Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2459 2023-10-22 18:16:31 |
2 layout & references Meta information modification 2459 2023-10-23 03:00:34 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Oeztuerk, M.; Henes, A.; Schroeter, C.B.; Nelke, C.; Quint, P.; Theissen, L.; Meuth, S.G.; Ruck, T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Encyclopedia. Available online: https://encyclopedia.pub/entry/50650 (accessed on 01 August 2024).
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, et al. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Encyclopedia. Available at: https://encyclopedia.pub/entry/50650. Accessed August 01, 2024.
Oeztuerk, Menekse, Antonia Henes, Christina B. Schroeter, Christopher Nelke, Paula Quint, Lukas Theissen, Sven G. Meuth, Tobias Ruck. "Current Biomarker Strategies in Autoimmune Neuromuscular Diseases" Encyclopedia, https://encyclopedia.pub/entry/50650 (accessed August 01, 2024).
Oeztuerk, M., Henes, A., Schroeter, C.B., Nelke, C., Quint, P., Theissen, L., Meuth, S.G., & Ruck, T. (2023, October 22). Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. In Encyclopedia. https://encyclopedia.pub/entry/50650
Oeztuerk, Menekse, et al. "Current Biomarker Strategies in Autoimmune Neuromuscular Diseases." Encyclopedia. Web. 22 October, 2023.
Current Biomarker Strategies in Autoimmune Neuromuscular Diseases
Edit

Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. 

CIDP biomarkers GBS myasthenia gravis neuromuscular diseases IIM inflammation myositis

1. Introduction: The Need for Biomarkers in Inflammatory Neuromuscular Disorders

Inflammatory neuromuscular disorders are a heterogeneous group of immune-mediated diseases with diverse underlying pathomechanisms. Epidemiology, clinical manifestations, treatment strategies, and responses vary across the spectrum of disease. Common to all is a potential severe burden of disease with conceivable long-lasting disability. Designated criteria for categorisation of affected individuals into corresponding subgroups are well-established [1]. Over the last few years, our pathophysiological understanding of autoimmune inflammatory neuromuscular disorders has steadily improved. However, essential pathogenic processes remain to be studied. In this regard, the recognition of specific biomarkers could confer additional insights while informing treatment decisions. Biomarkers are characteristic features of biological processes and are detectable and quantifiable in body fluids and tissues [2]. As valuable indicators, they serve, inter alia, diagnostic, prognostic, and therapeutic purposes in diseases.
Considering the rarity and diversity of clinical manifestation of neuromuscular disorders (NMDs), the identification of specific biomarkers for each of them is essential, particularly regarding disease course prediction and improvement of daily clinical practice. In recent years, a considerable development on this matter has emerged. However, there is still a lack of objective biomarkers suitable in NMDs.

2. On the Concept of Biomarkers

The appliance of biomarkers has become increasingly relevant over the last decade. As useful tools, they serve various aspects in disease management. Biomarkers are indicators of both physiological mechanisms and pathogenic processes or responses to various interventions and treatment regimens in general [2][3]. Particularly in diagnostic, prognostic, and predictive aspects, biomarkers can contribute as helpful tools. The detection of the disease of interest is achieved by diagnostic biomarkers. The presence or alteration of a predictive biomarker forecasts probabilities of incidents following the exposure to an intervention or environmental factor [2]. Prognostic biomarkers aid in the estimation of clinical course and severity in the observed condition. Correspondingly, monitoring biomarkers can be employed in longitudinal disease assessment, detecting the status of a condition or measuring treatment effects. Detection of biomarkers may offer insights into causative pathomechanisms. Hence, biomarkers are crucial to the development of treatment strategies including targeted therapies, assisting healthcare for affected individuals and the population.

3. Biomarkers in GBS and CIDP

3.1. Current Biomarkers in GBS and CIDP

Few recognized biomarkers of GBS and CIDP are presently integrated in diagnostics and monitoring of disease courses and treatment responses. An overview of relevant biomarkers in use is given in Table 1.
Table 1. Current biomarkers in autoimmune neuromuscular diseases.
Immune-mediated mechanisms following antecedent infections, commonly with a subset of Campylobacter jejuni strains with ganglioside-mimicking lipooligosaccharides (LOS), result in the typical clinical phenotype of progressive ascending symmetrical paresis of the limbs with hypo- to areflexia in GBS [174]. CIDP is an autoimmune neuropathy affecting peripheral nerves. The common clinical hallmark is the symmetrical weakness of distal and proximal portions of the limbs, whereas pure motor, pure sensory, and focal subtypes are described equally. A diagnostic delay occurs frequently in CIDP [174].
Impairments of the blood-nerve barrier and the blood-cerebrospinal fluid (CSF) barrier as barriers of the PNS are concomitant with the pathophysiology underlying GBS and CIDP. Tissue of peripheral nerves, serum, and CSF compose the predominant origins of biomarkers [25]. Biomarkers can also be linked to immediate damage of the PNS. 

4. Biomarkers in MG

4.1. Current Biomarkers in MG

MG is a chronic antibody-mediated autoimmune disease leading to focal or generalized muscle fatigability including respiratory symptoms or dysarthria [175][176]. Exclusive ocular symptoms (ocular MG) are possible and often represent the first clinical manifestation. Disease exacerbations inducing myasthenic crisis and ICU admission are still frequently observed. Causative auto-Abs target different components of the neuromuscular junction (NMJ) and disrupt regular transmission [177]. The prevalence is stated to be around 150–300 per million population [178]. The age of 50 years is used to distinguish between early-onset MG (EOMG) and late-onset MG (LOMG), as two peaks of incidence have been recognized [179][180]. In most cases (85%), auto-Abs against the extracellular domain of muscle nicotinic acetylcholine receptors (AChRs) are detected [84][85][86]. Biomarkers applied in MG are primarily disease-underlying auto-Abs and antigenic structures. An overview is given in Table 1. Specifically in the case of MG, the assignment of biomarkers to the initially introduced subgroups is rather ambiguous, as many functions are simultaneously fulfilled.

5. Biomarkers in IIM

5.1. Current Biomarkers in IIM

Idiopathic inflammatory myopathies (IIM) are a rare heterogenous cluster of autoimmune-mediated diseases affecting mainly skeletal muscles. Alongside typical manifestations with muscle weakness and fatiguing, IIMs are often accompanied by specific organ manifestations, including skin and lungs, among others. IIMs can be subclassified into different groups—dermatomyositis (DM), polymyositis (PM), immune-mediated necrotizing myopathy (IMNM), antisynthetase syndrome (ASyS), inclusion body myositis (IBM), and overlap myositis (OM) [181]. Importantly, clinical presentations, treatment responses, and prognoses differ strongly throughout subgroups [182]. Several supporting biomarkers, almost all of them auto-Abs, have been identified in the past and serve understanding causative mechanisms (Table 1). Nevertheless, IIMs are still deeply underdiagnosed.
Non-specific muscle enzymes including creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and aldolase are elevated due to muscle damage and do not necessarily correlate with clinical severity or disease activity [183]. Due to the challenges involved in accurately assigning biomarkers to specific subgroups in IIMs, the researchers have chosen to focus separately on myositis-specific Abs (MSAs) and further biomarkers of interest. The respective classifications can be found in Table 1, delineating the different categories.

