Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 5993 2023-12-05 17:51:22 |
2 layout & references Meta information modification 5993 2023-12-06 02:10:15 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Fróis, A.; Santos, A.C.; Louro, C.S. Corrosion of Fixed Orthodontic Appliances. Encyclopedia. Available online: https://encyclopedia.pub/entry/52400 (accessed on 04 May 2024).
Fróis A, Santos AC, Louro CS. Corrosion of Fixed Orthodontic Appliances. Encyclopedia. Available at: https://encyclopedia.pub/entry/52400. Accessed May 04, 2024.
Fróis, António, Ana Cristina Santos, Cristina Santos Louro. "Corrosion of Fixed Orthodontic Appliances" Encyclopedia, https://encyclopedia.pub/entry/52400 (accessed May 04, 2024).
Fróis, A., Santos, A.C., & Louro, C.S. (2023, December 05). Corrosion of Fixed Orthodontic Appliances. In Encyclopedia. https://encyclopedia.pub/entry/52400
Fróis, António, et al. "Corrosion of Fixed Orthodontic Appliances." Encyclopedia. Web. 05 December, 2023.
Corrosion of Fixed Orthodontic Appliances
Edit

The orthodontic supply market is a prosperous billion-dollar industry, driven by an increasing demand for orthodontic appliances. The supremacy of metallic first-generation biomaterials is evident for manufacturing brackets, archwires, bands, and other components due to their well-recognized chemical inertness, spontaneous passivation, biocompatibility, and favorable mechanical properties combination. However, the oral cavity is the ultimate corrosion-promoting environment for any metallic material.

bioalloys biocompatibility corrosion intraoral aging orthodontics

1. Introduction

Orthodontics may be defined as the
branch of dentistry that is concerned with the supervision, guidance and correction of the growing and mature dentofacial structures. It includes the diagnosis, prevention, interception and treatment of all forms of malocclusion of the teeth and associated alterations in their surrounding structures”.
[1]
Malocclusions—usually referred to as “crooked” or “misaligned teeth”—are a worldwide dental problem [2][3][4][5]. Technically, a malocclusion is not a disease, but rather aesthetical and/or functional misalignments between the dental arches or teeth irregularities (beyond what is considered a normal biological variation). Still, malocclusions can cause susceptibility to trauma and periodontal diseases [2][4][6][7][8][9]. Standard treatments for dental malocclusions involve removable or fixed orthodontic appliances.
Fixed appliances are, in general, more effective than removable ones—especially for more complex situations and/or for adult patients—and incorporate brackets, archwires, tubes, and/or bands, tightened by metallic or polymeric ligatures [10][11]. During treatment, a constant load is transferred from the brackets to the teeth, by using orthodontic archwires (attached to the brackets), obtaining tooth movement while adjacent bone and tissue are remodeled [12]
A standard comprehensive orthodontic treatment may last approximately 2 years [13] and involves three sequential phases: (1st) leveling and aligning; (2nd) correction of molar relationship and space closure; and (3th) detailing and finishing [14].
In contemporary orthodontics, the market supply entails a worldwide billion-dollar industry that is expected to grow in the next few years [15]. Metallic materials are still the first choice for manufacturing fixed appliances due to their balanced set of mechanical, biological, and chemical properties [16]. Up to now, the most commonly used metallic alloys include stainless steel (SS), pure titanium (Ti) and its alloys—especially nickel–titanium (NiTi)—and cobalt–chromium (CoCr) alloys. Other metallic materials can also be found in fixed orthodontic appliances, but with a lower application range.
A clinical concern during orthodontic treatments is intraoral corrosion. Always associated with metallic ion release into the oral cavity, corrosion can be intensified by dental plaque accumulation and/or mechanical actions such as friction and fatigue stress. Several important consequences of this undesirable degradation may arise, namely enamel discoloration and demineralization, hypersensitivity, inflammatory reactions and local pain, and, in more severe cases, toxicity effects [17][18][19][20][21].
The need to modify the orthodontic alloys has been identified. Current research guidelines point in two main directions: (i) to adjust the alloys’ bulk composition combined with new and advanced manufacturing processes; or (ii) to modify their surface, while taking advantage of the excellent mechanical properties of the bulk. The composition and microstructure of the surface can be altered by using chemical or physical methods, either by treatment or coating deposition.

2. Metallic Corrosion

This chapter focuses on the main alloys used for the manufacturing of orthodontic appliances, the characteristics of the oral environment, and their effects on the corrosion behavior of metallic alloys.

2.1. Orthodontic Alloys

Metals and alloys thrive in the medical field and are more employed as biomaterials than any other material type [16]. Today, the major metallic alloys used in orthodontic applications include stainless steel (SS), pure titanium (Ti) and its alloys—especially the nickel–titanium (NiTi)—and cobalt–chromium (CoCr) alloys. Some of the main characteristics of these bioalloys, in comparison to human molar tooth enamel, are summarized in Table 1.
Stainless steels are iron (Fe)-based alloys containing at least 12% chromium (Cr) and a maximum of 1.2% carbon (C), according to the European Standard EN 10088-1 [22]. SS are outstanding materials for manufacturing brackets, bands, tubes, and ligatures [11][23][24], namely the austenitic 3xx series-AISI (American Iron and Steel Institute: 302, 303, 304L, and 316L), the precipitation hardening (PH) steels, as well as the duplex steels (SAF 2205) [10][25][26][27][28][29]. Together with Ti alloys, SS archwires are frequently used in an orthodontic treatment, especially during the 2nd and 3rd phases [30][31].
Table 1. Main characteristics of bioalloys used for manufacturing orthodontic components [26][32][33][34][35].

References

  1. Dental Board of Australia. Dental List of Recognised Specialties, Related Specialist Titles and Definitions. Available online: https://www.dentalboard.gov.au/Registration-Standards.aspx (accessed on 10 December 2022).
  2. Guo, L.; Feng, Y.; Guo, H.-G.; Liu, B.-W.; Zhang, Y. Consequences of Orthodontic Treatment in Malocclusion Patients: Clinical and Microbial Effects in Adults and Children. BMC Oral Health 2016, 16, 112.
  3. Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common Dental Diseases in Children and Malocclusion. Int. J. Oral Sci. 2018, 10, 7.
  4. Lombardo, G.; Vena, F.; Negri, P.; Pagano, S.; Barilotti, C.; Paglia, L.; Colombo, S.; Orso, M.; Cianetti, S. Worldwide Prevalence of Malocclusion in the Different Stages of Dentition: A Systematic Review and Meta-Analysis. Eur. J. Paediatr. Dent. 2020, 21, 115–122.
  5. Cenzato, N.; Nobili, A.; Maspero, C. Prevalence of Dental Malocclusions in Different Geographical Areas: Scoping Review. Dent. J. 2021, 9, 117.
  6. Redzepagic Vrazalica, L.; Ilic, Z.; Laganin, S.; Dzemidzic, V.; Tiro, A. An Epidemiological Study of Malocclusion and Occlusal Traits Related to Different Stages of Dental Development. S. Eur. J. Orthod. Dentofac. Res. 2017, 4, 9–13.
