, S.; King, C.K.; Townsend, K.A.; King, R.; Huston, W.M.; Bengtson Nash, S.M. Turning Microplastics into Nanoplastics through Digestive Fragmentation by Antarctic Krill. Nat. Commun. 2018, 9, 1001.
  6. Ekvall, M.T.; Lundqvist, M.; Kelpsiene, E.; Šileikis, E.; Gunnarsson, S.B.; Cedervall, T. Nanoplastics Formed during the Mechanical Breakdown of Daily-Use Polystyrene Products. Nanoscale Adv. 2019, 1, 1055–1061.
  7. Gigault, J.; El Hadri, H.; Reynaud, S.; Deniau, E.; Grassl, B. Asymmetrical Flow Field Flow Fractionation Methods to Characterize Submicron Particles: Application to Carbon-Based Aggregates and Nanoplastics. Anal. Bioanal. Chem. 2017, 409, 6761–6769.
  8. Lambert, S.; Wagner, M. Characterisation of Nanoplastics during the Degradation of Polystyrene. Chemosphere 2016, 145, 265–268.
  9. Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597.
  10. Paul, M.B.; Stock, V.; Cara-Carmona, J.; Lisicki, E.; Shopova, S.; Fessard, V.; Braeuning, A.; Sieg, H.; Böhmert, L. Micro- and Nanoplastics—Current State of Knowledge with the Focus on Oral Uptake and Toxicity. Nanoscale Adv. 2020, 2, 4350–4367.
  11. Gaylarde, C.C.; Baptista Neto, J.A.; Da Fonseca, E.M. Nanoplastics in Aquatic Systems—Are They More Hazardous than Microplastics? Environ. Pollut. 2021, 272, 115950.
  12. Klaine, S.J.; Koelmans, A.A.; Horne, N.; Carley, S.; Handy, R.D.; Kapustka, L.; Nowack, B.; Von Der Kammer, F. Paradigms to Assess the Environmental Impact of Manufactured Nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3–14.
  13. Mattsson, K.; Ekvall, M.T.; Hansson, L.-A.; Linse, S.; Malmendal, A.; Cedervall, T. Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environ. Sci. Technol. 2015, 49, 553–561.
  14. Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.-A. Nanoplastics in the Aquatic Environment. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 379–399. ISBN 978-0-12-813747-5.
  15. Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of Nanoplastics in the Aquatic Environment and Possible Impacts on Aquatic Organisms. Sci. Total Environ. 2024, 906, 167404.
  16. Ferreira, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Nanoplastics and Marine Organisms: What Has Been Studied? Environ. Toxicol. Pharmacol. 2019, 67, 1–7.
  17. Moore, C.J. Synthetic Polymers in the Marine Environment: A Rapidly Increasing, Long-Term Threat. Environ. Res. 2008, 108, 131–139.
  18. Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster Reproduction Is Affected by Exposure to Polystyrene Microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435.
  19. Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Technol. 2014, 48, 12302–12311.
  20. Pinsino, A.; Bergami, E.; Della Torre, C.; Vannuccini, M.L.; Addis, P.; Secci, M.; Dawson, K.A.; Matranga, V.; Corsi, I. Amino-Modified Polystyrene Nanoparticles Affect Signalling Pathways of the Sea Urchin (Paracentrotus lividus) Embryos. Nanotoxicology 2017, 11, 201–209.
  21. Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, Tissue Distribution, and Toxicity of Polystyrene Nanoparticles in Developing Zebrafish (Danio rerio). Aquat. Toxicol. Amst. Neth. 2018, 194, 185–194.
  22. Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier Function of Zebrafish Embryonic Chorions against Microplastics and Nanoplastics and Its Impact on Embryo Development. J. Hazard. Mater. 2020, 395, 122621.
  23. Eliso, M.C.; Bergami, E.; Manfra, L.; Spagnuolo, A.; Corsi, I. Toxicity of Nanoplastics during the Embryogenesis of the Ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020, 14, 1415–1431.
