Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1963 2023-10-16 13:43:06 |
2 update references and layout -10 word(s) 1953 2023-10-17 03:26:01 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Danciu, C.; Tulbure, A.; Stanciu, M.; Antonie, I.; Capatana, C.; Zerbeș, M.V.; Giurea, R.; Rada, E.C. Added-Value Compounds for Food Industry. Encyclopedia. Available online: https://encyclopedia.pub/entry/50356 (accessed on 04 July 2024).
Danciu C, Tulbure A, Stanciu M, Antonie I, Capatana C, Zerbeș MV, et al. Added-Value Compounds for Food Industry. Encyclopedia. Available at: https://encyclopedia.pub/entry/50356. Accessed July 04, 2024.
Danciu, Cristina-Anca, Anca Tulbure, Mirela-Aurora Stanciu, Iuliana Antonie, Ciprian Capatana, Mihai Victor Zerbeș, Ramona Giurea, Elena Cristina Rada. "Added-Value Compounds for Food Industry" Encyclopedia, https://encyclopedia.pub/entry/50356 (accessed July 04, 2024).
Danciu, C., Tulbure, A., Stanciu, M., Antonie, I., Capatana, C., Zerbeș, M.V., Giurea, R., & Rada, E.C. (2023, October 16). Added-Value Compounds for Food Industry. In Encyclopedia. https://encyclopedia.pub/entry/50356
Danciu, Cristina-Anca, et al. "Added-Value Compounds for Food Industry." Encyclopedia. Web. 16 October, 2023.
Added-Value Compounds for Food Industry
Edit

In an increasingly resource-constrained era, using waste and by-products from grain processing has a wide appeal. This is due to the nutritive value and economic aspects of this process and due to its compatibility with the trend towards more sustainable food systems.

grain waste grain by-products food industry product quality assurance

1. Introduction

In the era of anthropogenic waste generation, an exponential increase in the need to fulfill the nutritional basics of humans has prompted the scientific community to study emerging themes and hot issues regarding this global challenge [1][2][3][4][5][6].
Worldwide, the human diet is supported by staple cereals obtained from seeds of the Gramineae family, such as wheat (Triticum spp.), corn or maize (Zea spp.), barley (Hordeum spp.), rice (Oryza spp.), rye (Secale spp.), oat (Avena spp.), millet (Pennisetum spp.), sorghum (Sorghum spp.), and a hybrid of wheat and rye, namely, triticale (Triti-cosecale Wittmack). Cereal grains contribute significantly to the global food pool in terms of global food security and nutrition. Most cereals are a staple source for various amounts of proteins, fats, minerals, and vitamins and are an important provider of dietary energy [7]. In total, the percentage of dietary energy provided by cereals appears to have remained relatively the same over time, representing about 50% of dietary energy supply [8][9]. Worldwide, for over one billion people, maize is a staple, and its grain energy contribution to the diet can exceed 50% [7]. In second place, in terms of cultivated area and human consumption, wheat represents almost 20% of the total dietary calories and proteins globally [10]. Rice contributes 20% of global calories and is an important source of minerals and vitamins. Bran contains bioactive phytochemicals and essential food components [11].
Worldwide, corn is the most cultivated and used plant, constituting a basic ingredient in many gastronomic cultures in addition to being important in animal feed, the production of biofuel, and many other industrial uses. As a staple food, it is estimated that its production is over 1136.3 million metric tons (from September 2020 to August 2021), which is much more than wheat production (776.8 million metric tons) or rice production (504.4 million metric tons) [12]. In the latest revised global forecast, according to the FAO, the total production of cereals in 2022 was 2774 million tons, 1.3% less than the previous year [13].