References

  1. Punga, A.R.; Maddison, P.; Heckmann, J.M.; Guptill, J.T.; Evoli, A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022, 21, 176–188.
  2. Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221.
  3. Robb, M.A.; McInnes, P.M.; Califf, R.M. Biomarkers and Surrogate Endpoints: Developing Common Terminology and Definitions. JAMA 2016, 315, 1107–1108.
  4. Islam, Z.; van Belkum, A.; Wagenaar, J.A.; Cody, A.J.; de Boer, A.G.; Tabor, H.; Jacobs, B.C.; Talukder, K.A.; Endtz, H.P. Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh. PLoS ONE 2009, 4, e7257.
  5. Godschalk, P.C.; Kuijf, M.L.; Li, J.; St Michael, F.; Ang, C.W.; Jacobs, B.C.; Karwaski, M.F.; Brochu, D.; Moterassed, A.; Endtz, H.P.; et al. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect. Immun. 2007, 75, 1245–1254.
  6. Kawamura, N.; Piao, H.; Minohara, M.; Matsushita, T.; Kusunoki, S.; Matsumoto, H.; Ikenaka, K.; Mizunoe, Y.; Kira, J. Campylobacter jejuni DNA-binding protein from starved cells in Guillain-Barré syndrome patients. J. Neuroimmunol. 2011, 240–241, 74–78.
  7. Cosentino, G.; Di Stefano, V.; Presti, R.L.; Montana, M.; Todisco, M.; Gastaldi, M.; Cortese, A.; Alfonsi, E.; Tassorelli, C.; Fierro, B.; et al. Expression pattern of matrix metalloproteinases-2 and -9 and their tissue inhibitors in patients with chronic inflammatory demyelinating polyneuropathy. Neurol. Sci. 2021, 42, 4297–4300.
  8. Csurhes, P.A.; Sullivan, A.A.; Green, K.; Pender, M.P.; McCombe, P.A. T cell reactivity to P0, P2, PMP-22, and myelin basic protein in patients with Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1431–1439.
  9. Kwa, M.S.; van Schaik, I.N.; Brand, A.; Baas, F.; Vermeulen, M. Investigation of serum response to PMP22, connexin 32 and P(0) in inflammatory neuropathies. J. Neuroimmunol. 2001, 116, 220–225.
  10. Gabriel, C.M.; Gregson, N.A.; Hughes, R.A. Anti-PMP22 antibodies in patients with inflammatory neuropathy. J. Neuroimmunol. 2000, 104, 139–146.
  11. Inglis, H.R.; Csurhes, P.A.; McCombe, P.A. Antibody responses to peptides of peripheral nerve myelin proteins P0 and P2 in patients with inflammatory demyelinating neuropathy. J. Neurol. Neurosurg. Psychiatry 2007, 78, 419–422.
  12. Makowska, A.; Pritchard, J.; Sanvito, L.; Gregson, N.; Peakman, M.; Hayday, A.; Hughes, R. Immune responses to myelin proteins in Guillain-Barré syndrome. J. Neurol. Neurosurg. Psychiatry 2008, 79, 664–671.
  13. D’Urso, D.; Ehrhardt, P.; Müller, H.W. Peripheral myelin protein 22 and protein zero: A novel association in peripheral nervous system myelin. J. Neurosci. 1999, 19, 3396–3403.
  14. Dahle, C.; Ekerfelt, C.; Vrethem, M.; Samuelsson, M.; Ernerudh, J. T helper type 2 like cytokine responses to peptides from P0 and P2 myelin proteins during the recovery phase of Guillain-Barré syndrome. J. Neurol. Sci. 1997, 153, 54–60.
  15. Capodivento, G.; De Michelis, C.; Carpo, M.; Fancellu, R.; Schirinzi, E.; Severi, D.; Visigalli, D.; Franciotta, D.; Manganelli, F.; Siciliano, G.; et al. CSF sphingomyelin: A new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J. Neurol. Neurosurg. Psychiatry 2021, 92, 303–310.
  16. Nagai, A.; Murakawa, Y.; Terashima, M.; Shimode, K.; Umegae, N.; Takeuchi, H.; Kobayashi, S. Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology 2000, 55, 1828–1832.
  17. Yang, Y.R.; Liu, S.L.; Qin, Z.Y.; Liu, F.J.; Qin, Y.J.; Bai, S.M.; Chen, Z.Y. Comparative proteomics analysis of cerebrospinal fluid of patients with Guillain-Barré syndrome. Cell Mol. Neurobiol. 2008, 28, 737–744.
  18. Li, P.; Wang, S.; Zhang, R.; Pei, J.; Chen, L.; Cao, Y.; Zhang, H.; Yang, G. Identification of CSF biomarkers by proteomics in Guillain-Barré syndrome. Exp. Med. 2018, 15, 5177–5182.
  19. Yang, Y.; Liu, S.; Qin, Z.; Cui, Y.; Qin, Y.; Bai, S. Alteration of cystatin C levels in cerebrospinal fluid of patients with Guillain-Barré Syndrome by a proteomical approach. Mol. Biol. Rep. 2009, 36, 677–682.
  20. Bersano, A.; Allaria, S.; Nobile-Orazio, E. 14-3-3 protein in the CSF of inflammatory peripheral neuropathies. J. Peripher. Nerv. Syst. 2004, 9, 108.
  21. Bersano, A.; Fiorini, M.; Allaria, S.; Zanusso, G.; Fasoli, E.; Gelati, M.; Monaco, H.; Squintani, G.; Monaco, S.; Nobile-Orazio, E. Detection of CSF 14-3-3 protein in Guillain-Barré syndrome. Neurology 2006, 67, 2211–2216.
  22. Breville, G.; Lascano, A.M.; Roux-Lombard, P.; Vuilleumier, N.; Lalive, P.H. Interleukin 8, a Biomarker to Differentiate Guillain-Barré Syndrome From CIDP. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1031.
  23. Koga, M.; Yuki, N.; Ariga, T.; Hirata, K. Antibodies to GD3, GT3, and O-acetylated species in Guillain-Barré and Fisher’s syndromes: Their association with cranial nerve dysfunction. J. Neurol. Sci. 1999, 164, 50–55.
  24. Shahrizaila, N.; Kokubun, N.; Sawai, S.; Umapathi, T.; Chan, Y.C.; Kuwabara, S.; Hirata, K.; Yuki, N. Antibodies to single glycolipids and glycolipid complexes in Guillain-Barré syndrome subtypes. Neurology 2014, 83, 118–124.
  25. Wang, Y.; Sun, S.; Zhu, J.; Cui, L.; Zhang, H.L. Biomarkers of Guillain-Barré Syndrome: Some Recent Progress, More Still to Be Explored. Mediat. Inflamm. 2015, 2015, 564098.
  26. Sekiguchi, Y.; Uncini, A.; Yuki, N.; Misawa, S.; Notturno, F.; Nasu, S.; Kanai, K.; Noto, Y.; Fujimaki, Y.; Shibuya, K.; et al. Antiganglioside antibodies are associated with axonal Guillain-Barré syndrome: A Japanese-Italian collaborative study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 23–28.