  24. Eliso, M.C.; Bergami, E.; Bonciani, L.; Riccio, R.; Belli, G.; Belli, M.; Corsi, I.; Spagnuolo, A. Application of Transcriptome Profiling to Inquire into the Mechanism of Nanoplastics Toxicity during Ciona robusta Embryogenesis. Environ. Pollut. 2023, 318, 120892.
  25. Balbi, T.; Camisassi, G.; Montagna, M.; Fabbri, R.; Franzellitti, S.; Carbone, C.; Dawson, K.; Canesi, L. Impact of Cationic Polystyrene Nanoparticles (PS-NH2) on Early Embryo Development of Mytilus galloprovincialis: Effects on Shell Formation. Chemosphere 2017, 186, 1–9.
  26. Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics Impaired Oyster Free Living Stages, Gametes and Embryos. Environ. Pollut. 2018, 242, 1226–1235.
  27. Li, Y.; Liu, Z.; Jiang, Q.; Ye, Y.; Zhao, Y. Effects of Nanoplastic on Cell Apoptosis and Ion Regulation in the Gills of Macrobrachium nipponense. Environ. Pollut. 2022, 300, 118989.
  28. Liu, Z.; Zhang, Y.; Zheng, Y.; Feng, Y.; Zhang, W.; Gong, S.; Lin, H.; Gao, P.; Zhang, H. Genome-Wide Identification Glutathione-S-Transferase Gene Superfamily in Daphnia pulex and Its Transcriptional Response to Nanoplastics. Int. J. Biol. Macromol. 2023, 230, 123112.
  29. Gambardella, C.; Morgana, S.; Ferrando, S.; Bramini, M.; Piazza, V.; Costa, E.; Garaventa, F.; Faimali, M. Effects of Polystyrene Microbeads in Marine Planktonic Crustaceans. Ecotoxicol. Environ. Saf. 2017, 145, 250–257.
  30. Bergami, E.; Krupinski Emerenciano, A.; González-Aravena, M.; Cárdenas, C.A.; Hernández, P.; Silva, J.R.M.C.; Corsi, I. Polystyrene Nanoparticles Affect the Innate Immune System of the Antarctic Sea Urchin Sterechinus Neumayeri. Polar Biol. 2019, 42, 743–757.
  31. Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics Induce Intestinal Inflammation, Oxidative Stress, and Disorders of Metabolome and Microbiome in Zebrafish. Sci. Total Environ. 2019, 662, 246–253.
  32. Cappello, T.; De Marco, G.; Oliveri Conti, G.; Giannetto, A.; Ferrante, M.; Mauceri, A.; Maisano, M. Time-Dependent Metabolic Disorders Induced by Short-Term Exposure to Polystyrene Microplastics in the Mediterranean Mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2021, 209, 111780.
  33. Murano, C.; Bergami, E.; Liberatori, G.; Palumbo, A.; Corsi, I. Interplay between Nanoplastics and the Immune System of the Mediterranean Sea Urchin Paracentrotus lividus. Front. Mar. Sci. 2021, 8, 647394.
  34. Murano, C.; Nonnis, S.; Scalvini, F.G.; Maffioli, E.; Corsi, I.; Tedeschi, G.; Palumbo, A. Response to Microplastic Exposure: An Exploration into the Sea Urchin Immune Cell Proteome. Environ. Pollut. 2023, 320, 121062.
  35. De Marco, G.; Conti, G.O.; Giannetto, A.; Cappello, T.; Galati, M.; Iaria, C.; Pulvirenti, E.; Capparucci, F.; Mauceri, A.; Ferrante, M.; et al. Embryotoxicity of Polystyrene Microplastics in Zebrafish Danio rerio. Environ. Res. 2022, 208, 112552.
  36. De Marco, G.; Eliso, M.C.; Conti, G.O.; Galati, M.; Billè, B.; Maisano, M.; Ferrante, M.; Cappello, T. Short-Term Exposure to Polystyrene Microplastics Hampers the Cellular Function of Gills in the Mediterranean Mussel Mytilus galloprovincialis. Aquat. Toxicol. 2023, 264, 106736.
