Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 705 word(s) 705 2020-12-15 08:10:42

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Chen, K. SMN2 Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/5456 (accessed on 22 July 2024).
Chen K. SMN2 Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/5456. Accessed July 22, 2024.
Chen, Karina. "SMN2 Gene" Encyclopedia, https://encyclopedia.pub/entry/5456 (accessed July 22, 2024).
Chen, K. (2020, December 24). SMN2 Gene. In Encyclopedia. https://encyclopedia.pub/entry/5456
Chen, Karina. "SMN2 Gene." Encyclopedia. Web. 24 December, 2020.
SMN2 Gene
Edit

survival of motor neuron 2, centromeric

genes

1. Normal Function

The SMN2 gene provides instructions for making the survival motor neuron (SMN) protein. The SMN protein is found throughout the body, with highest levels in the spinal cord. This protein is one of a group of proteins called the SMN complex, which is important for the maintenance of specialized nerve cells called motor neurons. These cells are located in the spinal cord and the part of the brain that is connected to the spinal cord (the brainstem). Motor neurons transmit signals from the brain and spinal cord that tell skeletal muscles to tense (contract), which allows the body to move.

Several different versions of the SMN protein are produced from the SMN2 gene, but only one version (called isoform d) is full size and functional. The other versions are smaller and quickly broken down. The full-size protein made from the SMN2 gene is identical to the protein made from a similar gene called SMN1; however, only 10 to 15 percent of all functional SMN protein is produced from the SMN2 gene (the rest is produced from the SMN1 gene). Typically, people have two copies of the SMN1 gene and one to two copies of the SMN2 gene in each cell. However, the number of copies of the SMN2 gene varies, with some people having up to eight copies. The more SMN2 gene copies a person has, the more SMN protein they produce.

In cells, the SMN complex plays an important role in processing molecules called messenger RNA (mRNA), which serve as genetic blueprints for making proteins. Messenger RNA begins as a rough draft (pre-mRNA) and goes through several processing steps to become a final, mature form. The SMN complex helps to assemble the cellular machinery needed to process pre-mRNA. The SMN complex is also important for the development of specialized outgrowths from nerve cells called dendrites and axons. Dendrites and axons are required for the transmission of impulses between neurons and from neurons to muscles.

2. Health Conditions Related to Genetic Changes

2.1. Spinal muscular atrophy

Extra copies of the SMN2 gene do not cause spinal muscular atrophy, but they modify the severity of the disorder. This condition is characterized by a loss of motor neurons that leads to weakness and wasting (atrophy) in muscles used for movement (skeletal muscles) that worsens with age. Spinal muscular atrophy has a wide range of severity. There are many types of spinal muscular atrophy that differ in age of onset and level of muscle functioning; however, there is overlap among the types. All individuals with spinal muscular atrophy have mutations in both copies of the SMN1 gene. As a result, little or no SMN protein is produced from this gene. The SMN2 gene can help replace some of the missing SMN protein. In people with spinal muscular atrophy, having multiple copies of the SMN2 gene is usually associated with less severe features of the condition that develop later in life. Affected individuals with one or two functional copies of the SMN2 gene generally have severe muscle weakness that begins at birth or in infancy. Affected individuals with four or more copies of the SMN2 gene typically have mild muscle weakness that may not become noticeable until adulthood. Other factors, many unknown, also contribute to the variable severity of spinal muscular atrophy.

Researchers suggest that a shortage of SMN protein leads to the inefficient assembly of the machinery needed to process pre-mRNA. A lack of mature mRNA and subsequently, the proteins needed for normal cell functioning, has damaging effects on motor neuron development and survival. The loss of motor neurons leads to the signs and symptoms of spinal muscular atrophy. However, it is unclear why these cells are particularly sensitive to a reduction in the amount of SMN protein. Some research findings indicate that a shortage of SMN protein impairs the formation and function of axons and dendrites, leading to the death of motor neurons. While the mechanism is not clear, it is apparent that increased SMN2 gene copy number leads to an increase in SMN protein production, which improves the function and survival of motor neurons and results in less severe disease.

3. Other Names for This Gene

  • BCD541
  • C-BCD541
  • centromeric SMN
  • SMN_HUMAN
  • SMNC

References

  1. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. 2006 Jan;78(1):63-77.
  2. Farrar MA, Kiernan MC. The Genetics of Spinal Muscular Atrophy: Progress andChallenges. Neurotherapeutics. 2015 Apr;12(2):290-302. doi:10.1007/s13311-014-0314-x. Review.
  3. Fuller HR, Gillingwater TH, Wishart TM. Commonality amid diversity:Multi-study proteomic identification of conserved disease mechanisms in spinalmuscular atrophy. Neuromuscul Disord. 2016 Sep;26(9):560-9. doi:10.1016/j.nmd.2016.06.004.
  4. Gubitz AK, Feng W, Dreyfuss G. The SMN complex. Exp Cell Res. 2004 May15;296(1):51-6. Review.
  5. Kolb SJ, Battle DJ, Dreyfuss G. Molecular functions of the SMN complex. JChild Neurol. 2007 Aug;22(8):990-4. Review.
  6. Kolb SJ, Kissel JT. Spinal Muscular Atrophy. Neurol Clin. 2015Nov;33(4):831-46. doi: 10.1016/j.ncl.2015.07.004. Review.
  7. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AH, Kissel JT. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009 Sep;85(3):408-13. doi: 10.1016/j.ajhg.2009.08.002.
  8. Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions inunaffected family members and modification of the phenotype by SMN2. Am J MedGenet A. 2004 Oct 15;130A(3):307-10.
  9. Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R.Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. 2006 May;119(4):422-8.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 399
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 24 Dec 2020
1000/1000
Video Production Service