  27. Rees, J.H.; Gregson, N.A.; Hughes, R.A. Anti-ganglioside GM1 antibodies in Guillain-Barré syndrome and their relationship to Campylobacter jejuni infection. Ann. Neurol. 1995, 38, 809–816.
  28. Jacobs, B.C.; van Doorn, P.A.; Schmitz, P.I.; Tio-Gillen, A.P.; Herbrink, P.; Visser, L.H.; Hooijkass, H.; van der Meché, F.G. Campylobacter jejuni infections and anti-GM1 antibodies in Guillain-Barré syndrome. Ann. Neurol. 1996, 40, 181–187.
  29. Chiba, A.; Kusunoki, S.; Obata, H.; Machinami, R.; Kanazawa, I. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barré syndrome: Clinical and immunohistochemical studies. Neurology 1993, 43, 1911–1917.
  30. Querol, L.; Nogales-Gadea, G.; Rojas-Garcia, R.; Martinez-Hernandez, E.; Diaz-Manera, J.; Suárez-Calvet, X.; Navas, M.; Araque, J.; Gallardo, E.; Illa, I. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 2013, 73, 370–380.
  31. Pascual-Goñi, E.; Fehmi, J.; Lleixà, C.; Martín-Aguilar, L.; Devaux, J.; Höftberger, R.; Delmont, E.; Doppler, K.; Sommer, C.; Radunovic, A.; et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy. Brain 2021, 144, 1183–1196.
  32. Cortese, A.; Lombardi, R.; Briani, C.; Callegari, I.; Benedetti, L.; Manganelli, F.; Luigetti, M.; Ferrari, S.; Clerici, A.M.; Marfia, G.A.; et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e639.
  33. Ogata, H.; Yamasaki, R.; Hiwatashi, A.; Oka, N.; Kawamura, N.; Matsuse, D.; Kuwahara, M.; Suzuki, H.; Kusunoki, S.; Fujimoto, Y.; et al. Characterization of IgG4 anti-neurofascin 155 antibody-positive polyneuropathy. Ann. Clin. Transl. Neurol. 2015, 2, 960–971.
  34. Devaux, J.J.; Miura, Y.; Fukami, Y.; Inoue, T.; Manso, C.; Belghazi, M.; Sekiguchi, K.; Kokubun, N.; Ichikawa, H.; Wong, A.H.; et al. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 2016, 86, 800–807.
  35. Miura, Y.; Devaux, J.J.; Fukami, Y.; Manso, C.; Belghazi, M.; Wong, A.H.; Yuki, N. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 2015, 138, 1484–1491.
  36. Shelly, S.; Klein, C.J.; Dyck, P.J.B.; Paul, P.; Mauermann, M.L.; Berini, S.E.; Howe, B.; Fryer, J.P.; Basal, E.; Bakri, H.M.; et al. Neurofascin-155 Immunoglobulin Subtypes: Clinicopathologic Associations and Neurologic Outcomes. Neurology 2021, 97, e2392–e2403.
  37. Ng, J.K.; Malotka, J.; Kawakami, N.; Derfuss, T.; Khademi, M.; Olsson, T.; Linington, C.; Odaka, M.; Tackenberg, B.; Prüss, H.; et al. Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 2012, 79, 2241–2248.
  38. Lonigro, A.; Devaux, J.J. Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 2009, 132, 260–273.
  39. Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments at a glance. J. Cell Sci. 2012, 125, 3257–3263.
  40. Petzold, A.; Hinds, N.; Murray, N.M.; Hirsch, N.P.; Grant, D.; Keir, G.; Thompson, E.J.; Reilly, M.M. CSF neurofilament levels: A potential prognostic marker in Guillain-Barré syndrome. Neurology 2006, 67, 1071–1073.
  41. Godelaine, J.; De Schaepdryver, M.; Bossuyt, X.; Van Damme, P.; Claeys, K.G.; Poesen, K. Prognostic value of neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Commun. 2021, 3.
  42. Wang, X.K.; Zhang, H.L.; Meng, F.H.; Chang, M.; Wang, Y.Z.; Jin, T.; Mix, E.; Zhu, J. Elevated levels of S100B, tau and pNFH in cerebrospinal fluid are correlated with subtypes of Guillain-Barré syndrome. Neurol. Sci. 2013, 34, 655–661.
  43. Limberg, M.; Disanto, G.; Barro, C.; Kuhle, J. Neurofilament Light Chain Determination from Peripheral Blood Samples. Methods Mol. Biol. 2016, 1304, 93–98.
  44. Kmezic, I.; Samuelsson, K.; Finn, A.; Upate, Z.; Blennow, K.; Zetterberg, H.; Press, R. Neurofilament light chain and total tau in the differential diagnosis and prognostic evaluation of acute and chronic inflammatory polyneuropathies. Eur. J. Neurol. 2022, 29, 2810–2822.
  45. Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. 2011, 17, 514–524.
  46. Kusunoki, S.; Chiba, A.; Hitoshi, S.; Takizawa, H.; Kanazawa, I. Anti-Gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle Nerve 1995, 18, 409–413.
  47. Samukawa, M.; Hamada, Y.; Kuwahara, M.; Takada, K.; Hirano, M.; Mitsui, Y.; Sonoo, M.; Kusunoki, S. Clinical features in Guillain-Barré syndrome with anti-Gal-C antibody. J. Neurol. Sci. 2014, 337, 55–60.
  48. Sterk, M.; Oenings, A.; Eymann, E.; Roos, W. Development of a new automated enzyme immunoassay for the determination of neuron-specific enolase. Anticancer Res. 1999, 19, 2759–2762.
  49. Nagamatsu, M.; Mokuno, K.; Sugimura, K.; Kiyosawa, K.; Aoki, S.; Takahashi, A.; Kato, K. Cerebrospinal fluid levels of S-100b protein and neuron-specific enolase in chronic inflammatory demyelinating polyneuropathy. Acta Neurol. Scand. 1995, 91, 483–487.
  50. Mokuno, K.; Kiyosawa, K.; Sugimura, K.; Yasuda, T.; Riku, S.; Murayama, T.; Yanagi, T.; Takahashi, A.; Kato, K. Prognostic value of cerebrospinal fluid neuron-specific enolase and S-100b protein in Guillain-Barré syndrome. Acta Neurol. Scand. 1994, 89, 27–30.
  51. Kropp, S.; Zerr, I.; Schulz-Schaeffer, W.J.; Riedemann, C.; Bodemer, M.; Laske, C.; Kretzschmar, H.A.; Poser, S. Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease. Neurosci. Lett. 1999, 261, 124–126.
  52. Elkarim, R.A.; Dahle, C.; Mustafa, M.; Press, R.; Zou, L.P.; Ekerfelt, C.; Ernerudh, J.; Link, H.; Bakhiet, M. Recovery from Guillain-Barré syndrome is associated with increased levels of neutralizing autoantibodies to interferon-gamma. Clin. Immunol. Immunopathol. 1998, 88, 241–248.
  53. Li, C.; Zhao, P.; Sun, X.; Che, Y.; Jiang, Y. Elevated levels of cerebrospinal fluid and plasma interleukin-37 in patients with Guillain-Barré syndrome. Mediat. Inflamm. 2013, 2013, 639712.