  37. Portugal, J.; Mansilla, S.; Piña, B. Perspectives on the Use of Toxicogenomics to Assess Environmental Risk. Front. Biosci.-Landmark 2022, 27, 294.
  38. Brockmeier, E.K.; Hodges, G.; Hutchinson, T.H.; Butler, E.; Hecker, M.; Tollefsen, K.E.; Garcia-Reyero, N.; Kille, P.; Becker, D.; Chipman, K.; et al. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicol. Sci. 2017, 158, 252–262.
  39. Zhang, X.; Xia, P.; Wang, P.; Yang, J.; Baird, D.J. Omics Advances in Ecotoxicology. Environ. Sci. Technol. 2018, 52, 3842–3851.
  40. Sauer, U.G.; Deferme, L.; Gribaldo, L.; Hackermüller, J.; Tralau, T.; Van Ravenzwaay, B.; Yauk, C.; Poole, A.; Tong, W.; Gant, T.W. The Challenge of the Application of ‘omics Technologies in Chemicals Risk Assessment: Background and Outlook. Regul. Toxicol. Pharmacol. 2017, 91, S14–S26.
  41. Cui, M.; Cheng, C.; Zhang, L. High-Throughput Proteomics: A Methodological Mini-Review. Lab. Investig. 2022, 102, 1170–1181.
  42. Wu, Y.; Zeng, J.; Zhang, F.; Zhu, Z.; Qi, T.; Zheng, Z.; Lloyd-Jones, L.R.; Marioni, R.E.; Martin, N.G.; Montgomery, G.W.; et al. Integrative Analysis of Omics Summary Data Reveals Putative Mechanisms Underlying Complex Traits. Nat. Commun. 2018, 9, 918.
  43. Cappello, T. NMR-Based Metabolomics of Aquatic Organisms. eMagRes 2020, 9, 81–100.
  44. Ebner, J.N. Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology. Genes 2021, 12, 1481.
  45. Snape, J.R.; Maund, S.J.; Pickford, D.B.; Hutchinson, T.H. Ecotoxicogenomics: The Challenge of Integrating Genomics into Aquatic and Terrestrial Ecotoxicology. Aquat. Toxicol. 2004, 67, 143–154.
  46. Suman, A.; Mahapatra, A.; Gupta, P.; Ray, S.S.; Singh, R.K. Polystyrene Microplastics Modulated Bdnf Expression Triggering Neurotoxicity via Apoptotic Pathway in Zebrafish Embryos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 271, 109699.
  47. Martin-Folgar, R.; Torres-Ruiz, M.; De Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular Effects of Polystyrene Nanoplastics Toxicity in Zebrafish Embryos (Danio rerio). Chemosphere 2023, 312, 137077.
  48. Qiang, L.; Cheng, J. Exposure to Microplastics Decreases Swimming Competence in Larval Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2019, 176, 226–233.
  49. Zhao, Y.; Bao, Z.; Wan, Z.; Fu, Z.; Jin, Y. Polystyrene Microplastic Exposure Disturbs Hepatic Glycolipid Metabolism at the Physiological, Biochemical, and Transcriptomic Levels in Adult Zebrafish. Sci. Total Environ. 2020, 710, 136279.
  50. Limonta, G.; Mancia, A.; Benkhalqui, A.; Bertolucci, C.; Abelli, L.; Fossi, M.C.; Panti, C. Microplastics Induce Transcriptional Changes, Immune Response and Behavioral Alterations in Adult Zebrafish. Sci. Rep. 2019, 9, 15775.
  51. Pedersen, A.F.; Meyer, D.N.; Petriv, A.-M.V.; Soto, A.L.; Shields, J.N.; Akemann, C.; Baker, B.B.; Tsou, W.-L.; Zhang, Y.; Baker, T.R. Nanoplastics Impact the Zebrafish (Danio rerio) Transcriptome: Associated Developmental and Neurobehavioral Consequences. Environ. Pollut. Barking Essex 2020, 266, 115090.