  7. Mtaya, M.; Brudvik, P.; Astrom, A.N. Prevalence of Malocclusion and Its Relationship with Socio-Demographic Factors, Dental Caries, and Oral Hygiene in 12- to 14-Year-Old Tanzanian Schoolchildren. Eur. J. Orthod. 2009, 31, 467–476.
  8. Jamilian, A.; Kiaee, B.; Sanayei, S.; Khosravi, S.; Perillo, L. Orthodontic Treatment of Malocclusion and Its Impact on Oral Health-Related Quality of Life. Open Dent. J. 2016, 10, 236–241.
  9. Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Malocclusion and Dentofacial Deformity in Contemporary Society. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 2–18. ISBN 978032308317.
  10. Abdallah, M.-N.; Lou, T.; Retrouvey, J.-M.; Suri, S. Biomaterials Used in Orthodontics: Brackets, Archwires, and Clear Aligners. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 541–579. ISBN 978-0-08-102476-8.
  11. Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary Orthodontic Appliances. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–389. ISBN 978032308317.
  12. Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Mechanical Principles in Orthodontic Force Control. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 312–346. ISBN 978032308317.
  13. Tsichlaki, A.; Chin, S.Y.; Pandis, N.; Fleming, P.S. How Long Does Treatment with Fixed Orthodontic Appliances Last? A Systematic Review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 308–318.
  14. Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. The First Stage of Comprehensive Treatment: Alignment and Leveling. In Contemporary Orthodontics; Mosby: St. Louis, MO, USA; Elsevier: Amsterdam, The Netherlands, 2012; pp. 530–555. ISBN 978032308317.
  15. Business Wire Inc. Business Wire. Available online: https://www.businesswire.com/news/home/20200728005527/en/Global-Orthodontic-Supplies-Market-Worth-4.6-Billion (accessed on 10 September 2020).
  16. Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407.
  17. Eliades, T.; Athanasiou, A.E. In Vivo Aging of Orthodontic Alloys: Implications for Corrosion Potential, Nickel Release, and Biocompatibility. Angle Orthod. 2002, 72, 222–237.
  18. Chaturvedi, T.P.; Upadhayay, S.N. An Overview of Orthodontic Material Degradation in Oral Cavity. Indian J. Dent. Res. 2010, 21, 275–284.
  19. Sifakakis, I.; Eliades, T. Adverse Reactions to Orthodontic Materials. Aust. Dent. J. 2017, 62, 20–28.
  20. Shukoor, K.M.; Shaj, F.; Shabeer, N.N.; Jayarajan, J. Nickel Allergies in Orthodontic Treatment. Int. J. Prev. Clin. Dent. Res. 2016, 3, 143–146.
  21. Agarwal, P.; Upadhyay, U.; Tandon, R.; Kumar, S. Nickel Allergy and Orthodontics. Asian J. Oral Health Allied Sci. 2011, 1, 61–63.
  22. EN 10088-1; Stainless Steels—Part 1: List of Stainless Steels. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
  23. Malik, N.; Dubey, R.; Kallury, A.; Chauksye, A.; Shrivastav, T.; Kapse, B.R. A Review of Orthodontic Archwires. J. Orofac. Res. 2015, 5, 6–11.
  24. Olszewska, A.; Hanć, A.; Barałkiewicz, D.; Rzymski, P. Metals and Metalloids Release from Orthodontic Elastomeric and Stainless Steel Ligatures: In Vitro Risk Assessment of Human Exposure. Biol. Trace Elem. Res. 2020, 196, 646–653.
  25. Brüngger, D.; Koutsoukis, T.; Al Jabbari, Y.S.; Hersberger-Zurfluh, M.; Zinelis, S.; Eliades, T. A Comparison of the Compositional, Microstructural, and Mechanical Characteristics of Ni-Free and Conventional Stainless Steel Orthodontic Wires. Materials 2019, 12, 3424.
  26. Brantley, W.; Berzins, D.; Iijima, M.; Tufekçi, E.; Cai, Z. Structure/Property Relationships in Orthodontic Alloys. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–38. ISBN 9780081003831.
  27. Wendl, B.; Wiltsche, H.; Lankmayr, E.; Winsauer, H.; Walter, A.; Muchitsch, A.; Jakse, N.; Wendl, M.; Wendl, T. Metal Release Profiles of Orthodontic Bands, Brackets, and Wires: An in Vitro Study. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2017, 78, 494–503.
  28. Arango, S.; Peláez-Vargas, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2013, 3, 1–15.
  29. Arango Santander, S.; Luna Ossa, C.M. Stainless Steel: Material Facts for the Orthodontic Practitioner. Rev. Nac. Odontol. 2015, 11.
  30. Walker, M.P.; Ries, D.; Kula, K.; Ellis, M.; Fricke, B. Mechanical Properties and Surface Characterization of Beta Titanium and Stainless Steel Orthodontic Wire Following Topical Fluoride Treatment. Angle Orthod. 2007, 77, 342–348.
  31. Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic Wires and Its Corrosion—The Specific Case of Stainless Steel and Beta-Titanium. J. Dent. Sci. 2015, 10, 1–7.
  32. Cuy, J.L.; Mann, A.B.; Livi, K.J.; Teaford, M.F.; Weihs, T.P. Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel. Arch. Oral Biol. 2002, 47, 281–291.
  33. Niinomi, M. Mechanical Properties of Biomedical Titanium Alloys. Mater. Sci. Eng. A 1998, 243, 231–236.
  34. Bauer, S.; Schmuki, P.; Von Der Mark, K.; Park, J. Progress in Materials Science Engineering Biocompatible Implant Surfaces Part I: Materials and Surfaces. Prog. Mater. Sci. 2013, 58, 261–326.
  35. Tian, K.; Darvell, B.W. Determination of the Flexural Modulus of Elasticity of Orthodontic Archwires. Dent. Mater. 2010, 26, 821–829.
  36. Jasso-Ruiz, I.; Velazquez-Enriquez, U.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Sawada, T.; Yamaguchi, R. Silver Nanoparticles in Orthodontics, a New Alternative in Bacterial Inhibition: In Vitro Study. Prog. Orthod. 2020, 21, 24.
  37. Arango-Santander, S.; Ramírez-Vega, C. Titanio: Aspectos Del Material Para Uso En Ortodoncia. Rev. Nac. Odontol. 2016, 12, 63–71.
  38. Gioka, C.; Bourauel, C.; Zinelis, S.; Eliades, T.; Silikas, N.; Eliades, G. Titanium Orthodontic Brackets: Structure, Composition, Hardness and Ionic Release. Dent. Mater. 2004, 20, 693–700.
  39. Uysal, I.; Yilmaz, B.; Atilla, A.O.; Evis, Z. Nickel Titanium Alloys as Orthodontic Archwires: A Narrative Review. Eng. Sci. Technol. Int. J. 2022, 36, 101277.