  54. Zhang, H.-L.; Wu, L.; Wu, X.; Zhu, J. Can IFN-γ be a therapeutic target in Guillain-Barré syndrome? Expert Opin. Ther. Targets 2014, 18, 355–363.
  55. Radhakrishnan, V.V.; Sumi, M.G.; Reuben, S.; Mathai, A.; Nair, M.D. Serum tumour necrosis factor-alpha and soluble tumour necrosis factor receptors levels in patients with Guillain-Barre syndrome. Acta Neurol. Scand. 2004, 109, 71–74.
  56. Deng, H.; Yang, X.; Jin, T.; Wu, J.; Hu, L.S.; Chang, M.; Sun, X.J.; Adem, A.; Winblad, B.; Zhu, J. The role of IL-12 and TNF-alpha in AIDP and AMAN. Eur. J. Neurol. 2008, 15, 1100–1105.
  57. Li, S.; Jin, T.; Zhang, H.L.; Yu, H.; Meng, F.; Concha Quezada, H.; Zhu, J. Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barré syndrome and downregulated by IVIg treatments. Mediat. Inflamm. 2014, 2014, 740947.
  58. Jander, S.; Stoll, G. Interleukin-18 is induced in acute inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 2001, 114, 253–258.
  59. Sun, T.; Chen, X.; Shi, S.; Liu, Q.; Cheng, Y. Peripheral Blood and Cerebrospinal Fluid Cytokine Levels in Guillain Barré Syndrome: A Systematic Review and Meta-Analysis. Front. Neurosci. 2019, 13, 717.
  60. Bao, L.; Lindgren, J.U.; van der Meide, P.; Zhu, S.; Ljunggren, H.G.; Zhu, J. The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol. 2002, 12, 420–429.
  61. Zhang, Z.Y.; Zhang, Z.; Fauser, U.; Schluesener, H.J. Expression of interleukin-16 in sciatic nerves, spinal roots and spinal cords of experimental autoimmune neuritis rats. Brain Pathol. 2009, 19, 205–213.
  62. Debnath, M.; Nagappa, M.; Murari, G.; Taly, A.B. IL-23/IL-17 immune axis in Guillain Barré Syndrome: Exploring newer vistas for understanding pathobiology and therapeutic implications. Cytokine 2018, 103, 77–82.
  63. Hohnoki, K.; Inoue, A.; Koh, C.S. Elevated serum levels of IFN-gamma, IL-4 and TNF-alpha/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J. Neuroimmunol. 1998, 87, 27–32.
  64. Beppu, M.; Sawai, S.; Misawa, S.; Sogawa, K.; Mori, M.; Ishige, T.; Satoh, M.; Nomura, F.; Kuwabara, S. Serum cytokine and chemokine profiles in patients with chronic inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 2015, 279, 7–10.
  65. Créange, A.; Bélec, L.; Clair, B.; Degos, J.D.; Raphaël, J.C.; Gherardi, R.K. Circulating transforming growth factor beta 1 (TGF-beta1) in Guillain-Barré syndrome: Decreased concentrations in the early course and increase with motor function. J. Neurol. Neurosurg. Psychiatry 1998, 64, 162–165.
  66. Min, Y.G.; Ju, W.; Seo, J.-W.; Ha, Y.-E.; Ban, J.-J.; Kwon, Y.N.; Jeong, H.-Y.; Shin, J.-Y.; Kim, S.-M.; Hong, Y.-H.; et al. Serum C3 complement levels predict prognosis and monitor disease activity in Guillain-Barré syndrome. J. Neurol. Sci. 2023, 444, 120512.
  67. Quast, I.; Keller, C.W.; Hiepe, F.; Tackenberg, B.; Lünemann, J.D. Terminal complement activation is increased and associated with disease severity in CIDP. Ann. Clin. Transl. Neurol. 2016, 3, 730–735.
  68. Querol, L.A.; Hartung, H.P.; Lewis, R.A.; van Doorn, P.A.; Hammond, T.R.; Atassi, N.; Alonso-Alonso, M.; Dalakas, M.C. The Role of the Complement System in Chronic Inflammatory Demyelinating Polyneuropathy: Implications for Complement-Targeted Therapies. Neurotherapeutics 2022, 19, 864–873.
  69. Undén, J.; Bellner, J.; Eneroth, M.; Alling, C.; Ingebrigtsen, T.; Romner, B. Raised serum S100B levels after acute bone fractures without cerebral injury. J. Trauma 2005, 58, 59–61.
  70. Kim, M.J.; Kim, J.H.; Jung, J.H.; Kim, S.E.; Kim, H.S.; Jang, M.K.; Park, S.H.; Lee, M.S.; Suk, K.T.; Kim, D.J.; et al. Serum S100B Levels in Patients with Liver Cirrhosis and Hepatic Encephalopathy. Diagnostics 2023, 13, 333.
  71. Sainaghi, P.P.; Collimedaglia, L.; Alciato, F.; Leone, M.A.; Naldi, P.; Molinari, R.; Monaco, F.; Avanzi, G.C. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barré syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine 2010, 51, 138–143.
  72. Orlikowski, D.; Chazaud, B.; Plonquet, A.; Poron, F.; Sharshar, T.; Maison, P.; Raphaël, J.C.; Gherardi, R.K.; Créange, A. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barré syndrome and experimental autoimmune neuritis. J. Neuroimmunol. 2003, 134, 118–127.
  73. Kieseier, B.C.; Tani, M.; Mahad, D.; Oka, N.; Ho, T.; Woodroofe, N.; Griffin, J.W.; Toyka, K.V.; Ransohoff, R.M.; Hartung, H.P. Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: A central role for IP-10. Brain 2002, 125, 823–834.
  74. Mahad, D.J.; Howell, S.J.; Woodroofe, M.N. Expression of chemokines in cerebrospinal fluid and serum of patients with chronic inflammatory demyelinating polyneuropathy. J. Neurol. Neurosurg. Psychiatry 2002, 73, 320–323.
  75. Musso, A.M.; Zanusso, G.L.; Bonazzi, M.L.; Tomelleri, G.; Bonetti, B.; Moretto, G.; Vio, M.; Monaco, S. Increased serum levels of ICAM-1, ELAM-1 and TNF-alpha in inflammatory disorders of the peripheral nervous system. Ital. J. Neurol. Sci. 1994, 15, 267–271.
  76. Feng, Y.; Feng, F.; Pan, S.; Zhang, J.; Li, W. Fingolimod ameliorates chronic experimental autoimmune neuritis by modulating inflammatory cytokines and Akt/mTOR/NF-κB signaling. Brain Behav. 2023, 13, e2965.
  77. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9.
  78. Lv, Z.; Shi, Q.; Huang, W.; Xing, C.; Hao, Y.; Feng, X.; Yang, Y.; Zhang, A.; Kong, Q.; Yuki, N.; et al. MicroRNA expression profiling in Guillain-Barré syndrome. J. Neuroimmunol. 2016, 301, 12–15.
  79. Huang, P.; Xu, M.; He, X.Y. Correlations between microRNA-146a and immunoglobulin and inflammatory factors in Guillain-Barré syndrome. J. Int. Med. Res. 2020, 48, 300060520904842.