  52. Ašmonaitė, G.; Sundh, H.; Asker, N.; Carney Almroth, B. Rainbow Trout Maintain Intestinal Transport and Barrier Functions Following Exposure to Polystyrene Microplastics. Environ. Sci. Technol. 2018, 52, 14392–14401.
  53. Lu, C.; Kania, P.W.; Buchmann, K. Particle Effects on Fish Gills: An Immunogenetic Approach for Rainbow Trout and Zebrafish. Aquaculture 2018, 484, 98–104.
  54. Zhang, Y.T.; Chen, M.; He, S.; Fang, C.; Chen, M.; Li, D.; Wu, D.; Chernick, M.; Hinton, D.E.; Bo, J.; et al. Microplastics Decrease the Toxicity of Triphenyl Phosphate (TPhP) in the Marine Medaka (Oryzias melastigma) Larvae. Sci. Total Environ. 2021, 763, 143040.
  55. Chen, J.-C.; Chen, M.-Y.; Fang, C.; Zheng, R.-H.; Jiang, Y.-L.; Zhang, Y.-S.; Wang, K.-J.; Bailey, C.; Segner, H.; Bo, J. Microplastics Negatively Impact Embryogenesis and Modulate the Immune Response of the Marine Medaka Oryzias melastigma. Mar. Pollut. Bull. 2020, 158, 111349.
  56. Varó, I.; Perini, A.; Torreblanca, A.; Garcia, Y.; Bergami, E.; Vannuccini, M.L.; Corsi, I. Time-Dependent Effects of Polystyrene Nanoparticles in Brine Shrimp Artemia franciscana at Physiological, Biochemical and Molecular Levels. Sci. Total Environ. 2019, 675, 570–580.
  57. Suman, T.Y.; Jia, P.-P.; Li, W.-G.; Junaid, M.; Xin, G.-Y.; Wang, Y.; Pei, D.-S. Acute and Chronic Effects of Polystyrene Microplastics on Brine Shrimp: First Evidence Highlighting the Molecular Mechanism through Transcriptome Analysis. J. Hazard. Mater. 2020, 400, 123220.
  58. Bergami, E.; Pugnalini, S.; Vannuccini, M.L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K.A.; Corsi, I. Long-Term Toxicity of Surface-Charged Polystyrene Nanoplastics to Marine Planktonic Species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol. Amst. Neth. 2017, 189, 159–169.
  59. De Felice, B.; Sugni, M.; Casati, L.; Parolini, M. Molecular, Biochemical and Behavioral Responses of Daphnia magna under Long-Term Exposure to Polystyrene Nanoplastics. Environ. Int. 2022, 164, 107264.
  60. Liu, Z.; Yu, P.; Cai, M.; Wu, D.; Zhang, M.; Huang, Y.; Zhao, Y. Polystyrene Nanoplastic Exposure Induces Immobilization, Reproduction, and Stress Defense in the Freshwater Cladoceran Daphnia pulex. Chemosphere 2019, 215, 74–81.
  61. Liu, Z.; Li, Y.; Pérez, E.; Jiang, Q.; Chen, Q.; Jiao, Y.; Huang, Y.; Yang, Y.; Zhao, Y. Polystyrene Nanoplastic Induces Oxidative Stress, Immune Defense, and Glycometabolism Change in Daphnia pulex: Application of Transcriptome Profiling in Risk Assessment of Nanoplastics. J. Hazard. Mater. 2021, 402, 123778.
  62. Zhang, W.; Liu, Z.; Tang, S.; Li, D.; Jiang, Q.; Zhang, T. Transcriptional Response Provides Insights into the Effect of Chronic Polystyrene Nanoplastic Exposure on Daphnia pulex. Chemosphere 2020, 238, 124563.