  40. Wadood, A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016, 2016, 4173138.
  41. Sifakakis, I.; Bourauel, C. Nickel–Titanium Products in Daily Orthodontic Practice. In Orthodontic Applications of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–127. ISBN 9780081003831.
  42. Gravina, M.A.; Canavarro, C.; Elias, C.N.; Chaves, M.D.G.A.M.; Brunharo, I.H.V.P.; Quintão, C.C.A. Mechanical Properties of NiTi and CuNiTi Wires Used in Orthodontic Treatment. Part 2: Microscopic Surface Appraisal and Metallurgical Characteristics. Dent. Press J. Orthod. 2014, 19, 69–76.
  43. Parvizi, F. The Load/Deflection Characteristics of Thermally Activated Orthodontic Archwires. Eur. J. Orthod. 2003, 25, 417–421.
  44. Sufarnap, E.; Harahap, K.; Cynthiana, S.; Reza, M. Nickel and Copper Ion Release, Deflection and the Surface Roughness of Copper-Nickel-Titanium Orthodontic Archwire in Sodium Fluoride Solution. J. Orthod. Sci. 2023, 12, 44.
  45. Seyyed Aghamiri, S.M.; Ahmadabadi, M.N.; Raygan, S. Combined Effects of Different Heat Treatments and Cu Element on Transformation Behavior of NiTi Orthodontic Wires. J. Mech. Behav. Biomed. Mater. 2011, 4, 298–302.
  46. Sarul, M.; Kawala, B.; Kawala, M.; Antoszewska-Smith, J. Do the NiTi Low and Constant Force Levels Remain Stable in Vivo? Eur. J. Orthod. 2015, 37, 656–664.
  47. Farzin-Nia, F.; Yoneyama, T. Orthodontic Devices Using Ti-Ni Shape Memory Alloys. In Shape Memory Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2008; pp. 257–296. ISBN 9781845693442.
  48. Polychronis, G.; Al Jabbari, Y.S.; Eliades, T.; Zinelis, S. Galvanic Coupling of Steel and Gold Alloy Lingual Brackets with Orthodontic Wires: Is Corrosion a Concern? Angle Orthod. 2018, 88, 450–457.
  49. Ito, A.; Kitaura, H.; Noguchi, T.; Ohori, F.; Mizoguchi, I. Analysis of Coating Loss from Coated Stainless Steel Orthodontic Wire. Appl. Sci. 2022, 12, 9497.
  50. Toy, E.; Malkoc, S.; Corekci, B.; Bozkurt, B.S.; Hakki, S.S. Real-Time Cell Analysis of the Cytotoxicity of Orthodontic Brackets on Gingival Fibroblasts. J. Appl. Biomater. Funct. Mater. 2014, 12, 248–255.
  51. Kim, I.-H.; Park, H.-S.; Kim, Y.K.; Kim, K.-H.; Kwon, T.-Y. Comparative Short-Term in Vitro Analysis of Mutans Streptococci Adhesion on Esthetic, Nickel-Titanium, and Stainless-Steel Arch Wires. Angle Orthod. 2014, 84, 680–686.
  52. Krishnan, M.; Seema, S.; Kumar, A.V.; Varthini, N.P.; Sukumaran, K.; Pawar, V.R.; Arora, V. Corrosion Resistance of Surface Modified Nickel Titanium Archwires. Angle Orthod. 2014, 84, 358–367.
  53. Hansen, D.C. Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. Electrochem. Soc. Interface 2008, 17, 31–34.
  54. Maruthamuthu, S.; Rajasekar, A.; Sathiyanarayanan, S.; Muthukumar, N.; Palaniswamy, N. Electrochemical Behaviour of Microbes on Orthodontic Wires. Curr. Sci. 2005, 89, 988–996.
  55. Wolf, H.F.; Hassell, T.M. Biofilm—Plaque Formation on Tooth and Root Surfaces. In Color Atlas of Dental Hygene-Periodontology; Thieme: Stuttgart, Germany; New York, NY, USA, 2006; p. 24. ISBN 9783131417619.
  56. Zhou, Z.R.; Zheng, J. Tribology of Dental Materials: A Review. J. Phys. D Appl. Phys. 2008, 41, 113001.
  57. Dawes, C.; Pedersen, A.M.L.; Villa, A.; Ekström, J.; Proctor, G.B.; Vissink, A.; Aframian, D.; McGowan, R.; Aliko, A.; Narayana, N.; et al. The Functions of Human Saliva: A Review Sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 2015, 60, 863–874.
  58. Mosca, A.C.; Chen, J. Food-Saliva Interactions: Mechanisms and Implications. Trends Food Sci. Technol. 2017, 66, 125–134.
  59. de Almeida, P.D.V.; Grégio, A.M.T.; Machado, M.A.N.; de Lima, A.A.S.; Azevedo, L.R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80.
  60. Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85, 162–169.
  61. Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743.
  62. Yakubov, G.E.; Macakova, L.; Wilson, S.; Windust, J.H.C.; Stokes, J.R. Aqueous Lubrication by Fractionated Salivary Proteins: Synergistic Interaction of Mucin Polymer Brush with Low Molecular Weight Macromolecules. Tribol. Int. 2015, 89, 34–45.
  63. Castagnola, M.; Cabras, T.; Vitali, A.; Sanna, M.T.; Messana, I. Biotechnological Implications of the Salivary Proteome. Trends Biotechnol. 2011, 29, 409–418.
  64. Choi, J.E.; Lyons, K.M.; Kieser, J.A.; Waddell, N.J. Diurnal Variation of Intraoral PH and Temperature. BDJ Open 2017, 3, 17015.
  65. Moore, R.J.; Watts, J.T.F.; Hood, J.A.A.; Burritt, D.J. Intra-Oral Temperature Variation over 24 Hours. Eur. J. Orthod. 1999, 21, 249–261.
  66. Kwak, D.Y.; Kim, N.Y.; Kim, H.J.; Yang, S.Y.; Yoon, J.E.; Hyun, I.A.; Nam, S.H. Changes in the Oral Environment after Tooth Brushing and Oral Gargling. Biomed. Res. 2017, 28, 7093–7097.
  67. Neyraud, E.; Palicki, O.; Schwartz, C.; Nicklaus, S.; Feron, G. Variability of Human Saliva Composition: Possible Relationships with Fat Perception and Liking. Arch. Oral Biol. 2012, 57, 556–566.
  68. Poles, A.A.; Balcão, V.M.; Chaud, M.V.; Vila, M.M.D.C.; Aranha, N.; Yoshida, V.M.H.; Oliveira, J.M. Study of the Elemental Composition of Saliva of Smokers and Nonsmokers by X-Ray Fluorescence. Appl. Radiat. Isot. 2016, 118, 221–227.
  69. Upadhyay, D.; Panchal, M.A.; Dubey, R.S.; Srivastava, V.K. Corrosion of Alloys Used in Dentistry: A Review. Mater. Sci. Eng. A 2006, 432, 1–11.