  80. Dziadkowiak, E.; Baczyńska, D.; Wieczorek, M.; Olbromski, M.; Moreira, H.; Mrozowska, M.; Budrewicz, S.; Dzięgiel, P.; Barg, E.; Koszewicz, M. miR-31-5p as a Potential Circulating Biomarker and Tracer of Clinical Improvement for Chronic Inflammatory Demyelinating Polyneuropathy. Oxid. Med. Cell Longev. 2023, 2023, 2305163.
  81. Heldal, A.T.; Eide, G.E.; Romi, F.; Owe, J.F.; Gilhus, N.E. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS ONE 2014, 9, e114060.
  82. Behbehani, R.; Ali, A.; Al-Moosa, A. Ocular Myasthenia: Clinical Course and the Diagnostic Utility of Assaying Acetylcholine Receptor Antibodies. Neuroophthalmology 2022, 46, 220–226.
  83. Monte, G.; Spagni, G.; Damato, V.; Iorio, R.; Marino, M.; Evoli, A. Acetylcholine receptor antibody positivity rate in ocular myasthenia gravis: A matter of age? J. Neurol. 2021, 268, 1803–1807.
  84. Kordas, G.; Lagoumintzis, G.; Sideris, S.; Poulas, K.; Tzartos, S.J. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS ONE 2014, 9, e108327.
  85. Kostelidou, K.; Trakas, N.; Tzartos, S.J. Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: A combination of immunoadsorbents results in increased efficiency. J. Neuroimmunol. 2007, 190, 44–52.
  86. Tindall, R.S. Humoral immunity in myasthenia gravis: Biochemical characterization of acquired antireceptor antibodies and clinical correlations. Ann. Neurol. 1981, 10, 437–447.
  87. Rødgaard, A.; Nielsen, F.C.; Djurup, R.; Somnier, F.; Gammeltoft, S. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. Clin. Exp. Immunol 1987, 67, 82–88.
  88. Drachman, D.B.; Angus, C.W.; Adams, R.N.; Michelson, J.D.; Hoffman, G.J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 1978, 298, 1116–1122.
  89. Fazekas, A.; Komoly, S.; Bózsik, B.; Szobor, A. Myasthenia gravis: Demonstration of membrane attack complex in muscle end-plates. Clin. Neuropathol. 1986, 5, 78–83.
  90. Engel, A.G.; Arahata, K. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann. N. Y. Acad. Sci. 1987, 505, 326–332.
  91. Obaid, A.H.; Zografou, C.; Vadysirisack, D.D.; Munro-Sheldon, B.; Fichtner, M.L.; Roy, B.; Philbrick, W.M.; Bennett, J.L.; Nowak, R.J.; O’Connor, K.C. Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1169.
  92. Masuda, T.; Motomura, M.; Utsugisawa, K.; Nagane, Y.; Nakata, R.; Tokuda, M.; Fukuda, T.; Yoshimura, T.; Tsujihata, M.; Kawakami, A. Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 935–940.
  93. Tzartos, S.J.; Barkas, T.; Cung, M.T.; Kordossi, A.; Loutrari, H.; Marraud, M.; Papadouli, I.; Sakarellos, C.; Sophianos, D.; Tsikaris, V. The main immunogenic region of the acetylcholine receptor. Structure and role in myasthenia gravis. Autoimmunity 1991, 8, 259–270.
  94. Strijbos, E.; Verschuuren, J.; Kuks, J.B.M. Serum Acetylcholine Receptor Antibodies Before the Clinical Onset of Myasthenia Gravis. J. Neuromuscul. Dis. 2018, 5, 261–264.
  95. Lazaridis, K.; Tzartos, S.J. Myasthenia Gravis: Autoantibody Specificities and Their Role in MG Management. Front. Neurol. 2020, 11, 596981.
  96. Hong, Y.; Zisimopoulou, P.; Trakas, N.; Karagiorgou, K.; Stergiou, C.; Skeie, G.O.; Hao, H.J.; Gao, X.; Owe, J.F.; Zhang, X.; et al. Multiple antibody detection in ‘seronegative’ myasthenia gravis patients. Eur. J. Neurol. 2017, 24, 844–850.
  97. Mirian, A.; Nicolle, M.W.; Edmond, P.; Budhram, A. Comparison of fixed cell-based assay to radioimmunoprecipitation assay for acetylcholine receptor antibody detection in myasthenia gravis. J. Neurol. Sci. 2022, 432, 120084.
  98. Chang, T.; Leite, M.I.; Senanayake, S.; Gunaratne, P.S.; Gamage, R.; Riffsy, M.T.; Jacobson, L.W.; Adhikari, M.; Perera, S.; Vincent, A. Clinical and serological study of myasthenia gravis using both radioimmunoprecipitation and cell-based assays in a South Asian population. J. Neurol. Sci. 2014, 343, 82–87.
  99. Fichtner, M.L.; Hoarty, M.D.; Vadysirisack, D.D.; Munro-Sheldon, B.; Nowak, R.J.; O’Connor, K.C. Myasthenia gravis complement activity is independent of autoantibody titer and disease severity. PLoS ONE 2022, 17, e0264489.
  100. Hoch, W.; McConville, J.; Helms, S.; Newsom-Davis, J.; Melms, A.; Vincent, A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 2001, 7, 365–368.
  101. Rodolico, C.; Bonanno, C.; Toscano, A.; Vita, G. MuSK-Associated Myasthenia Gravis: Clinical Features and Management. Front. Neurol. 2020, 11, 660.
  102. Valenzuela, D.M.; Stitt, T.N.; DiStefano, P.S.; Rojas, E.; Mattsson, K.; Compton, D.L.; Nuñez, L.; Park, J.S.; Stark, J.L.; Gies, D.R.; et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 1995, 15, 573–584.
  103. Koneczny, I.; Stevens, J.A.; De Rosa, A.; Huda, S.; Huijbers, M.G.; Saxena, A.; Maestri, M.; Lazaridis, K.; Zisimopoulou, P.; Tzartos, S.; et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J. Autoimmun. 2017, 77, 104–115.
  104. König, N.; Stetefeld, H.R.; Dohmen, C.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Lee, D.-H.; Gerner, S.T.; Huttner, H.B.; et al. MuSK-antibodies are associated with worse outcome in myasthenic crisis requiring mechanical ventilation. J. Neurol. 2021, 268, 4824–4833.
  105. Meriggioli, M.N.; Sanders, D.B. Muscle autoantibodies in myasthenia gravis: Beyond diagnosis? Expert Rev. Clin. Immunol 2012, 8, 427–438.
  106. Bartoccioni, E.; Scuderi, F.; Minicuci, G.M.; Marino, M.; Ciaraffa, F.; Evoli, A. Anti-MuSK antibodies: Correlation with myasthenia gravis severity. Neurology 2006, 67, 505–507.
  107. Skriapa, L.; Zisimopoulou, P.; Trakas, N.; Grapsa, E.; Tzartos, S.J. Expression of extracellular domains of muscle specific kinase (MuSK) and use as immunoadsorbents for the development of an antigen-specific therapy. J. Neuroimmunol. 2014, 276, 150–158.