  63. Zhu, X.; Teng, J.; Xu, E.G.; Zhao, J.; Shan, E.; Sun, C.; Wang, Q. Toxicokinetics and Toxicodynamics of Plastic and Metallic Nanoparticles: A Comparative Study in Shrimp. Environ. Pollut. 2022, 312, 120069.
  64. Liu, L.; Zheng, H.; Luan, L.; Luo, X.; Wang, X.; Lu, H.; Li, Y.; Wen, L.; Li, F.; Zhao, J. Functionalized Polystyrene Nanoplastic-Induced Energy Homeostasis Imbalance and the Immunomodulation Dysfunction of Marine Clams (Meretrix Meretrix) at Environmentally Relevant Concentrations. Environ. Sci. Nano 2021, 8, 2030–2048.
  65. Capolupo, M.; Franzellitti, S.; Valbonesi, P.; Lanzas, C.S.; Fabbri, E. Uptake and Transcriptional Effects of Polystyrene Microplastics in Larval Stages of the Mediterranean Mussel Mytilus galloprovincialis. Environ. Pollut. 2018, 241, 1038–1047.
  66. Auguste, M.; Lasa, A.; Balbi, T.; Pallavicini, A.; Vezzulli, L.; Canesi, L. Impact of Nanoplastics on Hemolymph Immune Parameters and Microbiota Composition in Mytilus galloprovincialis. Mar. Environ. Res. 2020, 159, 105017.
  67. Gardon, T.; Morvan, L.; Huvet, A.; Quillien, V.; Soyez, C.; Le Moullac, G.; Le Luyer, J. Microplastics Induce Dose-Specific Transcriptomic Disruptions in Energy Metabolism and Immunity of the Pearl Oyster Pinctada Margaritifera. Environ. Pollut. 2020, 266, 115180.
  68. Capanni, F.; Greco, S.; Tomasi, N.; Giulianini, P.G.; Manfrin, C. Orally Administered Nano-Polystyrene Caused Vitellogenin Alteration and Oxidative Stress in the Red Swamp Crayfish (Procambarus clarkii). Sci. Total Environ. 2021, 791, 147984.
  69. Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes 2020, 8, 14.
  70. Duong, V.-A.; Park, J.-M.; Lee, H. Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. Int. J. Mol. Sci. 2020, 21, 1524.
  71. Chen, G.; Pramanik, B.N. LC-MS for Protein Characterization: Current Capabilities and Future Trends. Expert Rev. Proteom. 2008, 5, 435–444.
  72. Chen, G.; Liu, Y.; Pramanik, B.N. LC/MS Analysis of Proteins and Peptides in Drug Discovery. In HPLC for Pharmaceutical Scientists; Kazakevich, Y., LoBrutto, R., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 837–899. ISBN 978-0-471-68162-5.
  73. Chen, G.; Pramanik, B.N.; Liu, Y.; Mirza, U.A. Applications of LC/MS in Structure Identifications of Small Molecules and Proteins in Drug Discovery. J. Mass Spectrom. 2007, 42, 279–287.
  74. Chen, G.; Pramanik, B.N. Application of LC/MS to Proteomics Studies: Current Status and Future Prospects. Drug Discov. Today 2009, 14, 465–471.
  75. Gajahin Gamage, N.T.; Miyashita, R.; Takahashi, K.; Asakawa, S.; Senevirathna, J.D.M. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022, 10, 32.
  76. Gu, L.; Tian, L.; Gao, G.; Peng, S.; Zhang, J.; Wu, D.; Huang, J.; Hua, Q.; Lu, T.; Zhong, L.; et al. Inhibitory Effects of Polystyrene Microplastics on Caudal Fin Regeneration in Zebrafish Larvae. Environ. Pollut. 2020, 266, 114664.
  77. Yang, H.; Lai, H.; Huang, J.; Sun, L.; Mennigen, J.A.; Wang, Q.; Liu, Y.; Jin, Y.; Tu, W. Polystyrene Microplastics Decrease F–53B Bioaccumulation but Induce Inflammatory Stress in Larval Zebrafish. Chemosphere 2020, 255, 127040.