The forecast for global cereal utilization in 2022/23 is 2780 million tons. This indicates a decline of 0.6% from the 2021/22 level but is greater than the total cereal production of 2022 [13]. One of the reasons that triggered the bibliographic research is the fact that, according to the latest data published by the FAO in March 2023, this excess of cereal consumption—more than the quantity produced, the demand, and the reserve—was predicted. Therefore, under the conditions of an increased demand for resources to feed a continuously growing population, solutions must be sought for the use of all natural sources, making the most of their potential. With this desire, the United Nations established, in 2015, the Sustainable Development Goal (SDG) 12, to “Ensure sustainable consumption and production patterns”. Target 12.3, which refers to food waste, stipulates that by 2030, per capita global food waste at the retail and consumer levels will be halved, and food losses from the production flow will be reduced along with those from the supply chains, including post-harvest losses. The European Commission considers food waste as a priority area in order to achieve the Sustainable Development Goal target in agreement with the European Circular Economy Action Plan [14]. In addition, the European Commission amended the Waste Framework Directive 2008/98/EC, establishing as mandatory the monitoring and reporting of food waste by member states to create a baseline for monitoring the achievement of food waste reduction objectives and help identify relevant food waste streams to be utilized in a circular economy perspective [14][15][16][17]. In the European Union, the main grains processed from 2010 to 2020 were wheat, maize, rice, rye, barley, oats, and their related products. Figure 1 shows the quantity of each.
Figure 1. Processing of wheat, maize, rice, rye, barley, oats, and related products in the European Union (27 member states).
Grain processing must and can be a sustainable option to convert waste and by-products into value-added resources for the food industry and for their valorization under the circular economy (CE) concept. Innovative methods, on an industrial scale, for the recovery of food waste—instead of its disposal—must be developed in agreement with CE concepts. Currently, only conventional methods are applied on an industrial scale, providing animal feed, biofuel production, or aerobic/anaerobic treatments, which represents only a partial utilization of cereal processing waste [18][19][20][21][22].

2. Added-Value Compounds for Food Industry

Grain processing wastes and by-products can not only be directly incorporated into food products but can also be used for the extraction of value-added compounds that can be introduced into the food industry production process as functional food ingredients, as shown in Figure 2.
Figure 2. Schematic diagram showing food industry applications of added-value compounds from grain waste and grain by-products (original source).
The treatment of cereal industrial wastes uses physicochemical and biological methods at high conversion costs [20][23][24]. Therefore, the extraction and use of these valuable compounds are less frequent on an industrial scale in the food industry and more frequent in biorefineries for conversion into fuel as a renewable source of energy. Currently, cereal by-products have been linked to health promotion due to their rich content of fiber, minerals, vitamins, phenolic compounds, phytosterols, policosanols, and other phytochemicals responsible for reducing oxidative stress and mediating the inflammatory process and excretion and absorption of lipids [25]. For this reason, researches related to the recovery of the biological compounds from grain processing waste and by-products also address to the benefits brought to the improvement of products in the food industry.

2.1. Carbohydrate Fraction

The grain processing chain generates significant amounts of waste known as lignocellulosic biomass [14][26]. Grain wastes that include carbohydrate fractions, especially hemicelluloses, are bran, straw, and hulls/husks.
Of total agricultural waste, 20–35% is hemicellulose, a dietary fiber that represents the most promising source for valuable applications [27]. Industrial-scale applications of hemicelluloses are still underutilized at this point [28]. Hemicellulose demonstrates excellent properties, including biodegradability, biocompatibility, and bioactivity, which also enable it to be applied in the food industry [29], as presented in Table 1.
Beta-glucans and arabinoxylans from cereals make them valuable components of dietary fibers. Because of high processing costs, there is a limited use of pure preparations of beta-glucans as a food ingredient; instead, the use of bulk fractions and the use of novel separation and purification processes may bring effective solutions [30]. The extraction of hemicelluloses (such as arabinoxylans and β-glucans) from the cell walls and from fractionation and purification can be used in various food applications. The extraction process is possible through four main types of methods: water extraction, which can be carried out at low or high temperatures, chemical extraction (with acids, alkalis, or organic solvents), specific enzymes’ extraction, or mechanical treatments (microwave, ultrasound, extrusion) [27][31]. Herrera-Balandrano et al. demonstrated that it is possible to add impure hemicellulose fractions to food products to improve sensory and chemical properties; for example, according to a study, the addition of 0.15% and 0.30% nixtamalized corn bran can increase the antioxidant capacity, phenolic content, and physicochemical properties of Frankfurter sausages [32].
Table 1. Applications of carbohydrate fractions from grain by-products and waste in the food industry.
Organic acid (linoleic, linolenic, palmitic, oleic, stearic, lactic, and succinic acids), another carbohydrate fraction, is obtained by fermentative production and is used as an acidulant, flavoring agent, or preservative in the food industry, as depicted in Table 1.