  70. Hans, R.; Thomas, S.; Garla, B.; Dagli, R.J.; Hans, M.K. Effect of Various Sugary Beverages on Salivary PH, Flow Rate, and Oral Clearance Rate amongst Adults. Scientifica 2016, 2016, 5027283.
  71. Dental Caries. Essentials of Oral Pathology and Oral Medicine; Cawson, R., Odell, E., Eds.; Churchill Livingstone: London, UK, 2008; pp. 40–59. ISBN 978-0443-10125-0.
  72. Walsh, L.J. Dental Plaque Fermentation and Its Role in Caries Risk Assessment. Int. Dent. S. Afr. 2006, 8, 34–40.
  73. Goel, I.; Navit, S.; Mayall, S.S.; Rallan, M.; Navit, P.; Chandra, S. Effects of Carbonated Drink & Fruit Juice on Salivary PH of Children: An in Vivo Study. Int. J. Sci. Study 2013, 1, 60.
  74. Lubis, H.F.; Simamora, G.H. Release of Nickel Ions and Changes in Surface Microstructure of Stainless Steel Archwire after Immersion in Tomato and Orange Juice. IOP Conf. Ser. Earth Environ. Sci. 2021, 912, 012018.
  75. He, J.; Li, Y.; Cao, Y.; Xue, J.; Zhou, X. The Oral Microbiome Diversity and Its Relation to Human Diseases. Folia Microbiol. 2015, 60, 69–80.
  76. Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016, 221, 657–666.
  77. Marsh, P.D.; Head, D.A.; Devine, D.A. Dental Plaque as a Biofilm and a Microbial Community—Implications for Treatment. J. Oral Biosci. 2015, 57, 185–191.
  78. Alasvand Zarasvand, K.; Rai, V.R. Microorganisms: Induction and Inhibition of Corrosion in Metals. Int. Biodeterior. Biodegrad. 2014, 87, 66–74.
  79. Øgaard, B. White Spot Lesions During Orthodontic Treatment: Mechanisms and Fluoride Preventive Aspects. Semin. Orthod. 2008, 14, 183–193.
  80. Weyant, R.J.; Tracy, S.L.; Anselmo, T.T.; Beltrán-Aguilar, E.D.; Donly, K.J.; Frese, W.A.; Hujoel, P.P.; Iafolla, T.; Kohn, W.; Kumar, J.; et al. Topical Fluoride for Caries Prevention. J. Am. Dent. Assoc. 2013, 144, 1279–1291.
  81. ISO 8044:2015; Corrosion of Metals and Alloys—Basic Terms and Definitions. ISO (International Organization for Standardization): Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8044:ed-4:v1:en (accessed on 18 May 2018).
  82. Sato, N. Basics of Corrosion Chemistry. In Green Corrosion Chemistry and Engineering: Opportunities and Challenges; Wiley: Hoboken, NJ, USA, 2011; pp. 1–32. ISBN 9783527329304.
  83. House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of Orthodontic Appliances-Should We Care? Am. J. Orthod. Dentofac. Orthop. 2008, 133, 584–592.
  84. Hunt, N.; Cunningham, S.; Golden, C.; Sheriff, M. An Investigation into the Effects of Polishing on Surface Hardness and Corrosion of Orthodontic Archwires. Angle Orthod. 1999, 69, 433–440.
  85. Strehblow, H.-H. Phenomenological and Electrochemical Fundamentals of Corrosion. In Materials Science and Technology, Corrosion and Environmental Degradation, Vol. I.; Schütze, M., Cahn, R., Haasen, P., Kramer, E., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp. 1–66. ISBN 3-527-29505-4.
  86. Eliades, T.; Zinelis, S.; Bourauel, C.; Eliades, G. Manufacturing of Orthodontic Brackets: A Review of Metallurgical Perspectives and Applications. Recent Pat. Mater. Sci. 2008, 1, 135–139.
  87. Hanawa, T. Metal Ion Release from Metal Implants. Mater. Sci. Eng. C 2004, 24, 745–752.
  88. Marcus, P.; Maurice, V. Passivity of Metals and Alloys. In Materials Science and Technology, Corrosion and Environmental Degradation, Vol. I.; Schütze, M., Cahn, R., Haasen, P., Kramer, E., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp. 131–169. ISBN 3-527-29505-4.
  89. Schiff, N. Galvanic Corrosion between Orthodontic Wires and Brackets in Fluoride Mouthwashes. Eur. J. Orthod. 2006, 28, 298–304.
  90. Oh, K.T.; Choo, S.U.; Kim, K.M.; Kim, K.N. A Stainless Steel Bracket for Orthodontic Application. Eur. J. Orthod. 2005, 27, 237–244.
  91. Mendes, B.D.A.B.; Ferreira, R.A.N.; Pithon, M.M.; Horta, M.C.R.; Oliveira, D.D. Physical and Chemical Properties of Orthodontic Brackets after 12 and 24 Months: In Situ Study. J. Appl. Oral Sci. 2014, 22, 194–203.
  92. Jacoby, L.S.; Junior, V.D.S.R.; Campos, M.M.; de Menezes, L.M. Cytotoxic Outcomes of Orthodontic Bands with and without Silver Solder in Different Cell Lineages. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 957–963.
  93. Tahmasbi, S.; Ghorbani, M.; Masudrad, M. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-Containing Mouthwash. J. Dent. Res. Dent. Clin. Dent. Prospects 2015, 9, 159–165.
  94. Petković Didović, M.; Jelovica Badovinac, I.; Fiket, Ž.; Žigon, J.; Rinčić Mlinarić, M.; Čanadi Jurešić, G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials 2023, 16, 4156.
  95. Schweitzer, P.A. Fundamentals of Metallic Corrosion, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780429127137.
  96. Daems, J.; Celis, J.-P.; Willems, G. Morphological Characterization of As-Received and in Vivo Orthodontic Stainless Steel Archwires. Eur. J. Orthod. 2009, 31, 260–265.
  97. Saporeti, M.P.; Mazzieiro, E.T.; Sales, W.F. In Vitro Corrosion of Metallic Orthodontic Brackets: Influence of Artificial Saliva with and without Fluorides. Dent. Press J. Orthod. 2012, 17, 24e1–24e7.
  98. Fróis, A.; Mendes, A.R.; Pereira, S.A.; Louro, C.S. Metal Release and Surface Degradation of Fixed Orthodontic Appliances during the Dental Levelling and Aligning Phase: A 12-Week Study. Coatings 2022, 12, 554.
  99. Zhang, Y. Corrosion Resistance of Passive Films on Orthodontic Bands in Fluoride-Containing Artificial Saliva. Int. J. Electrochem. Sci. 2017, 12, 292–304.
  100. Hedberg, Y.S.; Odnevall Wallinder, I. Metal Release from Stainless Steel in Biological Environments: A Review. Biointerphases 2016, 11, 018901.
  101. Walker, M.P.; White, R.J.; Kula, K.S. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium-Based Orthodontic Wires. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 662–669.