  78. Jeong, C.-B.; Won, E.-J.; Kang, H.-M.; Lee, M.-C.; Hwang, D.-S.; Hwang, U.-K.; Zhou, B.; Souissi, S.; Lee, S.-J.; Lee, J.-S. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-P38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environ. Sci. Technol. 2016, 50, 8849–8857.
  79. Trotter, B.; Wilde, M.V.; Brehm, J.; Dafni, E.; Aliu, A.; Arnold, G.J.; Fröhlich, T.; Laforsch, C. Long-Term Exposure of Daphnia magna to Polystyrene Microplastic (PS-MP) Leads to Alterations of the Proteome, Morphology and Life-History. Sci. Total Environ. 2021, 795, 148822.
  80. Zhu, C.; Zhang, T.; Liu, X.; Gu, X.; Li, D.; Yin, J.; Jiang, Q.; Zhang, W. Changes in Life-History Traits, Antioxidant Defense, Energy Metabolism and Molecular Outcomes in the Cladoceran Daphnia pulex after Exposure to Polystyrene Microplastics. Chemosphere 2022, 308, 136066.
  81. Liu, Z.; Li, Y.; Sepúlveda, M.S.; Jiang, Q.; Jiao, Y.; Chen, Q.; Huang, Y.; Tian, J.; Zhao, Y. Development of an Adverse Outcome Pathway for Nanoplastic Toxicity in Daphnia pulex Using Proteomics. Sci. Total Environ. 2021, 766, 144249.
  82. Magni, S.; Della Torre, C.; Garrone, G.; D’Amato, A.; Parenti, C.C.; Binelli, A. First Evidence of Protein Modulation by Polystyrene Microplastics in a Freshwater Biological Model. Environ. Pollut. 2019, 250, 407–415.
  83. Duan, Y.; Xiong, D.; Wang, Y.; Zhang, Z.; Li, H.; Dong, H.; Zhang, J. Toxicological Effects of Microplastics in Litopenaeus vannamei as Indicated by an Integrated Microbiome, Proteomic and Metabolomic Approach. Sci. Total Environ. 2021, 761, 143311.
  84. Jeong, C.-B.; Kang, H.-M.; Lee, M.-C.; Kim, D.-H.; Han, J.; Hwang, D.-S.; Souissi, S.; Lee, S.-J.; Shin, K.-H.; Park, H.G.; et al. Adverse Effects of Microplastics and Oxidative Stress-Induced MAPK/Nrf2 Pathway-Mediated Defense Mechanisms in the Marine Copepod Paracyclopina nana. Sci. Rep. 2017, 7, 41323.
  85. Zhang, C.; Jeong, C.-B.; Lee, J.-S.; Wang, D.; Wang, M. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics. Environ. Sci. Technol. 2019, 53, 8426–8436.
  86. Oliver, S. Systematic Functional Analysis of the Yeast Genome. Trends Biotechnol. 1998, 16, 373–378.
  87. Lin, C.Y.; Viant, M.R.; Tjeerdema, R.S. Metabolomics: Methodologies and Applications in the Environmental Sciences. J. Pestic. Sci. 2006, 31, 245–251.
  88. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond Biomarkers and towards Mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459.
  89. Nagana Gowda, G.A.; Raftery, D. NMR-Based Metabolomics. In Cancer Metabolomics; Hu, S., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1280, pp. 19–37. ISBN 978-3-030-51651-2.
  90. Gowda, G.A.N.; Djukovic, D. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. In Mass Spectrometry in Metabolomics; Raftery, D., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1198, pp. 3–12. ISBN 978-1-4939-1257-5.
  91. Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab. 2007, 6, 348–351.
  92. De Marco, G.; Billè, B.; Brandão, F.; Galati, M.; Pereira, P.; Cappello, T.; Pacheco, M. Differential Cell Metabolic Pathways in Gills and Liver of Fish (White Seabream Diplodus sargus) Coping with Dietary Methylmercury Exposure. Toxics 2023, 11, 181.