  108. Kwon, Y.N.; Woodhall, M.; Sung, J.-J.; Kim, K.-K.; Lim, Y.-M.; Kim, H.; Kim, J.-E.; Baek, S.-H.; Kim, B.-J.; Park, J.-S.; et al. Clinical pitfalls and serological diagnostics of MuSK myasthenia gravis. J. Neurol. 2023, 270, 1478–1486.
  109. Di Stefano, V.; Lupica, A.; Rispoli, M.G.; Di Muzio, A.; Brighina, F.; Rodolico, C. Rituximab in AChR subtype of myasthenia gravis: Systematic review. J. Neurol. Neurosurg. Psychiatry 2020, 91, 392–395.
  110. Marino, M.; Basile, U.; Spagni, G.; Napodano, C.; Iorio, R.; Gulli, F.; Todi, L.; Provenzano, C.; Bartoccioni, E.; Evoli, A. Long-Lasting Rituximab-Induced Reduction of Specific-But Not Total-IgG4 in MuSK-Positive Myasthenia Gravis. Front. Immunol. 2020, 11, 613.
  111. Shen, C.; Lu, Y.; Zhang, B.; Figueiredo, D.; Bean, J.; Jung, J.; Wu, H.; Barik, A.; Yin, D.M.; Xiong, W.C.; et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J. Clin. Investig. 2013, 123, 5190–5202.
  112. Tzartos, J.S.; Zisimopoulou, P.; Rentzos, M.; Karandreas, N.; Zouvelou, V.; Evangelakou, P.; Tsonis, A.; Thomaidis, T.; Lauria, G.; Andreetta, F.; et al. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann. Clin. Transl. Neurol. 2014, 1, 80–87.
  113. Zisimopoulou, P.; Evangelakou, P.; Tzartos, J.; Lazaridis, K.; Zouvelou, V.; Mantegazza, R.; Antozzi, C.; Andreetta, F.; Evoli, A.; Deymeer, F.; et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J. Autoimmun. 2014, 52, 139–145.
  114. Rivner, M.H.; Quarles, B.M.; Pan, J.X.; Yu, Z.; Howard, J.F., Jr.; Corse, A.; Dimachkie, M.M.; Jackson, C.; Vu, T.; Small, G.; et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle Nerve 2020, 62, 333–343.
  115. Rivner, M.H.; Liu, S.; Quarles, B.; Fleenor, B.; Shen, C.; Pan, J.; Mei, L. Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle Nerve 2017, 55, 430–432.
  116. Higuchi, O.; Hamuro, J.; Motomura, M.; Yamanashi, Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 2011, 69, 418–422.
  117. Li, M.; Han, J.; Zhang, Y.; Lv, J.; Zhang, J.; Zhao, X.; Ren, L.; Fang, H.; Yang, J.; Zhang, Y.; et al. Clinical analysis of Chinese anti-low-density-lipoprotein-receptor-associated protein 4 antibodies in patients with myasthenia gravis. Eur. J. Neurol. 2019, 26, 1296-e84.
  118. Kim, K.H.; Kim, S.W.; Cho, J.; Chung, H.Y.; Shin, H.Y. Anti-titin antibody is associated with more frequent hospitalization to manage thymoma-associated myasthenia gravis. Front. Neurol 2022, 13, 978997.
  119. Chen, X.J.; Qiao, J.; Xiao, B.G.; Lu, C.Z. The significance of titin antibodies in myasthenia gravis--correlation with thymoma and severity of myasthenia gravis. J. Neurol. 2004, 251, 1006–1011.
  120. Szczudlik, P.; Szyluk, B.; Lipowska, M.; Ryniewicz, B.; Kubiszewska, J.; Dutkiewicz, M.; Gilhus, N.E.; Kostera-Pruszczyk, A. Antititin antibody in early- and late-onset myasthenia gravis. Acta Neurol. Scand. 2014, 130, 229–233.
  121. Suzuki, S.; Satoh, T.; Yasuoka, H.; Hamaguchi, Y.; Tanaka, K.; Kawakami, Y.; Suzuki, N.; Kuwana, M. Novel autoantibodies to a voltage-gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J. Neuroimmunol. 2005, 170, 141–149.
  122. Suzuki, S.; Utsugisawa, K.; Yoshikawa, H.; Motomura, M.; Matsubara, S.; Yokoyama, K.; Nagane, Y.; Maruta, T.; Satoh, T.; Sato, H.; et al. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch. Neurol. 2009, 66, 1334–1338.
  123. Losen, M.; Stassen, M.H.; Martínez-Martínez, P.; Machiels, B.M.; Duimel, H.; Frederik, P.; Veldman, H.; Wokke, J.H.; Spaans, F.; Vincent, A.; et al. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain 2005, 128, 2327–2337.
  124. Gallardo, E.; Martínez-Hernández, E.; Titulaer, M.J.; Huijbers, M.G.; Martínez, M.A.; Ramos, A.; Querol, L.; Díaz-Manera, J.; Rojas-García, R.; Hayworth, C.R.; et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun. Rev. 2014, 13, 1003–1007.
  125. Labrador-Horrillo, M.; Martínez, M.A.; Selva-O’Callaghan, A.; Trallero-Araguás, E.; Grau-Junyent, J.M.; Vilardell-Tarrés, M.; Juarez, C. Identification of a novel myositis-associated antibody directed against cortactin. Autoimmun. Rev. 2014, 13, 1008–1012.
  126. Illa, I.; Cortés-Vicente, E.; Martínez, M.Á.; Gallardo, E. Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann. N. Y. Acad. Sci. 2018, 1412, 90–94.
  127. Gasperi, C.; Melms, A.; Schoser, B.; Zhang, Y.; Meltoranta, J.; Risson, V.; Schaeffer, L.; Schalke, B.; Kröger, S. Anti-agrin autoantibodies in myasthenia gravis. Neurology 2014, 82, 1976–1983.
  128. Wang, S.; Yang, H.; Guo, R.; Wang, L.; Zhang, Y.; Lv, J.; Zhao, X.; Zhang, J.; Fang, H.; Zhang, Q.; et al. Antibodies to Full-Length Agrin Protein in Chinese Patients With Myasthenia Gravis. Front. Immunol. 2021, 12, 753247.
  129. Sabre, L.; Punga, T.; Punga, A.R. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front. Immunol 2020, 11, 213.
  130. Ghirardello, A.; Zampieri, S.; Iaccarino, L.; Tarricone, E.; Bendo, R.; Gambari, P.F.; Doria, A. Anti-Mi-2 antibodies. Autoimmunity 2005, 38, 79–83.
  131. Liang, L.; Zhang, Y.M.; Chen, H.; Ye, L.F.; Li, S.S.; Lu, X.; Wang, G.C.; Peng, Q.L. Anti-Mi-2 antibodies characterize a distinct clinical subset of dermatomyositis with favourable prognosis. Eur. J. Derm. 2020.
  132. Ogawa-Momohara, M.; Muro, Y.; Akiyama, M. Anti-Mi-2 antibody titers and cutaneous manifestations in dermatomyositis. J. Cutan. Immunol. Allergy 2019, 2, 49–52.
  133. Lu, X.; Peng, Q.; Wang, G. Biomarkers of disease activity in dermatomyositis. Curr. Opin. Rheumatol. 2022, 34, 289–294.