  102. Kao, C.-T.; Huang, T.-H. Variations in Surface Characteristics and Corrosion Behaviour of Metal Brackets and Wires in Different Electrolyte Solutions. Eur. J. Orthod. 2010, 32, 555–560.
  103. Mahato, N.; Sharma, M.R.; Chaturvedi, T.P.; Singh, M.M. Effect of Dietary Spices on the Pitting Behavior of Stainless Steel Orthodontic Bands. Mater. Lett. 2011, 65, 2241–2244.
  104. Chaturvedi, T. Corrosion of Orthodontic Brackets in Different Spices:In Vitro Study. Indian J. Dent. Res. 2014, 25, 630.
  105. Chiba, A.; Muto, I.; Sugawara, Y.; Hara, N. Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. J. Electrochem. Soc. 2013, 160, C511–C520.
  106. Yang, S.; Zhao, M.; Feng, J.; Li, J.; Liu, C. Induced-Pitting Behaviors of MnS Inclusions in Steel. High Temp. Mater. Process. 2018, 37, 1007–1016.
  107. Alnajjar, M.; Christien, F.; Barnier, V.; Bosch, C.; Wolski, K.; Fortes, A.D.; Telling, M. Influence of Microstructure and Manganese Sulfides on Corrosion Resistance of Selective Laser Melted 17-4 PH Stainless Steel in Acidic Chloride Medium. Corros. Sci. 2020, 168, 108585.
  108. Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.-O.A.; Mischler, S. Passive and Transpassive Behaviour of CoCrMo in Simulated Biological Solutions. Electrochim. Acta 2004, 49, 2167–2178.
  109. Bagatin, C.R.; Ito, I.Y.; Andrucioli, M.C.D.; Nelson-Filho, P.; Ferreira, J.T.L. Corrosion in Haas Expanders with and without Use of an Antimicrobial Agent: An in Situ Study. J. Appl. Oral Sci. 2011, 19, 662–667.
  110. Wang, J.; Li, N.; Rao, G.; Han, E.; Ke, W. Stress Corrosion Cracking of NiTi in Artificial Saliva. Dent. Mater. 2007, 23, 133–137.
  111. Kameda, T.; Oda, H.; Ohkuma, K.; Sano, N.; Batbayar, N.; Terashima, Y.; Sato, S.; TeradaA, K. Microbiologically Influenced Corrosion of Orthodontic Metallic Appliances. Dent. Mater. J. 2014, 33, 187–195.
  112. Jiang, J.; Chan, A.; Ali, S.; Saha, A.; Haushalter, K.J.; Lam, W.-L.M.; Glasheen, M.; Parker, J.; Brenner, M.; Mahon, S.B.; et al. Hydrogen Sulfide—Mechanisms of Toxicity and Development of an Antidote. Sci. Rep. 2016, 6, 20831.
  113. Kumar, A.; Khanam, A.; Ghafoor, H. Effects of Intraoral Aging of Arch-Wires on Frictional Forces: An Ex Vivo Study. J. Orthod. Sci. 2016, 5, 109.
  114. Cury, S.; Aliaga-Del Castillo, A.; Pinzan, A.; Sakoda, K.; Bellini-Pereira, S.; Janson, G. Orthodontic Brackets Friction Changes after Clinical Use: A Systematic Review. J. Clin. Exp. Dent. 2019, 11, e482–e490.
  115. Eliades, T.; Bourauel, C. Intraoral Aging of Orthodontic Materials: The Picture We Miss and Its Clinical Relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412.
  116. Regis, S.; Soares, P.; Camargo, E.S.; Guariza Filho, O.; Tanaka, O.; Maruo, H. Biodegradation of Orthodontic Metallic Brackets and Associated Implications for Friction. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 501–509.
  117. Bandeira, A.M.B.; dos Santos, M.P.A.; Pulitini, G.; Elias, C.N.; da Costa, M.F. Influence of Thermal or Chemical Degradation on the Frictional Force of an Experimental Coated NiTi Wire. Angle Orthod. 2011, 81, 484–489.
  118. Lima, A.A.S.; de Grégio, A.M.T.; Tanaka, O.; Machado, M.Â.N.; França, B.H.S. Tratamento Das Ulcerações Traumáticas Bucais Causadas Por Aparelhos Ortodônticos. Rev. Dent. Press Ortod. Ortop. Facial 2005, 10, 30–36.
  119. Pires, L.P.B.; de Oliveira, A.H.A.; da Silva, H.F.; de Oliveira, P.T.; dos Santos, P.B.D.; Pinheiro, F.H. de S.L. Can Shielded Brackets Reduce Mucosa Alteration and Increase Comfort Perception in Orthodontic Patients in the First 3 Days of Treatment? A Single-Blind Randomized Controlled Trial. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 956–966.
  120. Kluemper, G.T.; Hiser, D.G.; Rayens, M.K.; Jay, M.J. Efficacy of a Wax Containing Benzocaine in the Relief of Oral Mucosal Pain Caused by Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 359–365.
  121. Bourauel, C.; Scharold, W.; Jäger, A.; Eliades, T. Fatigue Failure of As-Received and Retrieved NiTi Orthodontic Archwires. Dent. Mater. 2008, 24, 1095–1101.
  122. Petoumeno, E.; Arndt, M.; Keilig, L.; Reimann, S.; Hoederath, H.; Eliades, T.; Jäger, A.; Bourauel, C. Nickel Concentration in the Saliva of Patients with Nickel-Titanium Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 59–65.
  123. Martín-Cameán, A.; Jos, Á.; Mellado-García, P.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. In Vitro and in Vivo Evidence of the Cytotoxic and Genotoxic Effects of Metal Ions Released by Orthodontic Appliances: A Review. Environ. Toxicol. Pharmacol. 2015, 40, 86–113.
  124. Wang, J.J.; Sanderson, B.J.S.; Wang, H. Cyto- and Genotoxicity of Ultrafine TiO2 Particles in Cultured Human Lymphoblastoid Cells. Mutat. Res. Toxicol. Environ. Mutagen. 2007, 628, 99–106.
  125. Messer, R.L.W.; Bishop, S.; Lucas, L.C. Effects of Metallic Ion Toxicity on Human Gingival Fibroblasts Morphology. Biomaterials 1999, 20, 1647–1657.
  126. Chakravarthi, S.; Chitharanjan, A.; Padmanabhan, S. Allergy and Orthodontics. J. Orthod. Sci. 2012, 1, 83.
  127. Primožič, J.; Poljšak, B.; Jamnik, P.; Kovač, V.; Čanadi Jurešić, G.; Spalj, S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants 2021, 10, 1359.
  128. Samitz, M.H.; Katz, S.A. Nickel Dermatitis Hazards from Prostheses: In Vivo and in Vitro Stabilization Studies. Br. J. Dermatol. 1975, 92, 287–290.
  129. Mikulewicz, M.; Chojnacka, K. Release of Metal Ions from Orthodontic Appliances by In Vitro Studies: A Systematic Literature Review. Biol. Trace Elem. Res. 2011, 139, 241–256.