  93. Brandão, F.; Cappello, T.; Raimundo, J.; Santos, M.A.; Maisano, M.; Mauceri, A.; Pacheco, M.; Pereira, P. Unravelling the Mechanisms of Mercury Hepatotoxicity in Wild Fish (Liza aurata) through a Triad Approach: Bioaccumulation, Metabolomic Profiles and Oxidative Stress. Metallomics 2015, 7, 1352–1363.
  94. Cappello, T.; Maisano, M.; Giannetto, A.; Parrino, V.; Mauceri, A.; Fasulo, S. Neurotoxicological Effects on Marine Mussel Mytilus galloprovincialis Caged at Petrochemical Contaminated Areas (Eastern Sicily, Italy): 1H NMR and Immunohistochemical Assays. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015, 169, 7–15.
  95. Cappello, T.; Brandão, F.; Guilherme, S.; Santos, M.A.; Maisano, M.; Mauceri, A.; Canário, J.; Pacheco, M.; Pereira, P. Insights into the Mechanisms Underlying Mercury-Induced Oxidative Stress in Gills of Wild Fish (Liza aurata) Combining 1 H NMR Metabolomics and Conventional Biochemical Assays. Sci. Total Environ. 2016, 548–549, 13–24.
  96. Cappello, T.; Maisano, M.; Mauceri, A.; Fasulo, S. 1 H NMR-Based Metabolomics Investigation on the Effects of Petrochemical Contamination in Posterior Adductor Muscles of Caged Mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2017, 142, 417–422.
  97. Cappello, T.; Giannetto, A.; Parrino, V.; De Marco, G.; Mauceri, A.; Maisano, M. Food Safety Using NMR-Based Metabolomics: Assessment of the Atlantic Bluefin Tuna, Thunnus thynnus, from the Mediterranean Sea. Food Chem. Toxicol. 2018, 115, 391–397.
  98. Missawi, O.; Venditti, M.; Cappello, T.; Zitouni, N.; Marco, G.D.; Boughattas, I.; Bousserrhine, N.; Belbekhouche, S.; Minucci, S.; Maisano, M.; et al. Autophagic Event and Metabolomic Disorders Unveil Cellular Toxicity of Environmental Microplastics on Marine Polychaete Hediste Diversicolor. Environ. Pollut. 2022, 302, 119106.
  99. Vignet, C.; Cappello, T.; Fu, Q.; Lajoie, K.; De Marco, G.; Clérandeau, C.; Mottaz, H.; Maisano, M.; Hollender, J.; Schirmer, K.; et al. Imidacloprid Induces Adverse Effects on Fish Early Life Stages That Are More Severe in Japanese Medaka (Oryzias latipes) than in Zebrafish (Danio rerio). Chemosphere 2019, 225, 470–478.
  100. Zitouni, N.; Cappello, T.; Missawi, O.; Boughattas, I.; De Marco, G.; Belbekhouche, S.; Mokni, M.; Alphonse, V.; Guerbej, H.; Bousserrhine, N.; et al. Metabolomic Disorders Unveil Hepatotoxicity of Environmental Microplastics in Wild Fish Serranus Scriba (Linnaeus 1758). Sci. Total Environ. 2022, 838, 155872.
  101. Xu, H.-D.; Wang, J.-S.; Li, M.-H.; Liu, Y.; Chen, T.; Jia, A.-Q. 1H NMR Based Metabolomics Approach to Study the Toxic Effects of Herbicide Butachlor on Goldfish (Carassius auratus). Aquat. Toxicol. 2015, 159, 69–80.
  102. Wan, Z.; Wang, C.; Zhou, J.; Shen, M.; Wang, X.; Fu, Z.; Jin, Y. Effects of Polystyrene Microplastics on the Composition of the Microbiome and Metabolism in Larval Zebrafish. Chemosphere 2019, 217, 646–658.
