Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 395 word(s) 395 2020-12-15 07:49:06

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Zhou, V. CRPPA Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/5289 (accessed on 30 December 2024).
Zhou V. CRPPA Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/5289. Accessed December 30, 2024.
Zhou, Vicky. "CRPPA Gene" Encyclopedia, https://encyclopedia.pub/entry/5289 (accessed December 30, 2024).
Zhou, V. (2020, December 24). CRPPA Gene. In Encyclopedia. https://encyclopedia.pub/entry/5289
Zhou, Vicky. "CRPPA Gene." Encyclopedia. Web. 24 December, 2020.
CRPPA Gene
Edit

CDP-L-ribitol pyrophosphorylase A

genes

1. Normal Function

The CRPPA gene provides instructions for making a protein that is involved in a process called glycosylation. Through this chemical process, sugar molecules are added to certain proteins. In particular, the CRPPA protein helps produce a molecule called ribitol 5-phosphate, which is an important component of the chain of sugar molecules added to a protein called alpha (α)-dystroglycan. Glycosylation is critical for the normal function of α-dystroglycan.

The α-dystroglycan protein helps anchor the structural framework inside each cell (cytoskeleton) to the lattice of proteins and other molecules outside the cell (extracellular matrix). In skeletal muscles, glycosylated α-dystroglycan helps stabilize and protect muscle fibers. In the brain, it helps direct the movement (migration) of nerve cells (neurons) during early development.

2. Health Conditions Related to Genetic Changes

2.1. Walker-Warburg Syndrome

At least 17 mutations in the CRPPA gene have been found to cause Walker-Warburg syndrome, the most severe form of a group of disorders known as congenital muscular dystrophies. Walker-Warburg syndrome causes skeletal muscle weakness and abnormalities of the brain and eyes. Because of the severity of the problems caused by this condition, affected individuals usually do not survive past early childhood.

CRPPA gene mutations involved in Walker-Warburg syndrome prevent the normal glycosylation of α-dystroglycan. As a result, α-dystroglycan can no longer effectively anchor cells to the proteins and other molecules that surround them. Without functional α-dystroglycan to stabilize the muscle fibers, they become damaged as they repeatedly contract and relax with use. The damaged fibers weaken and die over time, which affects the development, structure, and function of skeletal muscles in people with Walker-Warburg syndrome.

Defective α-dystroglycan also affects the migration of neurons during the early development of the brain. Instead of stopping when they reach their intended destinations, some neurons migrate past the surface of the brain into the fluid-filled space that surrounds it. Researchers believe that this problem with neuronal migration causes a brain abnormality called cobblestone lissencephaly, in which the surface of the brain lacks the normal folds and grooves and instead appears bumpy and irregular. Less is known about the effects of CRPPA gene mutations on other parts of the body.

2.2. Limb-Girdle Muscular Dystrophy

Limb-girdle muscular dystrophy

3. Other Names for This Gene

  • 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase-like protein
  • 4-diphosphocytidyl-2C-methyl-D-erythritol synthase homolog
  • hCG_1745121
  • isoprenoid synthase domain containing
  • isoprenoid synthase domain-containing protein
  • IspD
  • ISPD
  • ISPD_HUMAN
  • MDDGA7
  • Nip
  • notch1-induced protein

References

  1. Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, Torelli S, Brodd L,Kamynina A, Vondracek P, Roper H, Longman C, Korinthenberg R, Marrosu G, NürnbergP; UK10K Consortium, Michele DE, Plagnol V, Hurles M, Moore SA, Sewry CA,Campbell KP, Voit T, Muntoni F. ISPD gene mutations are a common cause ofcongenital and limb-girdle muscular dystrophies. Brain. 2013 Jan;136(Pt1):269-81. doi: 10.1093/brain/aws312.
  2. Gerin I, Ury B, Breloy I, Bouchet-Seraphin C, Bolsée J, Halbout M, Graff J,Vertommen D, Muccioli GG, Seta N, Cuisset JM, Dabaj I, Quijano-Roy S, Grahn A,Van Schaftingen E, Bommer GT. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun. 2016 May 19;7:11534. doi: 10.1038/ncomms11534.
  3. Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, Akasaka-ManyaK, Furukawa JI, Mizuno M, Kawakami H, Shinohara Y, Wada Y, Endo T, Toda T.Identification of a Post-translational Modification with Ribitol-Phosphate andIts Defect in Muscular Dystrophy. Cell Rep. 2016 Mar 8;14(9):2209-2223. doi:10.1016/j.celrep.2016.02.017.
  4. Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den ElzenC, van Beusekom E, Riemersma M, Pfundt R, Vissers LE, Schraders M, Altunoglu U,Buckley MF, Brunner HG, Grisart B, Zhou H, Veltman JA, Gilissen C, Mancini GM,Delrée P, Willemsen MA, Ramadža DP, Chitayat D, Bennett C, Sheridan E, PeetersEA, Tan-Sindhunata GM, de Die-Smulders CE, Devriendt K, Kayserili H, El-HashashOA, Stemple DL, Lefeber DJ, Lin YY, van Bokhoven H. Mutations in ISPD causeWalker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet.2012 May;44(5):581-5. doi: 10.1038/ng.2253.
  5. Tasca G, Moro F, Aiello C, Cassandrini D, Fiorillo C, Bertini E, Bruno C,Santorelli FM, Ricci E. Limb-girdle muscular dystrophy with α-dystroglycandeficiency and mutations in the ISPD gene. Neurology. 2013 Mar 5;80(10):963-5.doi: 10.1212/WNL.0b013e3182840cbc.
  6. Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DB, Venzke D, CirakS, Schachter H, Vajsar J, Voit T, Muntoni F, Loder AS, Dobyns WB, Winder TL,Strahl S, Mathews KD, Nelson SF, Moore SA, Campbell KP. ISPD loss-of-functionmutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome.Nat Genet. 2012 May;44(5):575-80. doi: 10.1038/ng.2252.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 456
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 24 Dec 2020
1000/1000
Video Production Service