  130. Macedo de Menezes, L.; Cardoso Abdo Quintão, C. The Release of Ions from Metallic Orthodontic Appliances. Semin. Orthod. 2010, 16, 282–292.
  131. Urbutytė, K.; Barčiūtė, A.; Lopatienė, K. The Changes in Nickel and Chromium Ion Levels in Saliva with Fixed Orthodontic Appliances: A Systematic Review. Appl. Sci. 2023, 13, 4739.
  132. Gjerdet, N.R.; Erichsen, E.S.; Remlo, H.E.; Evjen, G. Nickel and Iron in Saliva of Patients with Fixed Orthodontic Appliances. Acta Odontol. Scand. 1991, 49, 73–78.
  133. Cempel, G.N.M. Nickel: A Review of Its Sources and Environmental Toxicolog. Pol. J. Environ. Stud. 2006, 15, 372–382.
  134. Smart, G.A.; Sherlock, J.C. Nickel in Foods and the Diet. Food Addit. Contam. 1987, 4, 61–71.
  135. WHO (World Health Organization). Nickel in Drinking Water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality; (WHO/SDE/WSH/04.08/55); World Health Organization: Geneva, Switzerland, 2005.
  136. Becker, W.; Kumpulainen, J. Contents of Essential and Toxic Mineral Elements in Swedish Market-Basket Diets in 1987. Br. J. Nutr. 1991, 66, 151–160.
  137. CCME (Canadian Council of Ministers of the Environment). Scientific Criteria Document for Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Nickel; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2015.
  138. PHE (Public Health England). Nickel. In Toxicological Overview; Version 1; Toxicology Department, CRCE, Public Health England: London, UK, 2009.
  139. WHO (World Health Organization). Nickel. In Air Quality Guidelines for Europe; Regional Office for Europe, Ed.; World Health Organization: Copenhagen, Denmark, 2000; ISBN 9789289013581.
  140. Haber, L.T.; Bates, H.K.; Allen, B.C.; Vincent, M.J.; Oller, A.R. Derivation of an Oral Toxicity Reference Value for Nickel. Regul. Toxicol. Pharmacol. 2017, 87, S1–S18.
  141. WHO (World Health Organization). Chromium. In Air Quality Guidelines for Europe; Regional Office for Europe, Ed.; World Health Organization: Copenhagen, Denmark, 2000; ISBN 9789289013581.
  142. Duda-Chodak, A.; Blaszczyk, U. The Impact of Nickel on Human Health. J. Elem. 2008, 13, 685–696.
  143. Forgacs, Z.; Massányi, P.; Lukac, N.; Somosy, Z. Reproductive Toxicology of Nickel—Review. J. Environ. Sci. Health Part A 2012, 47, 1249–1260.
  144. IARC (International Agency for Research on Cancer). Nickel and Nickel Compounds; Academic Press: New York, NY, USA, 2011; Volume 100C, pp. 169–218.
  145. World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Valletta, Malta, 2011.
  146. Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679.
  147. Silverberg, N.B.; Pelletier, J.L.; Jacob, S.E.; Schneider, L.C.; Cohen, B.; Horii, K.A.; Kristal, C.L.; Maguiness, S.M.; Tollefson, M.M.; Weinstein, M.G.; et al. Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention. Pediatrics 2020, 145, e20200628.
  148. Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, Its Adverse Health Effects & Oxidative Stress. Indian J. Med. Res. 2008, 128, 412–425.
  149. Sahoo, N.; Kailasam, V.; Padmanabhan, S.; Chitharanjan, A.B. In-Vivo Evaluation of Salivary Nickel and Chromium Levels in Conventional and Self-Ligating Brackets. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 340–345.
  150. De Souza, R.M.; De Menezes, L.M. Nickel, Chromium and Iron Levels in the Saliva of Patients with Simulated Fixed Orthodontic Appliances. Angle Orthod. 2008, 78, 345–350.
  151. Aǧaoǧlu, G.; Arun, T.; Izgü, B.; Yarat, A. Nickel and Chromium Levels in the Saliva and Serum of Patients with Fixed Orthodontic Appliances. Angle Orthod. 2001, 71, 375–379.
  152. Masjedi, M.; Niknam, O.; Haghighat Jahromi, N.; Javidi, P.; Rakhshan, V. Effects of Fixed Orthodontic Treatment Using Conventional, Copper-Included, and Epoxy-Coated Nickel-Titanium Archwires on Salivary Nickel Levels: A Double-Blind Randomized Clinical Trial. Biol. Trace Elem. Res. 2016, 174, 27–31.
  153. Yassaei, S.; Dadfarnia, S.; Ahadian, H.; Moradi, F. Nickel and Chromium Levels in the Saliva of Patients with Fixed Orthodontic Appliances. Orthodontics 2013, 14, e76–e81.
  154. Haleem, R.; Ahmad Shafiai, N.; Mohd Noor, S. Perspective on Metal Leachables from Orthodontic Appliances: A Scoping Review. J. Int. Oral Health 2021, 13, 539–548.
  155. Dwivedi, A.; Tikku, T.; Khanna, R.; Maurya, R.P.; Verma, G.; Murthy, R.C. Release of Nickel and Chromium Ions in the Saliva of Patients with Fixed Orthodontic Appliance: An in-Vivo Study. Natl. J. Maxillofac. Surg. 2015, 6, 62–66.
  156. Kocadereli, L.; Ataç, A.; Kale, S.; Özer, D. Salivary Nickel and Chromium in Patients with Fixed Orthodontic Appliances. Angle Orthod. 2000, 70, 431–434.
  157. Fors, R.; Persson, M. Nickel in Dental Plaque and Saliva in Patients with and without Orthodontic Appliances. Eur. J. Orthod. 2006, 28, 292–297.
  158. Olms, C.; Yahiaoui-Doktor, M.; Remmerbach, T.W. Contact Allergies to Dental Materials. Swiss Dent. J. 2019, 129, 571–579.
  159. Hafez, H.S.; Selim, E.M.N.; Kamel Eid, F.H.; Tawfik, W.A.; Al-Ashkar, E.A.; Mostafa, Y.A. Cytotoxicity, Genotoxicity, and Metal Release in Patients with Fixed Orthodontic Appliances: A Longitudinal in-Vivo Study. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 298–308.
  160. Singh, D.P.; Sehgal, V.; Pradhan, K.L.; Chandna, A.; Gupta, R. Estimation of Nickel and Chromium in Saliva of Patients with Fixed Orthodontic Appliances. World J. Orthod. 2008, 9, 196–202.
  161. Nayak, R.S.; Khanna, B.; Pasha, A.; Vinay, K.; Narayan, A.; Chaitra, K. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study. J. Int. Oral Health 2015, 7, 14–20.
  162. European Comission Regulation (EC). 1907/2006 of the European Parliament and of the Council of 18 December 2006—REACH. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907&from=en (accessed on 5 June 2023).
  163. Mikulewicz, M.; Chojnacka, K. Human Exposure to Trace Elements from Dental Biomaterials. In Recent Advances in Trace Elements; Wiley: Hoboken, NJ, USA, 2018; pp. 469–479. ISBN 9781119133780.