  103. Kaloyianni, M.; Bobori, D.C.; Xanthopoulou, D.; Malioufa, G.; Sampsonidis, I.; Kalogiannis, S.; Feidantsis, K.; Kastrinaki, G.; Dimitriadi, A.; Koumoundouros, G.; et al. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. Toxics 2021, 9, 289.
  104. Wang, C.; Hou, M.; Shang, K.; Wang, H.; Wang, J. Microplastics (Polystyrene) Exposure Induces Metabolic Changes in the Liver of Rare Minnow (Gobiocypris rarus). Molecules 2022, 27, 584.
  105. Pang, M.; Wang, Y.; Tang, Y.; Dai, J.; Tong, J.; Jin, G. Transcriptome Sequencing and Metabolite Analysis Reveal the Toxic Effects of Nanoplastics on Tilapia after Exposure to Polystyrene. Environ. Pollut. 2021, 277, 116860.
  106. Ding, J.; Huang, Y.; Liu, S.; Zhang, S.; Zou, H.; Wang, Z.; Zhu, W.; Geng, J. Toxicological Effects of Nano- and Micro-Polystyrene Plastics on Red Tilapia: Are Larger Plastic Particles More Harmless? J. Hazard. Mater. 2020, 396, 122693.
  107. Usman, S.; Razis, A.F.A.; Shaari, K.; Azmai, M.N.A.; Saad, M.Z.; Isa, N.M.; Nazarudin, M.F. Polystyrene Microplastics Induce Gut Microbiome and Metabolome Changes in Javanese Medaka Fish (Oryzias javanicus Bleeker, 1854). Toxicol. Rep. 2022, 9, 1369–1379.
  108. Ye, G.; Zhang, X.; Liu, X.; Liao, X.; Zhang, H.; Yan, C.; Lin, Y.; Huang, Q. Polystyrene Microplastics Induce Metabolic Disturbances in Marine Medaka (Oryzias melastigmas) Liver. Sci. Total Environ. 2021, 782, 146885.
  109. Sun, X.; Wang, X.; Booth, A.M.; Zhu, L.; Sui, Q.; Chen, B.; Qu, K.; Xia, B. New Insights into the Impact of Polystyrene Micro/Nanoplastics on the Nutritional Quality of Marine Jacopever (Sebastes schlegelii). Sci. Total Environ. 2023, 903, 166560.
  110. Zhang, Y.-K.; Yang, B.-K.; Zhang, C.-N.; Xu, S.-X.; Sun, P. Effects of Polystyrene Microplastics Acute Exposure in the Liver of Swordtail Fish (Xiphophorus helleri) Revealed by LC-MS Metabolomics. Sci. Total Environ. 2022, 850, 157772.
  111. Du, Y.; Zhao, J.; Teng, J.; Ren, J.; Shan, E.; Zhu, X.; Zhang, W.; Wang, L.; Hou, C.; Wang, Q. Combined Effects of Salinity and Polystyrene Microplastics Exposure on the Pacific Oysters Crassostrea Gigas: Oxidative Stress and Energy Metabolism. Mar. Pollut. Bull. 2023, 193, 115153.
  112. Kelpsiene, E.; Cedervall, T.; Malmendal, A. Metabolomics-Based Analysis in Daphnia magna after Exposure to Low Environmental Concentrations of Polystyrene Nanoparticles. Environ. Sci. Nano 2023, 10, 1858–1866.
  113. Zeng, Y.; Deng, B.; Kang, Z.; Araujo, P.; Mjøs, S.A.; Liu, R.; Lin, J.; Yang, T.; Qu, Y. Tissue Accumulation of Polystyrene Microplastics Causes Oxidative Stress, Hepatopancreatic Injury and Metabolome Alterations in Litopenaeus vannamei. Ecotoxicol. Environ. Saf. 2023, 256, 114871.
More
Information
Subjects: Cell Biology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 60
Revisions: 2 times (View History)
Update Date: 22 Mar 2024
1000/1000