Carbohydrate fractions from cereal processing by-products and waste can also be an important source for the food packaging industry due to the lignocellulosic materials that they contain, which can be utilized as low-cost substrates for the production of PHA-polyhydroxyalkanoates [23] and PHB-poly-3-hyrdroxybutyrate (Table 2). Enzymatic actions transform the lignocellulosic material in fermentable sugars and then the material is fermented by different bacteria (Enterococcus, Lactobacillus, Leuconostoc, and Streptococcus) and fungi (Rhizopus Monilina and Mucor) [23][52]. The first report of biopolymer production from mild acid-pretreated rice straw (using Bacillus firmus NII 0830) [53] emphasized the possibility of the replacement of petrochemical-derived plastics by the biopolymer poly-3-hydroxybutyrate (PHB). Maximum PHB production was 1.697 g/L from 1.9 g/L biomass; the highest value (89% of biomass) was reported from Bacillus species. And yet, the high operational cost of this PHA is a big disadvantage in industrial production and commercialization [23][54].
Table 2. Applications of carbohydrate fractions from grain by-products and waste in food packaging.

2.2. Non-Carbohydrate Fraction

The food industry mainly exploits the non-carbohydrate fraction represented by proteins and phenolic compounds extracted from grain processing waste and by-products (Table 3).
Table 3. Applications of non-carbohydrate fraction from grain by-products/waste in the food industry.
The protein extracted from corn by-products has a unique structure, molecular shape, and solubility, forming a uniform, transparent, and soft film with good oil and water retention characteristics that make it useful in food preservation [12]. One of the best potential sources of vegetable protein for the food industry is brewer’s spent grain, due to its high protein content, which represents about 20% in dry matter [79]. The food industry can benefit from the use of protein hydrolysates as texture improvers and food additives [66]. Considering the importance of these added-value compounds for the food industry, many studies have concentrated on efficient extraction techniques such as alkaline extraction [69], enzyme-assisted extraction [71], microwave-assisted enzymatic extraction [72][80], and sequential aqueous and alkaline (110 mM NaOH) extraction followed by isoelectric precipitation (pH 3.8), [73] and sodium hydroxide (110 mM) and ultrasound treatment (power 250 W, duty cycle 60%, 20 min/25 °C) [74].
Phenolic compounds can be found mainly in bran, so after its separation from the grain, an extraction process is required. The extraction of polyphenols from cereal by-products can be carried out with various techniques: acid and alkaline hydrolysis [81][82], ultrasound assisted extraction [83][84] microwave-assisted extraction [85], extraction with supercritical carbon dioxide [86], extraction by steam explosion treatment of grain by-products [87], and enzymatic hydrolysis [88]. Wheat and oat bran contain the main phenolic compounds, represented by phenolic acids (ferulic acid, caffeic acid, vanillic acid, p-coumaric acid, dihydroxybenzoic acid, and avenanthramide) and flavonoid subclasses [89]. In rye bran, the most important phenolic compounds (for antioxidant activity) include the group represented by p-hydroxybenzoic acid and its derivatives (especially vanillic and syringic acid) and the group represented by p-coumaric acid and its derivatives (ferulic and caffeic acid) [90]. Phenolic acids, as antioxidant compounds recovered from grain waste and by-products, are used in the food industry as additives to extend the shelf life of food [26]. Vanillin from ferulic acid through biotechnical processes is very often used as a flavoring in the food industry [48].

References

  1. Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318.
  2. Liu, F.; Li, M.; Wang, Q.; Yan, J.; Han, S.; Ma, C.; Ma, P.; Liu, X.; McClements, D.J. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit. Rev. Food Sci. Nutr. 2022, 63, 6423–6444.
  3. Nenciu, F.; Voicea, I.; Cocarta, D.M.; Vladut, V.N.; Matache, M.G.; Arsenoaia, V.-N. “Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture. Sustainability 2022, 14, 13396.
  4. Gautam, M.; Agrawal, M. Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario. In Carbon Footprint Case Studies; Environmental Footprints and Eco-Design of Products and Processes; Springer: Singapore, 2021; pp. 123–160.
  5. Andreottola, G.; Ragazzi, M.; Foladori, P.; Villa, R.; Langone, M.; Rada, E.C. The unit intregrated approch for OFMSW treatment. UPB Sci. Bull. Ser. C Electr. Eng. 2012, 74, 19–26.
  6. Cocarta, D.M.; Rada, E.C.; Ragazzi, M.; Badea, A.; Apostol, T. A contribution for a correct vision of health impact from municipal solid waste treatments. Environ. Technol. 2009, 30, 963–968.