  164. Büdinger, L.; Hertl, M. Immunologic Mechanisms in Hypersensitivity Reactions to Metal Ions: An Overview. Allergy Eur. J. Allergy Clin. Immunol. 2000, 55, 108–115.
  165. Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular Mechanisms of Nickel Allergy. Int. J. Mol. Sci. 2016, 17, 202.
  166. Peltonen, L. Nickel Sensitivity. Int. J. Dermatol. 2008, 20, 352–353.
  167. Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel Impact on Human Health: An Intrinsic Disorder Perspective. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 1714–1731.
  168. Buczko, P.; Szarmach, I.; Grycz, M.; Kasacka, I. Caspase-3 as an Important Factor in the Early Cytotoxic Effect of Nickel on Oral Mucosa Cells in Patients Treated Orthodontically. Folia Histochem. Cytobiol. 2017, 55, 37–42.
  169. Luz, M.; Souza, A.; Haddad, A.; Tartomano, A.; Oliveira, P. In Vitro Cr(VI) Speciation in Synthetic Saliva after Releasing from Orthodontic Brackets Using Silica-Aptes Separation and GF AAS Determination. Quim. Nova 2016, 39, 951–955.
  170. Setcos, J.C.; Babaei-Mahani, A.; Di Silvio, L.; Mjör, I.A.; Wilson, N.H.F. The Safety of Nickel Containing Dental Alloys. Dent. Mater. 2006, 22, 1163–1168.
  171. Schuster, G.; Reichle, R.; Bauer, R.R.; Schopf, P.M. Allergies Induced by Orthodontic Alloys: Incidence and Impact on Treatment. J. Orofac. Orthop. 2004, 65, 48–59.
  172. Flores-Bracho, M.G.; Takahashi, C.S.; Castillo, W.O.; Saraiva, M.C.P.; Küchler, E.C.; Matsumoto, M.A.N.; Ferreira, J.T.L.; Nelson-Filho, P.; Romano, F.L. Genotoxic Effects in Oral Mucosal Cells Caused by the Use of Orthodontic Fixed Appliances in Patients after Short and Long Periods of Treatment. Clin. Oral Investig. 2019, 23, 2913–2919.
  173. Loyola-Rodríguez, J.P.; Lastra-Corso, I.; García-Cortés, J.O.; Loyola-Leyva, A.; Domínguez-Pérez, R.A.; Avila-Arizmendi, D.; Contreras-Palma, G.; González-Calixto, C. In Vitro Determination of Genotoxicity Induced by Brackets Alloys in Cultures of Human Gingival Fibroblasts. J. Toxicol. 2020, 2020, 1467456.
  174. Bass, J.K.; Fine, H.; Cisneros, G.J. Nickel Hypersensitivity in the Orthodontic Patient. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 280–285.
  175. Kerosuo, H.; Kullaa, A.; Kerosuo, E.; Kanerva, L.; Hensten-Pettersen, A. Nickel Allergy in Adolescents in Relation to Orthodontic Treatment and Piercing of Ears. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 148–154.
  176. Staerkjaer, L.; Menne, T. Nickel Allergy and Orthodontic Treatment. Eur. J. Orthod. 1990, 12, 284–289.
  177. Velasco-Ibáñez, R.; Lara-Carrillo, E.; Morales-Luckie, R.A.; Romero-Guzmán, E.T.; Toral-Rizo, V.H.; Ramírez-Cardona, M.; García-Hernández, V.; Medina-Solís, C.E. Evaluation of the Release of Nickel and Titanium under Orthodontic Treatment. Sci. Rep. 2020, 10, 22280.
  178. Kochanowska, I.E.; Chojnacka, K.; Pawlak-Adamska, E.; Mikulewicz, M. Metallic Orthodontic Materials Induce Gene Expression and Protein Synthesis of Metallothioneins. Materials 2021, 14, 1922.
  179. Muris, J.; Feilzer, A.J. Micro Analysis of Metals in Dental Restorations as Part of a Diagnostic Approach in Metal Allergies. Neuro Endocrinol. Lett. 2006, 27 (Suppl. 1), 49–52.
  180. Dunlap, C.L.; Vincent, S.K.; Barker, B.F. Allergic Reaction to Orthodontic Wire: Report of Case. J. Am. Dent. Assoc. 1989, 118, 449–450.
  181. Ellis, P.E.; Benson, P.E. Potential Hazards of Orthodontic Treatment—What Your Patient Should Know. Dent. Update 2002, 29, 492–496.
  182. Kolokitha, O.E.; Chatzistavrou, E. A Severe Reaction to Ni-Containing Orthodontic Appliances. Angle Orthod. 2009, 79, 186–192.
  183. Noble, J.; Ahing, S.I.; Karaiskos, N.E.; Wiltshire, W.A. Nickel Allergy and Orthodontics, a Review and Report of Two Cases. Br. Dent. J. 2008, 204, 297–300.
  184. Ehrnrooth, M.; Kerosuo, H. Face and Neck Dermatitis from a Stainless Steel Orthodontic Appliance. Angle Orthod. 2009, 79, 1194–1196.
  185. Navarro-Triviño, F.J.; Ruiz-Villaverde, R. Contact Urticaria/Angioedema Caused by Nickel from Metal Dental Braces. Contact Dermat. 2020, 83, 425–427.
  186. Maheshwari, S.; Verma, S.; Dhiman, S. Metal Hypersensitivity in Orthodontic Patients. J. Dent. Mater. Tech. 2015, 4, 111–114.
  187. Rahilly, G.; Price, N. Nickel Allergy and Orthodontics. J. Orthod. 2003, 30, 171–174.
  188. Kolokitha, O.E.G.; Chatzistavrou, E. Allergic Reactions to Nickel-Containing Orthodontic Appliances: Clinical Signs and Treatment Alternatives. World J. Orthod. 2008, 9, 399–406.
  189. Gursoy, U.K.; Sokucu, O.; Uitto, V.J.; Aydin, A.; Demirer, S.; Toker, H.; Erdem, O.; Sayal, A. The Role of Nickel Accumulation and Epithelial Cell Proliferation in Orthodontic Treatment-Induced Gingival Overgrowth. Eur. J. Orthod. 2007, 29, 555–558.
  190. Gurgel Maia, L.H.E.; de Lima Filho, H.L.; Araújo, M.V.A.; de Oliveira Ruellas, A.C.; de Souza Araújo, M.T. Incorporation of Metal and Color Alteration of Enamel in the Presence of Orthodontic Appliances. Angle Orthod. 2012, 82, 889–893.
  191. Pazzini, C.A.; Pereira, L.J.; Marques, L.S.; Ramos-Jorge, J.; Aparecida da Silva, T.; Paiva, S.M. Nickel-Free vs Conventional Braces for Patients Allergic to Nickel: Gingival and Blood Parameters during and after Treatment. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 1014–1019.