  134. Satoh, M.; Tanaka, S.; Ceribelli, A.; Calise, S.J.; Chan, E.K. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy. Clin. Rev. Allergy Immunol. 2017, 52, 1–19.
  135. dos Passos Carvalho, M.I.C.; Shinjo, S.K. Frequency and clinical relevance of anti-Mi-2 autoantibody in adult Brazilian patients with dermatomyositis. Adv. Rheumatol. 2019, 59, 27.
  136. Roux, S.; Seelig, H.P.; Meyer, O. Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J. Rheumatol. 1998, 25, 395–396.
  137. Aggarwal, R.; Cassidy, E.; Fertig, N.; Koontz, D.C.; Lucas, M.; Ascherman, D.P.; Oddis, C.V. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann. Rheum. Dis. 2014, 73, 227–232.
  138. Witt, L.J.; Curran, J.J.; Strek, M.E. The Diagnosis and Treatment of Antisynthetase Syndrome. Clin. Pulm. Med. 2016, 23, 218–226.
  139. Love, L.A.; Leff, R.L.; Fraser, D.D.; Targoff, I.N.; Dalakas, M.; Plotz, P.H.; Miller, F.W. A new approach to the classification of idiopathic inflammatory myopathy: Myositis-specific autoantibodies define useful homogeneous patient groups. Medicine 1991, 70, 360–374.
  140. Mecoli, C.A.; Albayda, J.; Tiniakou, E.; Paik, J.J.; Zahid, U.; Danoff, S.K.; Casciola-Rosen, L.; Casal-Dominguez, M.; Pak, K.; Pinal-Fernandez, I.; et al. Myositis Autoantibodies: A Comparison of Results From the Oklahoma Medical Research Foundation Myositis Panel to the Euroimmun Research Line Blot. Arthritis Rheumatol. 2020, 72, 192–194.
  141. Shinoda, K.; Okumura, M.; Yamaguchi, S.; Matsui, A.; Tsuda, R.; Hounoki, H.; Suzuki, S.; Tobe, K. A Comparison of Line Blots, Enzyme-linked Immunosorbent, and RNA-immunoprecipitation Assays of Antisynthetase Antibodies in Serum Samples from 44 Patients. Intern. Med. 2022, 61, 313–322.
  142. Fredi, M.; Cavazzana, I.; Ceribelli, A.; Cavagna, L.; Barsotti, S.; Bartoloni, E.; Benucci, M.; De Stefano, L.; Doria, A.; Emmi, G.; et al. An Italian Multicenter Study on Anti-NXP2 Antibodies: Clinical and Serological Associations. Clin. Rev. Allergy Immunol 2022, 63, 240–250.
  143. Yan, T.T.; Zhang, X.; Yang, H.H.; Sun, W.J.; Liu, L.; Du, Y.; Xue, J. Association of anti-NXP2 antibody with clinical characteristics and outcomes in adult dermatomyositis: Results from clinical applications based on a myositis-specific antibody. Clin. Rheumatol. 2021, 40, 3695–3702.
  144. Ghirardello, A.; Bettio, S.; Bassi, N.; Gatto, M.; Beggio, M.; Lundberg, I.; Vattemi, G.; Iaccarino, L.; Punzi, L.; Doria, A. Autoantibody testing in patients with myositis: Clinical accuracy of a multiparametric line immunoassay. Clin. Exp. Rheumatol. 2017, 35, 176–177.
  145. Mahler, M.; Betteridge, Z.; Bentow, C.; Richards, M.; Seaman, A.; Chinoy, H.; McHugh, N. Comparison of Three Immunoassays for the Detection of Myositis Specific Antibodies. Front. Immunol. 2019, 10, 848.
  146. Li, L.; Wang, Q.; Yang, F.; Wu, C.; Chen, S.; Wen, X.; Liu, C.; Li, Y. Anti-MDA5 antibody as a potential diagnostic and prognostic biomarker in patients with dermatomyositis. Oncotarget 2017, 8, 26552–26564.
  147. Nombel, A.; Fabien, N.; Coutant, F. Dermatomyositis With Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Front. Immunol. 2021, 12, 773352.
  148. Ladislau, L.; Suárez-Calvet, X.; Toquet, S.; Landon-Cardinal, O.; Amelin, D.; Depp, M.; Rodero, M.P.; Hathazi, D.; Duffy, D.; Bondet, V.; et al. JAK inhibitor improves type I interferon induced damage: Proof of concept in dermatomyositis. Brain 2018, 141, 1609–1621.
  149. Shimizu, K.; Kobayashi, T.; Kano, M.; Hamaguchi, Y.; Takehara, K.; Matsushita, T. Anti-transcriptional intermediary factor 1-γ antibody as a biomarker in patients with dermatomyositis. J. Derm. 2020, 47, 64–68.
  150. Targoff, I.N.; Mamyrova, G.; Trieu, E.P.; Perurena, O.; Koneru, B.; O’Hanlon, T.P.; Miller, F.W.; Rider, L.G. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum 2006, 54, 3682–3689.
  151. Fujimoto, M.; Hamaguchi, Y.; Kaji, K.; Matsushita, T.; Ichimura, Y.; Kodera, M.; Ishiguro, N.; Ueda-Hayakawa, I.; Asano, Y.; Ogawa, F.; et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum 2012, 64, 513–522.
  152. Selickaja, S.; Galindo-Feria, A.S.; Dani, L.; Mimori, T.; Rönnelid, J.; Holmqvist, M.; Lundberg, I.E.; Venalis, P. ELISA, protein immunoprecipitation and line blot assays for anti-TIF1-gamma autoantibody detection in cancer-associated dermatomyositis. Rheumatology 2022, 61, 4991–4996.
  153. Muro, Y.; Sugiura, K.; Nara, M.; Sakamoto, I.; Suzuki, N.; Akiyama, M. High incidence of cancer in anti-small ubiquitin-like modifier activating enzyme antibody-positive dermatomyositis. Rheumatology 2015, 54, 1745–1747.
  154. Ge, Y.; Lu, X.; Shu, X.; Peng, Q.; Wang, G. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci. Rep. 2017, 7, 188.
  155. Tarricone, E.; Ghirardello, A.; Rampudda, M.; Bassi, N.; Punzi, L.; Doria, A. Anti-SAE antibodies in autoimmune myositis: Identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J. Immunol. Methods 2012, 384, 128–134.
  156. Suzuki, S.; Nishikawa, A.; Kuwana, M.; Nishimura, H.; Watanabe, Y.; Nakahara, J.; Hayashi, Y.K.; Suzuki, N.; Nishino, I. Inflammatory myopathy with anti-signal recognition particle antibodies: Case series of 100 patients. Orphanet J. Rare Dis. 2015, 10, 61.
  157. Kassardjian, C.D.; Lennon, V.A.; Alfugham, N.B.; Mahler, M.; Milone, M. Clinical Features and Treatment Outcomes of Necrotizing Autoimmune Myopathy. JAMA Neurol. 2015, 72, 996–1003.
  158. Ma, X.; Bu, B.T. Anti-SRP immune-mediated necrotizing myopathy: A critical review of current concepts. Front. Immunol. 2022, 13, 1019972.
