1000/1000
Hot
Most Recent
Infrared thermography is a non-destructive technique that uses infrared radiation to visualize surface temperature variations. It is a versatile tool that can be used to detect a variety of problems in buildings, including insulation deficiencies, moisture intrusion, structural compromise, and electrical faults.
IRT, an invaluable NDT&E technique, has emerged as an essential asset for building diagnostics and diverse industrial applications. Its ability to capture thermal patterns and temperature variations across surfaces provides invaluable insights into the condition of structures and systems [18][48]. IRT operates on fundamental principles like emissivity and spectral range, allowing it to visualize temperature differences indicative of issues such as compromised insulation, hidden defects, moisture intrusion, and energy inefficiencies. It comes in two primary approaches, passive and active thermography, each suited to specific inspection needs, from identifying surface-level anomalies to probing deeper into subsurface defects. In building diagnostics, IRT excels in its capacity to detect thermal anomalies and facilitate early intervention, ultimately enhancing energy efficiency and ensuring the structural integrity of buildings [49][50]. Ongoing technological advancements, including higher-resolution cameras and multi-spectral imaging, continue to broaden its diagnostic capabilities, making IRT a cornerstone in shaping more sustainable and resilient structures [51][52][53]. Furthermore, its non-invasive and non-contact nature lends itself well to condition monitoring across various industries.
Professionals can maximize its utility by aligning the specifications of infrared cameras with the unique requirements of building assessments, ensuring the precise identification of thermal anomalies, structural irregularities, and energy inefficiencies. IRT’s fundamental principles, grounded in thermal radiation physics and the conversion of emitted infrared waves into visual data, empower building inspectors and maintenance professionals with crucial insights into the condition of buildings [54][55][56]. The integration of IRT with complementary techniques, such as ultrasonic testing, enhances the precision of NDT&E examinations, allowing for a more comprehensive understanding of structural health. The article also emphasizes the significance of adhering to industry standards to ensure consistent and professional IRT inspections [57]. Real-world case studies further underscore the practical utility of IRT in building diagnostics, demonstrating its ability to identify hidden issues, prevent damage, and improve energy efficiency [58][59]. These examples highlight the value of early detection and proactive intervention, made possible through IRT, in ensuring the longevity and sustainability of buildings. Additionally, the article recognizes the need for a more detailed exploration of factors influencing delamination detection, including delamination size, depth, material composition, and measurement conditions. By addressing these factors, future research aims to enhance the accuracy and reliability of IRT-based delamination detection, contributing to advancements in building diagnostics and infrastructure assessments [18][60]. Overall, the article reinforces the pivotal role of IRT in shaping the future of building diagnostics and condition monitoring, offering insights that inform maintenance practices, optimize energy efficiency, and ensure the structural longevity of buildings [61].
In order to completely evaluate the state and thermal properties of a building, a variety of cutting-edge technologies are used in the inspection process. A thermal camera, a terrestrial laser scanner (TLS), and a visible light camera are some of these equipment types. The thermal camera is crucial in recording photos of the surface temperature of the building, which enables the identification of thermal variations inside the building. The TLS also painstakingly generates a perfect 3D point cloud that provides a precise representation of the building’s shape and spatial dimensions. The visible light camera, on the other hand, records typical visible light photos that show how the structure appears. There are numerous crucial steps in the image processing process. The three sensors first combine to obtain thorough information about the structure [62][63][64]. After that, multi-sensor image preprocessing is applied to the captured pictures to remove any distortions or noise that could have developed during data collection. The following phase is multi-sensor image matching, which involves lining up the pictures from the three sensors to make it easier for the computer to identify similar regions in each image. Finally, multi-sensor image registration is used to combine the registered pictures into a single, meaningful representation by utilizing the data from all three sensors. This innovative method produces several hybrid products, most notably the “thermal orthophoto” and the “thermal 3D model”. The visible light picture and temperature information from the thermal camera are seamlessly combined to create a thermal orthophoto. The combination makes it easier to identify sections of the building with different temperatures, which is helpful for activities like finding temperature anomalies. The thermal 3D model, on the other hand, uses information from the thermal camera to overlay temperature data onto a 3D point atmosphere, therefore mapping the building’s thermal characteristics. With the help of this depiction, it is simpler to identify any probable hot or cold regions inside the building and to comprehend the thermal features
The multi-sensor image processing system is useful for a variety of activities, including 3D modeling and mapping, building inspections, maintenance, energy audits, security, and surveillance operations, and planning for disaster response. It is a useful tool in a variety of sectors due to its adaptability and capacity to deliver complete data.