  192. Martín-Cameán, A.; Jos, A.; Cameán, A.M.; Solano, E.; Iglesias-Linares, A. Genotoxic and Cytotoxic Effects and Gene Expression Changes Induced by Fixed Orthodontic Appliances in Oral Mucosa Cells of Patients: A Systematic Review. Toxicol. Mech. Methods 2015, 25, 440–447.
  193. Downarowicz, P.; Mikulewicz, M. Trace Metal Ions Release from Fixed Orthodontic Appliances and DNA Damage in Oral Mucosa Cells by in Vivo Studies: A Literature Review. Adv. Clin. Exp. Med. 2017, 26, 1155–1162.
  194. Burrow, S.J. Friction and Resistance to Sliding in Orthodontics: A Critical Review. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 442–447.
  195. Kusy, R.P.; Whitley, J.Q. Friction between Different Wire-Bracket Configurations and Materials. Semin. Orthod. 1997, 3, 166–177.
  196. Kusy, R.P.; Whitley, J.Q. Influence of Archwire and Bracket Dimensions on Sliding Mechanics: Derivations and Determinations of the Critical Contact Angles for Binding. Eur. J. Orthod. 1999, 21, 199–208.
  197. Articolo, L. Influence of Ceramic and Stainless Steel Brackets on the Notching of Archwires during Clinical Treatment. Eur. J. Orthod. 2000, 22, 409–425.
  198. Prashant, P.; Nandan, H.; Gopalakrishnan, M. Friction in Orthodontics. J. Pharm. Bioallied Sci. 2015, 7, 334.
  199. Ranc, H.; Elkhyat, A.; Servais, C.; Mac-Mary, S.; Launay, B.; Humbert, P. Friction Coefficient and Wettability of Oral Mucosal Tissue: Changes Induced by a Salivary Layer. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 155–161.
  200. Lu, C.; Zheng, Y.; Zhong, Q. Corrosion of Dental Alloys in Artificial Saliva with Streptococcus Mutans. PLoS ONE 2017, 12, e0174440.
  201. Reichardt, E.; Geraci, J.; Sachse, S.; Rödel, J.; Pfister, W.; Löffler, B.; Wagner, Y.; Eigenthaler, M.; Wolf, M. Qualitative and Quantitative Changes in the Oral Bacterial Flora Occur Shortly after Implementation of Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 735–744.
  202. Mei, L.; Chieng, J.; Wong, C.; Benic, G.; Farella, M. Factors Affecting Dental Biofilm in Patients Wearing Fixed Orthodontic Appliances. Prog. Orthod. 2017, 18, 4.
  203. Alavi, S.; Yaraghi, N. The Effect of Fluoride Varnish and Chlorhexidine Gel on White Spots and Gingival and Plaque Indices in Fixed Orthodontic Patients: A Placebo-Controlled Study. Dent. Res. J. 2018, 15, 276–282.
  204. Pritam, A.; Priyadarshini, A.; Hussain, K.; Kumar, A.; Kumar, N.; Malakar, A. Assessment of Nickel and Chromium Level in Gingival Crevicular Fluid in Patients Undergoing Orthodontic Treatment with or without Fluoridated Tooth Paste. J. Pharm. Bioallied Sci. 2021, 13, 1588.
  205. Chitra, P.; Prashantha, G.S.; Rao, A. Effect of Fluoride Agents on Surface Characteristics of NiTi Wires. An Ex Vivo Investigation. J. Oral Biol. Craniofacial Res. 2020, 10, 435–440.
  206. Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires. Biomaterials 2004, 25, 4535–4542.
  207. Nahidh, M.; MH Garma, N.; Jasim, E.S. Assessment of Ions Released from Three Types of Orthodontic Brackets Immersed in Different Mouthwashes: An in Vitro Study. J. Contemp. Dent. Pract. 2018, 19, 73–80.
  208. Rincic Mlinaric, M.; Karlovic, S.; Ciganj, Z.; Acev, D.P.; Pavlic, A.; Spalj, S. Oral Antiseptics and Nickel–Titanium Alloys: Mechanical and Chemical Effects of Interaction. Odontology 2019, 107, 150–157.
  209. Condò, R.; Carli, E.; Cioffi, A.; Cataldi, M.E.; Quinzi, V.; Casaglia, A.; Giancotti, A.; Pirelli, P.; Lucarini, I.; Maita, F.; et al. Fluorinated Agents Effects on Orthodontic Alloys: A Descriptive In Vitro Study. Materials 2022, 15, 4612.
  210. Pastor, F.; Rodríguez, J.C.; Barrera, J.M.; Delgado García-Menocal, J.A.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of Fluoride Content of Mouthwashes on Superelastic Properties of NiTi Orthodontic Archwires. Materials 2022, 15, 6592.
  211. Sahoo, N.; Bhuyan, L.; Dhull, K.S.; Dash, K.C.; MD, I.; Mishra, P. In Vitro Effect Of Fluoride Prophylactic Agents On Titanium Molybdenum Alloy And Stainless Steel Orthodontic Wires—Scanning Electron Microscope Study. Bangladesh J. Med. Sci. 2023, 22, 47–51.
  212. Mirhashemi, A.; Jahangiri, S.; Kharrazifard, M. Release of Nickel and Chromium Ions from Orthodontic Wires Following the Use of Teeth Whitening Mouthwashes. Prog. Orthod. 2018, 19, 4.
  213. Yanisarapan, T.; Thunyakitpisal, P.; Chantarawaratit, P. Corrosion of Metal Orthodontic Brackets and Archwires Caused by Fluoride-Containing Products: Cytotoxicity, Metal Ion Release and Surface Roughness. Orthod. Waves 2018, 77, 79–89.
  214. Abbassy, M. Fluoride Influences Nickel-Titanium Orthodontic Wires′ Surface Texture and Friction Resistance. J. Orthod. Sci. 2016, 5, 121.
  215. Rajendran, A.; Sundareswaran, S.; Peediyekkal, L.; Santhakumar, P.; Sathyanadhan, S. Effect of Oral Environment and Prescribed Fluoride Mouthwashes on Different Types of TMA Wires—An in-Vivo Study. J. Orthod. Sci. 2019, 8, 8.
  216. Li, X.; Wang, J.; Han, E.; Ke, W. Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires. Acta Biomater. 2007, 3, 807–815.
  217. Brandão, G.A.M.; Simas, R.M.; de Almeida, L.M.; da Silva, J.M.; Meneghim, M.d.C.; Pereira, A.C.; de Almeida, H.A.; Brandão, A.M.M. Evaluation of Ionic Degradation and Slot Corrosion of Metallic Brackets by the Action of Different Dentifrices. Dent. Press J. Orthod. 2013, 18, 86–93.
  218. Chantarawaratit, P.; Yanisarapan, T. Exposure to the Oral Environment Enhances the Corrosion of Metal Orthodontic Appliances Caused by Fluoride-Containing Products: Cytotoxicity, Metal Ion Release, and Surface Roughness. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 101–112.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 169
Revisions: 2 times (View History)
Update Date: 06 Dec 2023
1000/1000