  159. Limaye, V.; Bundell, C.; Hollingsworth, P.; Rojana-Udomsart, A.; Mastaglia, F.; Blumbergs, P.; Lester, S. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 2015, 52, 196–203.
  160. Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.; Lloyd, T.E.; Mammen, A.L. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum 2012, 64, 4087–4093.
  161. Musset, L.; Allenbach, Y.; Benveniste, O.; Boyer, O.; Bossuyt, X.; Bentow, C.; Phillips, J.; Mammen, A.; Van Damme, P.; Westhovens, R.; et al. Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: A history of statins and experience from a large international multi-center study. Autoimmun. Rev. 2016, 15, 983–993.
  162. Prieto-Peña, D.; Ocejo-Vinyals, J.G.; Mazariegos-Cano, J.; Pelayo-Negro, A.L.; Remuzgo-Martínez, S.; Genre, F.; García-Dorta, A.; Renuncio-García, M.; Martínez-Taboada, V.M.; García-Ibarbia, C.; et al. Epidemiological and genetic features of anti-3-hydroxy-3-methylglutaryl-CoA reductase necrotizing myopathy: Single-center experience and literature review. Eur. J. Intern. Med. 2022, 101, 86–92.
  163. Kadoya, M.; Hida, A.; Hashimoto Maeda, M.; Taira, K.; Ikenaga, C.; Uchio, N.; Kubota, A.; Kaida, K.; Miwa, Y.; Kurasawa, K.; et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e290.
  164. Szczesny, P.; Barsotti, S.; Nennesmo, I.; Danielsson, O.; Dastmalchi, M. Screening for Anti-HMGCR Antibodies in a Large Single Myositis Center Reveals Infrequent Exposure to Statins and Diversiform Presentation of the Disease. Front. Immunol. 2022, 13, 866701.
  165. Mohassel, P.; Mammen, A.L. Anti-HMGCR Myopathy. J. Neuromuscul. Dis. 2018, 5, 11–20.
  166. Peng, Q.L.; Zhang, Y.L.; Shu, X.M.; Yang, H.B.; Zhang, L.; Chen, F.; Lu, X.; Wang, G.C. Elevated Serum Levels of Soluble CD163 in Polymyositis and Dermatomyositis: Associated with Macrophage Infiltration in Muscle Tissue. J. Rheumatol. 2015, 42, 979–987.
  167. Enomoto, Y.; Suzuki, Y.; Hozumi, H.; Mori, K.; Kono, M.; Karayama, M.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; Nakamura, Y.; et al. Clinical significance of soluble CD163 in polymyositis-related or dermatomyositis-related interstitial lung disease. Arthritis Res. 2017, 19, 9.
  168. Kawasumi, H.; Katsumata, Y.; Nishino, A.; Hirahara, S.; Kawaguchi, Y.; Kuwana, M.; Yamanaka, H. Association of Serum Soluble CD163 with Polymyositis and Dermatomyositis, Especially in Anti-MDA5 Antibody-positive Cases. J. Rheumatol. 2018, 45, 947–955.
  169. Paul, P.; Liewluck, T.; Ernste, F.C.; Mandrekar, J.; Milone, M. Anti-cN1A antibodies do not correlate with specific clinical, electromyographic, or pathological findings in sporadic inclusion body myositis. Muscle Nerve 2021, 63, 490–496.
  170. Tawara, N.; Yamashita, S.; Zhang, X.; Korogi, M.; Zhang, Z.; Doki, T.; Matsuo, Y.; Nakane, S.; Maeda, Y.; Sugie, K.; et al. Pathomechanisms of anti-cytosolic 5’-nucleotidase 1A autoantibodies in sporadic inclusion body myositis. Ann. Neurol. 2017, 81, 512–525.
  171. Amlani, A.; Choi, M.Y.; Tarnopolsky, M.; Brady, L.; Clarke, A.E.; Garcia-De La Torre, I.; Mahler, M.; Schmeling, H.; Barber, C.E.; Jung, M.; et al. Anti-NT5c1A Autoantibodies as Biomarkers in Inclusion Body Myositis. Front. Immunol. 2019, 10, 745.
  172. Herbert, M.K.; Stammen-Vogelzangs, J.; Verbeek, M.M.; Rietveld, A.; Lundberg, I.E.; Chinoy, H.; Lamb, J.A.; Cooper, R.G.; Roberts, M.; Badrising, U.A.; et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 2016, 75, 696–701.
  173. Parkes, J.E.; Thoma, A.; Lightfoot, A.P.; Day, P.J.; Chinoy, H.; Lamb, J.A. MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. BMC Rheumatol. 2020, 4, 25.
  174. Di Stefano, V.; Barbone, F.; Ferrante, C.; Telese, R.; Vitale, M.; Onofrj, M.; Di Muzio, A. Inflammatory polyradiculoneuropathies: Clinical and immunological aspects, current therapies, and future perspectives. Eur. J. Inflamm. 2020, 18, 2058739220942340.
  175. Compston, D.A.; Vincent, A.; Newsom-Davis, J.; Batchelor, J.R. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 1980, 103, 579–601.
  176. Vincent, A.; Newsom-Davis, J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. Clin. Exp. Immunol. 1982, 49, 257–265.
  177. Vincent, A.; Newsom-Davis, J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: Results in 153 validated cases and 2967 diagnostic assays. J. Neurol. Neurosurg. Psychiatry 1985, 48, 1246–1252.
  178. Carr, A.S.; Cardwell, C.R.; McCarron, P.O.; McConville, J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010, 10, 46.
  179. Batocchi, A.P.; Evoli, A.; Palmisani, M.T.; Lo Monaco, M.; Bartoccioni, M.; Tonali, P. Early-onset myasthenia gravis: Clinical characteristics and response to therapy. Eur J. Pediatr. 1990, 150, 66–68.
  180. Aarli, J.A. Late-onset myasthenia gravis: A changing scene. Arch. Neurol. 1999, 56, 25–27.
  181. Rider, L.G.; Ruperto, N.; Pistorio, A.; Erman, B.; Bayat, N.; Lachenbruch, P.A.; Rockette, H.; Feldman, B.M.; Huber, A.M.; Hansen, P.; et al. 2016 ACR-EULAR adult dermatomyositis and polymyositis and juvenile dermatomyositis response criteria—Methodological aspects. Rheumatology 2017, 56, 1884–1893.
  182. Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 2021, 7, 86.
  183. Volochayev, R.; Csako, G.; Wesley, R.; Rider, L.G.; Miller, F.W. Laboratory Test Abnormalities are Common in Polymyositis and Dermatomyositis and Differ Among Clinical and Demographic Groups. Open Rheumatol. J. 2012, 6, 54–63.
More
Information
Subjects: Neurosciences
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , ,
View Times: 171
Revisions: 2 times (View History)
Update Date: 23 Oct 2023
1000/1000
Video Production Service