  7. Poole, N.; Donovan, J.; Erenstein, O. Viewpoint: Agri-Nutrition Research: Revisiting the Contribution of Maize and Wheat to Human Nutrition and Health. Food Policy 2021, 100, 101976.
  8. Global and Regional Food Consumption Patterns and Trends. Available online: https://www.fao.org/3/ac911e/ac911e05.htm (accessed on 6 March 2023).
  9. Guerrini, A.; Burlini, I.; Huerta Lorenzo, B.; Grandini, A.; Vertuani, S.; Tacchini, M.; Sacchetti, G. Antioxidant and Antimicrobial Extracts Obtained from Agricultural By-Products: Strategies for a Sustainable Recovery and Future Perspectives. Food Bioprod. Process. 2020, 124, 397–407.
  10. Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Sec. 2013, 5, 291–317.
  11. Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, 2–3.
  12. Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive Utilization of Corn Starch Processing By-Products: A Review. Grain Oil Sci. Technol. 2021, 4, 89–107.
  13. Food and Agriculture Organization of the United Nations FAO Cereal Supply and Demand Brief World Food Situation. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 6 March 2023).
  14. Ouro-Salim, O.; Guarnieri, P. Circular economy of food waste: A literature review. Environ Qual. Manag. 2022, 32, 225–242.
  15. Teigiserova, D.A.; Bourgine, J.; Thomsen, M. Closing the Loop of Cereal Waste and Residues with Sustainable Technologies: An Overview of Enzyme Production via Fungal Solid-State Fermentation. Sustain. Prod. Consum. 2021, 27, 845–857.
  16. Palermito, F.; Magaril, E.; Conti, F.; Kiselev, A.; Rada, E.C. Circular economy concepts applied to waste anaerobic digestion plants. WIT Transact. Ecol. Environ. 2021, 254, 57–68.
  17. Pakseresht, A.; Ahmadi Kaliji, S.; Xhakollari, V. How Blockchain Facilitates the Transition toward Circular Economy in the Food Chain? Sustainability 2022, 14, 11754.
  18. Shelepina, N.V.; Gorina, L.N. Scientific rationale for reducing the negative impact on the environment of grain processing industries through the rational use of secondary raw materials. IOP Conf. Series: Earth Environ Sci. 2022, 1154, 012035.
  19. Rehal, J.; Kaur, K.; Kaur, P. Cereal Grains: Composition, Nutritional Attributes, and Potential Applications. In Cereals and Their By-Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; p. 354.
  20. Kliopova, I.; Staniškis, J.K.; Petraškiene, V. Solid recovered fuel production from biodegradable waste in grain processing industry. Waste Manag. Res. 2013, 31, 384–392.
  21. Jain, S.; Gualandris, J. When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada. J. Ind. Ecol. 2023, 27, 522–534.
  22. Zabaniotou, A.; Kamaterou, P. Food Waste Valorization Advocating Circular Bioeconomy—A Critical Review of Potentialities and Perspectives of Spent Coffee Grounds Biorefinery. J. Clean. Prod. 2019, 211, 1553–1566.
  23. Hassan, G.; Shabbir, M.A.; Ahmad, F.; Pasha, I.; Aslam, N.; Ahmad, T.; Rehman, A.; Manzoor, M.F.; Inam-Ur-Raheem, M.; Aadil, R.M. Cereal Processing Waste, an Environmental Impact and Value Addition Perspectives: A Comprehensive Treatise. Food Chem. 2021, 363, 130352.
  24. Rada, E.C.; Ragazzi, M.; Fiori, L.; Antolini, D. Bio-drying of grape marc and other biomass: A comparison. Water Sci. Technol. 2009, 60, 1065–1070.
  25. Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216.
  26. Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Salanță, L.C.; Chiș, M.S.; Pop, C.R.; Borșa, A.; Diaconeasa, Z.; Vodnar, D.C. Cereal Waste Valorization through Conventional and Current Extraction Techniques—An Up-to-Date Overview. Foods 2022, 11, 2454.
  27. Arzami, A.N.; Ho, T.M.; Mikkonen, K.S. Valorization of Cereal By-Product Hemicelluloses: Fractionation and Purity Con-siderations. Food Res. Int. 2022, 151, 110818.
  28. Qaseem, M.F.; Shaheen, H.; Wu, A.M. Cell Wall Hemicellulose for Sustainable Industrial Utilization. Renew Sustain. Energ. Rev. 2021, 144, 110996.
  29. Luo, Y.; Li, Z.; Li, X.; Liu, X.; Fan, J.; Clark, J.H.; Hu, C. The Production of Furfural Directly from Hemicellulose in Lignocel-lulosic Biomass: A Review. Catal. Today 2019, 319, 14–24.
  30. Roth, M.; Jekle, M.; Becker, T. Opportunities for Upcycling Cereal Byproducts with Special Focus on Distiller’s Grains. Trends Food Sci. Technol. 2019, 91, 282–293.
  31. Valoppi, F.; Wang, Y.J.; Alt, G.; Peltonen, L.J.; Mikkonen, K.S. Valorization of Native Soluble and Insoluble Oat Side Streams for Stable Suspensions and Emulsions. Food Bioproc. Technol. 2021, 14, 751–764.
  32. Herrera-Balandrano, D.D.; Báez-González, J.G.; Carvajal-Millán, E.; Méndez-Zamora, G.; Urías-Orona, V.; Amaya-Guerra, C.A.; Niño-Medina, G. Feruloylated Arabinoxylans from Nixtamalized Maize Bran Byproduct: A Functional Ingredient in Frankfurter Sausages. Molecules 2019, 24, 2056.
  33. Skendi, A.; Zinoviadou, K.G.; Papageorgiou, M.; Rocha, J.M. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020, 9, 1243.
  34. Dapčević-Hadnađev, T.; Hadnađev, M.; Pojić, M. 2-The healthy components of cereal by-products and their functional properties. In Sustainable Recovery and Reutilization of Cereal Processing by-Products; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 27–61.
  35. Ciudad-Mulero, M.; Fernández-Ruiz, V.; Matallana-González, M.C.; Morales, P. Chapter Two—Dietary Fiber Sources and Human Benefits: The Case Study of Cereal and Pseudocereals. In Advances in Food and Nutrition Research; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 83–134.
  36. Juhnevica-Radenkova, K.; Kviesis, J.; Moreno, D.A.; Seglina, D.; Vallejo, F.; Valdovska, A.; Radenkovs, V. Highly-Efficient Release of Ferulic Acid from Agro-Industrial By-Products via Enzymatic Hydrolysis with Cellulose-Degrading Enzymes: Part I–The Superiority of Hydrolytic Enzymes Versus Conventional Hydrolysis. Foods 2021, 10, 782.
  37. Sandak, A.; Sandak, J.; Modzelewska, I. Manufacturing fit-for-purpose paper packaging containers with controlled biodegradation rate by optimizing addition of natural fillers. Cellulose 2019, 26, 2673–2688.
  38. Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016, 34, 58–69.
  39. Bastos, R.; Coelho, E.; Coimbra, M.A. 8-Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 227–251.
  40. Pérez-Flores, J.G.; Contreras-López, E.; Castañeda-Ovando, A.; Pérez-Moreno, F.; Aguilar-Arteaga, K.; Álvarez-Romero, G.A.; Téllez-Jurado, A. Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Res. Int. 2019, 116, 1020–1030.
  41. Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518.
  42. Gil-Chávez, J.; Gurikov, P.; Hu, X.; Meyer, R.; Reynolds, W.; Smirnova, I. Application of novel and technical lignins in food and pharmaceutical industries: Structure-function relationship and current challenges. Biomass Convers. Biorefinery 2021, 11, 2387–2403.
  43. Yadav, M.P.; Parris, N.; Johnston, D.B.; Onwulata, C.I.; Hicks, K.B. Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydr. Polym. 2010, 81, 476–483.
  44. Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288.
  45. Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A Review. Food Res. Int. 2008, 41, 850–868.
  46. Parchami, M.; Ferreira, J.A.; Taherzadeh, M.J. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi—A brewery biorefinery concept. Bioresour. Technol. 2021, 337, 125409.
  47. Johansson, E.V.; Nilsson, A.C.; Östman, E.M.; Björck, I.M.E. Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults. Nutr. J. 2013, 12, 46.
  48. Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat Bran-Based Biorefinery 2: Valorization of Products. LWT 2014, 56, 222–231.
  49. Meriles, S.P.; Penci, M.C.; Curet, S.; Boillereaux, L.; Ribotta, P.D. Effect of microwave and hot air treatment on enzyme activity, oil fraction quality and antioxidant activity of wheat germ. Food Chem. 2022, 386, 132760.
  50. Zhao, M.; Lan, Y.; Cui, L.; Monono, E.; Rao, J.; Chen, B. Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Food Chem. 2020, 309, 125704.
  51. Povilaitis, D.; Venskutonis, P.R. Optimization of supercritical carbon dioxide extraction of rye bran using response surface methodology and evaluation of extract properties. J. Supercrit. Fluids 2015, 100, 194–200.
  52. Gholami, A.; Mohkam, M.; Rasoul-Amini, S.; Ghasemi, Y. Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges. Minerva Biotecnol. 2016, 28, 59–74.
  53. Sindhu, R.; Silviya, N.; Binod, P.; Pandey, A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 2013, 78, 67–72.
  54. Obruca, S.; Benesova, P.; Marsalek, L.; Marova, I. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 2015, 29, 135–144.
  55. Bilo, F.; Pandini, S.; Sartore, L.; Depero, L.E.; Gargiulo, G.; Bonassi, A.; Federici, S.; Bontempi, E. A sustainable bioplastic obtained from rice straw. J. Clean. Prod. 2018, 200, 357–368.
  56. Souza Filho, P.F.; Zamani, A.; Ferreira, J.A. Valorization of wheat byproducts for the co-production of packaging material and enzymes. Energies 2020, 13, 1300.
  57. Nikkilä, M. Cereal Waste Valorization through Development of Functional Key Fibres to Innovate in Fibre Packaging Materials. 2020. Available online: http://cordis.europa.eu/project/rcn/110025_en.html (accessed on 24 September 2023).
  58. Lorite, G.S.; Rocha, J.M.; Miilumäki, N.; Saavalainen, P.; Selkälä, T.; Morales-Cid, G.; Gonçalves, M.P.; Pongrácz, E.; Rocha, C.M.R.; Toth, G. Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT Food Sci. Technol. 2016, 75, 305–315.
  59. Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141.
  60. Djukić-Vuković, A.; Mladenović, D.; Radosavljević, M.; Kocić-Tanackov, S.; Pejin, J.; Mojović, L. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production—A comparative study. Waste Manag. 2016, 48, 478–482.
  61. Petrović, J.; Rakić, D.; Fišteš, A.; Pajin, B.; Lončarević, I.; Tomović, V.; Zarić, D. Defatted wheat germ application: Influence on cookies’ properties with regard to its particle size and dough moisture content. Food Sci. Technol. Int. 2017, 23, 597–607.
  62. Al-Marazeeq, K.M.; Angor, M.M. Chemical characteristic and sensory evaluation of biscuit enriched with wheat germ and the effect of storage time on the sensory properties for this product. Food Nutr. Sci. 2017, 8, 189–195.
  63. Pınarlı, İ.; İbanoğlu, Ş.; Öner, M.D. Effect of storage on the selected properties of macaroni enriched with wheat germ. J. Food Eng. 2004, 64, 249–256.
  64. Tarzi, B.G.; Shakeri, V.; Ghavami, M. Quality evaluation of pasta enriched with heated and unheated wheat germ during storage. Adv. Environ. Biol. 2012, 6, 1700–1707.
  65. Aktaş, K.; Bilgiçli, N.; Levent, H. Influence of wheat germ and β-glucan on some chemical and sensory properties of Turkish noodle. J. Food Sci. Technol. 2015, 52, 6055–6060.
  66. Lech, M.; Labus, K. The Methods of Brewers’ Spent Grain Treatment towards the Recovery of Valuable Ingredients Contained Therein and Comprehensive Management of Its Residues. Chem. Eng. Res. Design 2022, 183, 494–511.
  67. Alzuwaid, N.T.; Sissons, M.; Laddomada, B.; Fellows, C.M. Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chem. 2020, 97, 304–315.
  68. Prandi, B.; Faccini, A.; Lambertini, F.; Bencivenni, M.; Jorba, M.; Van Droogenbroek, B.; Bruggeman, G.; Schöber, J.; Petrusan, J.; Elst, K.; et al. Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem. 2019, 286, 567–575.
  69. Zhu, K.-X.; Zhou, H.-M.; Qian, H.-F. Proteins Extracted from Defatted Wheat Germ: Nutritional and Structural Properties. Cereal Chem. 2006, 83, 69–75.
  70. Espinosa-Pardo, F.A.; Savoire, R.; Subra-Paternault, P.; Harscoat-Schiavo, C. Oil and protein recovery from corn germ: Extraction yield, composition and protein functionality. Food Bioprod. Process. 2020, 120, 131–142.
  71. Guan, X.; Yao, H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 2008, 106, 345–351.
  72. Phongthai, S.; Lim, S.-T.; Rawdkuen, S. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 2016, 70, 146–154.
  73. Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. Int. J. Food Sci. Technol. 2013, 48, 1670–1681.
  74. Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of structural and functional characteristics of brewer’s spent grain protein by ultrasound assisted extraction. LWT 2021, 139, 110582.
  75. Majzoobi, M.; Ghiasi, F.; Farahnaky, A. Physicochemical assessment of fresh chilled dairy dessert supplemented with wheat germ. Int. J. Food Sci. Technol. 2016, 51, 78–86.
  76. Petrović, J.; Fišteš, A.; Rakić, D.; Pajin, B.; Lončarević, I.; Šubarić, D. Effect of defatted wheat germ content and its particle size on the rheological and textural properties of the cookie dough. J. Texture Stud. 2015, 46, 374–384.
  77. Youssef, H.M.K.E. Assessment of gross chemical composition, mineral composition, vitamin composition and amino acids composition of wheat biscuits and wheat germ fortified biscuits. Food Nutr. Sci. 2015, 6, 845–853.
  78. Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2019, 10, 21.
  79. Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s Spent Grains—Valuable Beer Industry By-Product. Biomolecules 2020, 10, 1669.
  80. Görgüç, A.; Özer, P.; Yılmaz, F.M. Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J. Food Process. Preserv. 2020, 44, e14304.
  81. Bacha, E.G. Response Surface Methodology Modeling, Experimental Validation, and Optimization of Acid Hydrolysis Process Parameters for Nanocellulose Extraction. S Afr. J. Chem. Eng. 2022, 40, 176–185.
  82. Ideia, P.; Sousa-Ferreira, I.; Castilho, P.C. A Novel and Simpler Alkaline Hydrolysis Methodology for Extraction of Ferulic Acid from Brewer’s Spent Grain and Its (Partial) Purification through Adsorption in a Synthetic Resin. Foods 2020, 9, 600.
  83. Choi, M.S.; Choi, Y.S.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Lee, S.Y.; Kim, C.J. Effects of Replacing Pork Back Fat with Brewer’s Spent Grain Dietary Fiber on Quality Characteristics of Reduced-Fat Chicken Sausages. Food Sci. Anim. Resour. 2014, 34, 158–165.
  84. Macias-Garbett, R.; Serna-Hernández, S.O.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Phenolic Compounds From Brewer’s Spent Grains: Toward Green Recovery Methods and Applications in the Cosmetic Industry. Front. Sustain. Food Syst. 2021, 5, 196.
  85. Guido, L.F.; Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: A Review. Food Bioprocess Technol. 2017, 10, 1192–1209.
  86. Rebolleda, S.; José, M.L.G.S.; Sanz, M.T.; Beltrán, S.; Solaesa, Á.G. Bioactive Compounds of a Wheat Bran Oily Extract Obtained with Supercritical Carbon Dioxide. Foods 2020, 9, 625.
  87. Zheng, X.; Zhang, R.; Liu, C. Extraction and Antioxidant Activity of Phenolic Compounds from Wheat Bran Treated by Steam Explosion. Trop. J. Pharm. Res. 2015, 14, 1857–1863.
  88. Radenkovs, V.; Juhnevica-Radenkova, K.; Górnaś, P.; Seglina, D. Non-Waste Technology through the Enzymatic Hydrolysis of Agro-Industrial by-Products. Trends Food Sci. Technol. 2018, 77, 64–76.
  89. Călinoiu, L.F.; Cătoi, A.F.; Vodnar, D.C. Solid-State Yeast Fermented Wheat and Oat Bran as A Route for Delivery of Anti-oxidants. Antioxidants 2019, 8, 372.
  90. Dynkowska, W.M. Rye (Secale Cereale L.) Phenolic compounds as health-related factors. Plant Breed Seed Sci. 2019, 79, 9–24.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , ,
View Times: 183
Revisions: 2 times (View History)
Update Date: 17 Oct 2023
1000/1000
Video Production Service